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ABSTRACT

An overview of recent work on nonlinear trans-
port properties in a dilute binary mixture under uni-
form shear flow is presented. The physical situation
is such that the only nonzero hydrodynamic gradient
is Qu, [0y = a =
ity. The description applies for arbitrary values of
the shear rate a and is not limited to specific val-
ues of particle masses, concentrations, and particle

sizes. We explicitly obtain the rheological properties

of the mixture (non-Newtonian shear viscosity and’

viscometric functions) as nonlinear functions of the
shear rate and the parameters of the mixture. The
results are obtained from three different and comple-
mentary routes: (i) from the Boltzmann equation for
Maxwell molecules, (ii) from a kinetic model for gen-
eral repulsive interactions, and (iii) from Monte Carlo

simulations. In the tracer limit, a transition to an

PACS number(s): 51.10.+y, 05.20.Dd, 05.60.4w,

47.50.+d

const, where u is the flow veloc-
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alternative state is identified. In this new state, sur-
prisingly the partial contribution of the tracer species
to the total properties of the mixture becomes finite
if the shear rate is larger than a certain critical value.
The relevance of the results presented in the review
as well as its relation with more realistic flows is dis-

cussed.
I. INTRODUCTION

The analysis of tra.nsport phenomena in fluid sys-
tems is certainly more complicated when one deals
with a mixture than when one considers the case of a
monocomponent system. Not only is the number of
transport coefficients higher but also they are func-
tions of parameters such as the molar fractions, the
mass ratios and/or the size ratios. In addition, if
one attempts to study far from equilibrium situations,
namely, those for which the assumptions of linear ir-
reversible thermodynamics break down, the difficul-
ties increase considerably. Due to this compiexity,
tractable specific situations for which a complete de-

scription can be offered are of great. value in order
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to gain some insight into the understa;lding of more
general problems.

In order to capture the essential aspects of non-
linear transport phenomena, a dilute binary mixture
with short-range interactions can be chosen as a pro-
totype system. Further, we adopt a kinetic level of de-
scription according to which the state of the mixture
is characterized by the one-particle velocity distribu-
tion functions f,(r,v;t) (s = 1,2) of each species.
These functions obey a set of two coupled Boltzmann
equations [1]. Nevertheless, it is a very hard task
to find explicit solutions of the Boltzmann equations,
especially in states far from equilibrium. One of the
rare exceptions corresponds. to the so-called uniform
shear flow (USF). In this state, the only nonzero gra-
dient is du./dy = a = const, where u is the flow
velocity. Due to its simplicity, this flow problem has
beer.l one of the most extensively studied states in
the past, especially in the case of a monocomponent
gas [2-6]. The relevant transport coefficients of USF
are the nonlinear shear viscosity 7 and viscometric
functions ¥, » which are related to the total pressure
tensor P. In the case of a single monocomponent gas
of Maxwell molecules (repulsive r—* potential), Tken-
berry and Truesdell {7] obtained explicit expressions
of the rheological properties 7 and ¥, ; for arbitrary
values ;)f the shear rate a. Although the ﬁmnberry—
Truesdell solution only holds for Maxwell molecules,
it presents a good agreement with computer simula-

tions for other potentials {8,9].

The aim of this review is to analyze the transport
properties of a dilute binary mixture under USF. The
molar fractions are constant so that no mutual diffu-
sion exists in the mixture and the transport of mo-
mentum is the relevant phenomenon. On the other
hand, since our description holds for arbitrary -va.lues
of the masses, concentrations and force constants, the
transport coefficients are nonlinear functions of the
shear rate as well as of the parameters of the mix-
ture. In the context of the Boltzmann equation, ex-
plicit results can only be obtained in the particular
case of Maxwell molecules. In this case, the infinite
hierarchy for the moments of the velocity distribution
functions can be solved exactly, and in i)articular the
pressure tensor P (which is related to the second order
moments) can be determined. Our results show that,
independently of the parameters considered, 7 and
¥, (a) monotonically decrease as e increases (shear
thinning effect), while ¥, vanishes [10]. Obviously,
the solution of Ikenberry and Truesdell is recovered
in the limit of mechanically equivalent particles. Un-
fortunately, the above description cannot be regarded
as general since the model of Maxwell molecules is not
a very realistic representation of intermolecular inter-
actions, except in some pa:ticula.r conditions. In or-
der to evaluate the effect of the interaction pofentia.l
on the rheological properties, we formulate the same
problem using a convenient kinetic model. The idea is
to replace the exact Boltzmann collision integrals by

simple relaxation terms which retain their main phys-
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ical properties, such as the conserva.ti.on laws. Our
model is a generalization of the well-known Gross-
Krook (GK) kinetic model [11] for a dilute binary
mixture that incorporates a temperature dependence
of the collision frequencies [12]. This allows for the
consideration of general repulsive interactions. Apart
from obtaining the transport properties, and in con-
trast to the case of the Boltzmann equation, the use
of a kinetic model allows us to derive explicit expres-
sions for the velocity distribution functions {13]. The
behavior of these distributions is tested against the
results obtained from the well-known Direct Simula-
tion Monte Carlo method [14] for a dilute gas. In
general, the comparison of the GK predictions with
those given by exact results of the Boltzmann equa-
tion as well as from Monte Carlo simulations shows a
qualitatively good agreement for not too large shear
rates and for not too large disparity of the parameters
of the mixture.

An interesting point is to investigate what hap-
pens in the tracer limit, namely, when the molar
fraction of one of the components tends to zero. In
this limit, the results obtained from the Boltzmann
equation for Maxwell molecules {15] and from the ki-
netic model for general repulsive potentials [16] show
that surprisingly the partial contribution of the tracer
species to the total properties 6f the mixture becomes
finite if the shear rate is larger than a certain critical
value a., which is a function of the parameters of the

mixture and the interaction model considered. This

phenomenon can be interpreted as a nonequilibrium
phase transition in velocity space. While for non-
Maxwell molecules, the corresponding order param-
eter is discontinuous at the critical point (first order
transition), the transition becomes continuous at .
in the special case of Maxwell molecules. It must be
remarked that all these analytical predictions are also
supported by Monte Carlo simulations of the Boltz-
mann equation.

The organization of the review is as follows. In
Sec. II we describe the shear flow problem and in-
troduce the starting kinetic equations. Section III is
concerned with the evaluation of the steady transport
properties from the Boltzmann and GK equations as
well as with the derivation of the GK velocity distri-
bution functions. In Sec. IV, we illustrate the shear-
rate dependence of the above quantities and compare
the predictions made from the Boltzmann equation
with those from the GK approximation. The tracer
limit is analyzed in Sec. V, and we close the paper

with a brief discussion on the results obtained.

II. DESCRIPTION OF THE PROBLEM

Let us consider a dilute binary mixture. In terms
of the velocity distribution function fy(r,v,t), the
number density n,, the mean velocity u,, and tem-

perature T, of species s are defined as
{nonpusniks T} = [ v {Lv,dm(v — w2} £,

(1)
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where m, is the mass of a particle of species s, and

kg is the Boltzmann constant. From the partial

quantities appearing in (1), one can define the to-

tal number density n = n; + np, the flow velocity

u = (pu; + pauz)/(p1 + p2), ps = msn, being the

fnass density of species s, and the temperature of the

mixture T (which is the relevant one at a hydrody-
namic level) as

2 1

nksT = 3 (n,kBT, + 3l - u)ﬁ) )

The macroscopic state of uniform shear flow

(USF) is characterized by constant densities n,, uni-

form temperature T, and a flow field of the form
u,'.-(r) = Ui = Q5T , Qi = a&.-,&,-y ) . (3)

@ being the constant shear rate. Since there is no
mutual diffusion in the mixture, the shear rate (which
may be arBitra.rily large) is the only nonequilibrium
parameter of the problem and the pressure tensor P
is the relevant irreversible flux. It is defined as
2
P=Y m, / dvVVF,
s=1

=3P, (4)

where V; = v; — a,;r; is the peculiar velocity, and the
expression for the partial pressure tensor of species s,
P, can be easily identified. From the total pressure
tensor, the main transport coefficients of the problem

may be defined: the shear viscosity

o) =~ 22 (5

and the viscometric functions

P - P:r::

¥y(a) = —WT‘ ) (6)
P, — P,

Va(a) = “E7E (@)

In the USF problem, the shearing motion praduces
viscous heating, so that the temperature increases in
time. Although the state is not stationary, for suf-
ficiently long times and taking suitable initial con-
ditions, it is possible to get a stationary represen-
tation by using appropriate dimensionless variables
(e.g., scaling the velocity relative to the thermal ve-
locity). In this sense, Egs. (5)-(7) must be under-
stood in the long-time limit where the influence of
the initial conditions has disappeared.

At a microscopic level, the USF is a state that
is spatially homogeneous in the Lagrangian frame
moving with t'he ﬂovi—velocity u. As a consequence,
the distribution functions become homogeneous un-
der the above change, namely, f(r,v;t) = f,(V;1).
This is the main reason for which this state has re-
ceived great attention in the past, especially in the
case of a single gas. Nevertheless, much less is known
about it in the case of multicomponent systems. Un-
der the conditions of the USF, the distributions f,

obey the set of Boltzmann equations:

0]
afl - aiv‘_‘aijvjfl =Julfi, Al + Jlfi, ] (8)

and a similar equation for f;. Here, J,,(f., fy] is the

Boltzmann collision operator {1}, which in standard
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notation reads

Jeslfen = [ aVs [ IV = Vilor(V = V1,6)
V)V = £V (9)

We are interested in evaluating the rheological prop-
erties 7 and ¥, , for arbitrary values of @ and the pa-
rameters of the mixture. In the context of the Boltz-
mann equation, this is only possible in the case of
Maxwell molecules, namely, a potential of the form
®,, = k,,r~%. The key point is that the collision
rate go,,(g,0) is independent of the relative velocity
g so that the collisional moments of a given order
do not involve moments of higher order {7]. However,
for non-Maxwell interactions the above property does
not hold and one must resort to simple kinetic mod-
els. Here, we will start from a generalization of the
conventional Gross-Krook (GK) model [11] to r~¢ re-
pulsive potentials. In this case, the exact Jrs[fr, fi] is

replaced by a relaxation term of the form

Jrc.;;K[fry fs] = _Vrs(fr - frs) 1 (10)

where, in the case of the USF problem, the reference

distribution f,, is given by

m, 3/2 m,
Jro =1 (27rkBT ) P ("2kBT Vz) » (1)

and

m.m,

T = Tr+2m

(T,-T.). (12)

Further, an effective collision frequency v,, is defined

as [12]

m. + m,)ﬂ—ﬁ)/z 2%kgT, L 26T, 2
k m, ms

(13)

ves = AB), (e

m.m,

where § = 1 — 4/¢, and A(f) is a constant for a
given potential. The reliability of this kinetic model
has been assessed in several nonequilibrium problems
[12,17] by comparison with exact analytical results
[18] as well as with Monte Carlo simulations of the
Boltzmann equation [19].

Before analyzing the shear-rate dependence of the
transport coefficients, it is instructive to show that
Eq. (8) (and its corresponding GK approximation)
admits a nice scaling property in the case of Maxwell

molecules. Let us introduce the scaled quantities

V=ev, (14)

TV, 1) = €1V, 1), (15)

where « is an arbitrary constant. In terms of these

scaled variables, Eq. (8) reduces to
- 7} — — = - = =
5 gyleViteVifi = Julfy, fil + Jalfys fol -
(16)

In deriving Eq. (16), use has been made of a symme-

try property of J.,[f;, fs] for Maxwell molecules [21].

Equation (16) can be seen as the Boltzmann equa-
tion in USF under the action of a nonconservative
drag force F, = —m,aV. This shows the equivalence
between the description with and without the exter-

nal forces F, in the case of Maxwell molecules. Most
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computer simulations of USF use forées of this kind
to enforce constant temperature [20]. In this context,
a is chosen as a function of the shear rate by the con-
dition that the temperature achieves a constant value

in the long-time limit. Here, for the sake of simplicity,

we will adopt this point of view and will incorporate .

isothermal comstraints. For non-Maxwell molecules,
the presence of the thermostat does not play a neutral
role in the results and a certain influence may exist

in the evaluation of the rheological properties [21].

III. NONLINEAR TRANSPORT PROPERTIES

IN THE STEADY USF STATE

The objective now is to explicitly determine the
rheological properties of the mixture in the ther-
mostatted shear flow state. In this case, we will start
from Eq. (16) with 8f,/0t = 0 and will determine
by consistency. Henceforth, and for the sake of sim-
plicity, we will drop the bars in Eq. (16). The trans-
port coefficients 7 and ¥, will be given in terms of
the shear rate-a;the mass ratio g = m;/ma, the con-
centration ratio d = n;/n;, and the force constant
ratios wy; = Ki11/K12 and wy2 = K22/Kk12. The analy-
sis will be made from the exact Boltzmann equations
for Maxwell molecules and from the GK model for

general repulsive interactions.

A. Description based on the Boltzmann equation

As was noted above, the main transport prop-

erties are related to the total momentum flux P =
P, + P;. It is also interesting to analyze partial con-
tributions corresponding to each species, such as the
temperature ratios T} 2/T. These quantities measure
how the kinetic energy is distributed between the two
species. In order to determine Py, we multipiy both
sides of Eq. (16) (with 8f1/0t = 0) by m;V;V; and

integrate over velocity space. The result is [10]

2aPyi; + aikPrgj + @;x P + B Prj

+B12Py;; = (Aupr + Awzp2)ds; , (17)

where ps = n,kpT; and we have introduced the coef-

ficients
A A ™m
Ay = 211 12 2 1
u n my + ma mln2 ’ (18)
Al
Al = 12
. m;.nl ’ (19)
Bu=A +2——ﬁ—-—n (20)
11 11 o
Bip= Ay —2—22 (21)
12 R o

In the above equations, the eigenvalues A., and A[,

of the the Boltzmann collision operator are given by

1/2
Are = 1697 (kpere \ (22)
my +ms
mam, \1/?
/\:._, = 2.61lw (Krr, m) (23)

’fhe corresponding equation for P3 can be easily in-
ferred from Eq. (17) by just making the changes

1 & 2. The thermostat parameter « is determined
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by the consistency condition Py + Prxx = 3nkgT,
which leads in general t6 a sixth-degree equation that
must be solved numerically [10]. When « is known,
Eq. (17) is easily solved and provides a microscopic
basis for evaluating such non-Newtonian transport
coefficients as functions of a, g, J, and w,,. Their
corresponding expressions are very large and, for the
sake of brevity, will be omitted here. They can be
found in Ref. [10). The shear-rate dependence of these
quantities will be illustrated and compared later with

the predictions of the GK model.

B. Description based on the Gross-Krook

(GK) equation

The results derived in the previous section can-

not be seen as general, since a model of Maxwell

molecules is somewhat limited. Nevertheless, if one
wants to derive explicit expressions of the rheolbgical
_properties for non-Maxwell molecules, one needs to
use a kinetic model. As said before, here we will start
from the generalized GK model defined by Eqgs. (10)-
(12). Since in general the reference distribution f,
depends on space and time through its dependence
on the densities, the flow velocities, and the tempera-
tures (which are moments of the distributions f,), the
GK equation is actually more nonlinear than the orig-
inal bilinear Boltzmann equation. This means that
the model is not restricted to near equilibrium situa-

tions and can be-used to evaluate nonlinear transport

properties. The results obtained in the past few years
have shown the reliability of this kinetic model in such
nonequilibrium problems [12,17,19].

Let us define the reduced velocity moments M, ,E"’,)m

corresponding to species s:

2 1 [2kgT\ WDk+ttm) .
ﬁllg.l).m = ( 3 )

o \ s AVVEVVIA(V)

(24)

In the context of the GK equation, these moments

verify the hierarchy

akM:fl_)x,m,m +{n+ alk+ £+ m)]M:(;fz),m = l(:t),m )
(28)

.. . 2
and a similar equation for M,El)_m Here, v, = vi1+v12,

and

N)(:t),m - W—alzckclcm[V))X(lk+l+"l)/2 + V12x(1,;+l+"l)/2]

-~ (26)

where Cy = T'((k + 1)/2) if k¥ = even, being zero
otherwhise. Also, x; = T1/T, and x12 = T12/T. The
solution of Eq. (25) can be written as [13)

LA : .

Migm =3 (—k‘.T);(—a)"[vl + a(k + €4 m)] "0+
=0

XN‘(=1—)q-l+q.m : (27)

This equation is still formal since the parameters a,

X1, and 2 are unknown. They can be determined

from the consistency conditions:

o= Mido+ Mo+ M3,, . (28)
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Except in the particular case of Maxwell molecules
(8 = 0), Egs. (28) and (29) must be solved numeri-
cally since the collision frequencies are nonlinear func-
tions of the temperature ratios. Once a and x, are
known, one can easily evaluate all the relevant trans-
port coefficients of the problem.

The use of a kinetic model allows us to derive
the explicit expressions of the velocity distribution
functions f,. Even for Maxwell molecules, it is not
possible to obtain an explicit solution of the Boltz-
mann equation and the only information about f,
is given indirectly through its first moments. This
is one of the main advantages of using kinetic mod-
els. In the steady shear flow state, after some alge-
bra, the distribution f; can be written as fi(V) =
ny(mi/2kpT)%g,(€), where £ = (my/2ksT)"/?V

and the reduced distribution g is

o0
@) =7n7%2 / dre= (=37 [Vuxral2
o
x exp(—xi'e*"€ - T'r - €) + vaaxis’

x exp(—xije*7€ - Tr - §)] - (30)

Here, I', is the matrix defined as [y(r) = &; +
a*r28,,8;, + a(8iz85y + 8iyd;z). The highly nonlinear
dependence of g1 on the parameters of the problem is

very apparent.

IV. COMPARISON BETWEEN
THE BOLTZMANN AND GK RESULTS

In this section we illustrate the shear-rate depen-

dence of the transport coefficients and the velocity
distribution functions for several values of the param-
eters of the mixture. We also compare the predictions
made by the GK model with those obtained from
the Boltzmann equation for Maxwell molecules. This
comparison can be seen as a stringent test of the ki-
netic model computation of nonlinear transport prop-
erties and distribution functions in a binary mixture.
To make such a comparison, we introduce dimension-

less quantities and choose

my +ma

1/2
(= 1.8,.')1rmc£l{m/2 ( ) (2ksT)P? (31)

myma
as an effective collision frequency, and hence define
the reduced shear rate a* = a/{. The numerical co-
efficient appearing in the expression for { has been
chosen to give the same results in both the GK and
Boltzmann equations in the USF problem for a single
monocomponent gas [7].

The temperature ratio T} /7T, is a measure of the
lack of equal distribution of energy. The shearrate
dependence of this quantity is plotted in Fig. 1 for
§ = 3, two values of u, and for simplicity, we have
assumed that K12 = K22 = K£12. The curves of the GK
model correspond to the cases of Maxwell molecules
(8 = 0) and hard spheres (§ = 1). We see that,
independently of the interaction considered, the tem-
perature ratio is not monotonic. In particular, the
two temperatures coincide at a certain value of the
shear rate which depends on the parameters of the

mixture. The qualitative trends predicted by the ex-
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FIG. 1. Plot of the temperature ratio T1 /T, versus the
reduced shear rate a* for k., = k, § = 3, and two values of
the mass ratio u. The solid lines refer to the Boltzmann
results for Maxwell molecules while the dashed and dot-
ted lines correspond to the GK model results for Maxwell

molecules and hard spheres, respectively.

act solution are also given by the GK model while,
at a quantitative level, the discrepancies between the
two theories are less important when the mass of the
excess component is larger than that of the defect
component. Concerning the effect of the interaction
potential, we observe that T} /T is practically insensi-
tive to the interaction potential for small shear rates,
while this influence becomes more significant as the
system moves away from equilibrium.

The most important quantity in a sheared mixture
is the nonlinear shear viscosity n(a*). In Fig. 2 we
plot the reduced shear viscosity (a*)/n(0) versus the
reduced shear rate a* for the same cases considered
previously. Here, n(0) represents the Navier-Stokes

shear viscosity coefficient.

na@*) /m(U)

0.6

04

02

0.0 ' TN B I B
00 0.5 i0 15 20 2.5 30

FIG. 2. Plot of the reduced shear viscosity n{a*)/7(0)
versus the reduced shear rate a* for ., = &, § = 3,
and two values of the mass ratio u. The solid lines re-
fer to the Boltzmann results for Maxwell molecules while
the dashed and dotted lines correspond to the GK model
results for Maxwell molecules and hard spheres, respec-

tively.

In the same way as in the monocomponent case, a
shear thinning effect is observed, namely, the shear
viscosity decreases as the shear rate increases. The
inhibition of momentum transport is more noticeable
when the mass of the excess component is larger than
that of the defect component. The GK results indi-
cate that the shear viscosity is practically indepen-
dent of the details of the interaction law considered.
This universal character has Been also observed in the
single gas case [9]. We observe again that the GK
predictions are closer to the Boltzmann ones when
the excess particles are heavier than the defect parti-
cles. Normal stresses are measured by the viscomet-

ric functions. The Boltzmann and GK results lead
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to U2 = 0 regardless of the values c;f the param-
eters of the mixture considered. This result is ex-
act for Maxwell molecules, although for non-Maxwell
molecules one expects that ¥z # 0 (but very small) as
occurs for a monocompohent gas [8,9]. The shear-rate
dependence of ¥;{a*)/¥(0) is plotted in Fig. 3. This
quantity is also a decreasing function and its depen-
dence on the parameters of the mixtures is similar to
that of the shear viscosity. However, and in contrast
to n(a), a more significant influence of the potential
interaction on W;{a) appears for u > 1.

As said before, the distribution function f,(V)
provides all the information on the shear flow prob-

lem. Unfortunately, since no explicit expression is

V(@) 1y, (V)

14
IS

o
N

00

*FIG. 3. Plot of the reduced first viscometric func-
tion ¥;(a*)/®,(0) versus the reduced shear rate a* for
Krs = K, 8 = 3, and two values of the mass ratio u.
The solid lines refer to the Boltzmann results for Maxwell
molecules while the dashed and dotted lines correspond
to. the GK model results for Maxwell molecules and hard

spheres, respectively.

known for this quantity in the context of the Boltz-
mann equation, one has to resort to computer simu-
lations or start from a kinetic model. With respect
to the first possibility, here we will use the DSMC
method due to Bird [14], which has been proved to
be an efficient tool to study transport properties in
dilute mixtures [19]. This is the only way to test
the predictéons made from the GK model at the level
of the distribution {30). Since g,(£) depends on the
three components of £, for practical purposes, it is

useful to define some marginal distributions:

)= [ [ deaiga),  (2)

auia) = [ de [T deaGa).  (3)
For the sake of illustration, in Figs. 4 and 5 we
plot the ratios @.(€:) = 91,2(6r3a")/915(€5;0) and
u(6) = 91(643 @)/ 91,4(6,30), Tespectively, for w,, =
1,6 =3, p = 5, and a* = 2.771. We have con-
sidered the case of Maxwell molecules. In general,
referring to Figs. 4 and 5, a distortion from equilib-
rium (e, = 1) is clearly observed. This could be
anticipated on the basis of the highly nonlinear de-
pendence of the transport coefficients on the shear
rate and the parameters of the mixture. We also see
that the GK distributions reproduce fairly well the
general behavior of the Boltzmann distributions ob-
tained from the simulation. However, it is evident
that there exist significant discrepancies between the

simulation data and the GK predictions, especially in
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FIG. 4. Reduced distribution function ¢g(£z) versus
£ for ks = K, 6 = 3, p = 5 and ¢* = 2.771 in the
case of Maxwell molecules as obtained from Monte Carlo
simulations (solid line) and from the GK model (dashed

line).
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4

FIG. 5. Reduced distribution function () versus
& for k. = K, 6 = 3, p = 5 and ¢* = 2.771 in the
case of Maxwell molecules as obtained from Monte Carlo
simulations (solid line) and from the GK model (dashed

line).

the region of high velocities in the case of ¢, when

& < 0 and near the maximum for ¢,. In this latter

case, the GK distribution predicts well the location

of the maximum although not its value.

V. TRACER LIMIT

So far, all the results apply for a.rbitra.ry.values
of the ratios of mass, concentration and force con-
stants. An interesting limit corresponds to the tracer
limit, namely, when § = n;/n; < 1. In this situation,
one usually assumes that the properties of the excess
component (bath) are not affected by the tracer par-
ticles and, in addition, one neglects collisions among
tracer particles themselves in the kinetic equation of
the tracer component. As a consequence, one expects
that the contribution of the tracer species to the total
properties of the mixture will be negligible. Never-
theless, as we will see later, this expectation may be
violated in the shear flow problem since, when the
mixture is sufficiently far from equilibrium, the rela-
tive contribution of the tracer particles to the total
properties can be even larger than that of the excess
component.

Let us consider first the Boltzmann description in
the special case of Maxwell molecules. In the tracer
limit (6§ — 0), the corresponding sixth-degree equa-
tion for a decouples into two cubic algebraic equa-
tions, whose real solutions are [15]

a

Qg = V2 (—) ) (34)

V22

,_—
Qg =

22 [ (a(l + p)?

T B )-—0.648p] . (39)
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where ¢(z) = 2 sinh®[} cosh™'(1+92?)] and v} is an
effective mean free time of a particle of species r for
collisions with particles of species s. Its definition is
similar to the one given for the GK model, Eq. (13).
) The analysis of the transient regime shows that the
suitable thermostat to achieve steady values for T
and T; is = max(ao, af). Aslongas d # 0, ag > af.
Nevertheless, if § — 0, and for a given choice of the
force constants, one finds that: (i) @ = a¢ if p is
larger than a certain threshold value p¢h, which is the
solution of v12(p) = (1 + )?/2; and (ii) if 4 < pen,
then a = af, for shear rates larger than a critical value
a.(p). The behavior of a () shows that a. — oo both

when g — 0 and g — pn.

What are the main physical consequences of the

existence of a critical value a.()? Let us focus our
attention on the relative contribution of the tracer
particles to the total energy of the system, E,/E.
In this case, after a careful asymptotic analysis, one

obtains that [15]
lim =+ = F(a Hy W1, W ) (36)
§50 E 17 11y 22

if p < pn and a > ap), being E;/E ~ § = 0 oth-
erwise. Here, F(a,p,w);,ws) is a known function
that depends in a nonlinear way on the different pa-
rameters of the problem. The above result shows the
qualitatively different behavior of the mixture in the
tracer limit depending on whether a is larger than
a. or not. Although the molar fraction of the tracer

particles is negligible, their contribution to the total

energy may be significant if the shear rate is larger
than a certain critical value. By borrowing the usual
terminology of equilibrium phase transitions [22}, one
can identify the shear rate a as the “control” parame-
ter and E,/F as an “order” paraineter. The fact that
the order parameter goes to zero when a — a; — 0t
indicates that the transition can be interpreted as of
second order in velocity space.

An interesting question is if this transition can
also be extended beyond the Maxwell interaction.
This question can be answered analytically from the
GK model. In the context of this model, a detailed
analysis [16] of the tracer limit for general repulsiv.e
interactions allows us again to identify such a transi-
tion in velocity space. The results show again that the
transition becomes continuous at a.(¢) in the case of
Maxwell molecules (first-order transition) while for
non-Maxwell molecules the order parameter is dis-
continuous at the critical point. In order to illustrate
the different behaviors, in Fig. 6 we plot the order
parameter E,/E versus a/a. when & = 0 as given
from the Boltzmann equation for Maxwell molecules
and from the GK model for Maxwell molecules and
hard spheres. We have considered the case u = 0.1
and k32 = Kg2. It is evident that, for non-Maxwell
molecules, E;/E ~» 0 whea a — a7 while E,/E —»
finite value when a —» a}. Also, regardless of the in-
teraction considered, the tracer contribution to the
total energy can be even larger than that of the ex-

cess component for sufficiently large values of the
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FIG. 6. Plot of the energy ratio E)/FE versus a/a,
in the tracer limit (§ — 0) for 5., = %, and u = 0.1.
The solid line corresponds to the Boltzmann results for
Maxwell molecules while the dashed and dotted lines re-
fer to the GK model results for Maxwell molecules and
hard spheres, respectively. The circles represent simula-

tion data in the case of Maxwell molecules for § = 10~2,

shear rate. We also observe that, although the GK
model predicts qualitatively well the transition for
Maxwell molecules, there exist important discrepan-
cies between the Boltzmann and GK results, espe-
cially for very large shear rates.

Since so far all the results presented have been
obtained analytically after taking a delicate limit,
it might be possible that the above transition was
an artifact of the algebra involved. One way to
elucidate such a point is to perform Monte Carlo
simulations. For this reason, we include in Fig. 6
simulation data for Maxwell molecules with a con-

centration ratio § = 102 and reduced shear rates

afa, = 0.25,0.76,1.27, and 2.11. These points were

obtained by using 2 x 10° simulated particles. We see
that the simulation data support our previous theo-
retical predictions. For instance, at a/a. = 0.76 the
tracer particles store less than 2% of the total energy
while the relative contribution to the total energy be-
comes more than 60% at a/a. = 2.11. This p1:ovides

a self-consistency check of our analytical results.

VI. DISCUSSION

In this paper we have offered a brief overview of
a special nonequilibrium state for which the trans-
port properties of a multicomponént system can be
ezactly evaluated from the Boltzmann equation for
Maxwell molecules. More specifically, we have con-
sidered a binary mixture in a far from equilibrium
state characterized by uniform density and temper-
ature and a linear profile of the  component of the
flow velocity along the y direction. Consequently, the
constant shear rate a is the only nonequilibrium pa-
rameter of the problem. The description is not lim-
ited to specific values of the mass, concentration, and
size of each species. By taking moments in the Boltz-
mann equations, one obtains a set of coupled equa-
fions for the pressure tensor of each species. From
its solution, one obtains the relevant transport coef-
ficients of the problem, namely, the shear viscosity
n(a) and the viscometric functions ¥, (). The re-
sults show that ¥, = 0, and the non-linear response

of the mixture (as measured by the transport coefhi-
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cients) is weaker than the one corresp-onding to the
linear regime (Navier-Stokes order). In other words,
n(a)/n(0) and ¥ (a)/¥,(0) decrease as a increases
whatever the parameters of the mixture considered
are. Besides the transport coefficients, we also de-
termine the temperature ratio 7} /7; which measures
how the kinetic energy is distributed between each
species. In contrast to n and ¥,, T}/T; is not a
monotonic function of the shear rate. It must be
stressed that the Boltzmann analysis does not pro-
vide the corresponding velocity distribution functions
of each species.

Apart from the Maxwell interaction, we have not
been able to explicitly obtain the transport proper-
ties of the shear flow state from the Boltzmann equa-
tion. A possible alternative that might overcome this

“obstacle is to replace the exact Boltzmann collision
kernel by an approximate kinetic model that retains
its essential features. In this paper, we have consid-
ered a generalized Gross-Krook (GK) kinetic model
[11] where.all the details of the interaction potential
are introduced through eflective collision frequencies
which depend on the temperature of each species.
Starting from this model, all the velocity moments are
evaluated in terms of the shear rate, the parameters
of the mixture, and a parameter characterizing the in-
teraction potential. In the particular case of Maxwell

"molecules, the shear-rate dependence of the rheolog-
ical properties agrees qualitatively well with the re-

sults derived from the Boltzmann equation showing

again the reliability of this model in computing trans-
port properties. With respect to the influence of the
interaction potential, we conclude that the reduced
transport coefficients are practically insensitive to the
choice of the interaction law when one conveniently
scales the physical quantities. This influence becomes
more significant in the case of the temperature ratio.
In addition, explicit expressions for the distribution
functions f,(V) were derived. These functions ex-
hibit a highly nonlinear dependence on the param-
eters of the problem and, as a consequence, their
shape is strongly distorted with respect to equilib-
rium. In order to assess the degree of reliability of
the GK distribution, we have solved numerically the
Boltzmann equation by means of the Direct Simu-
lation Monte Carlo method in the case of Maxwell
molecules. The comparison shows that the GK dis-
tribution reproduces quite well the main qualitative
features of the distribution function although impor-
tant differences between the two predictions appear
in the high velocity region.

An interesting situation considered in the paper
has been the tracer limit, i.e., ny/ny « 1. In this
limit, a natural expectation (which has been widely
used in various physical problems) is that the contri-
bution of the tracer species to the total properties of
the mixture is negligible. Nevertheless, here we give
an example of a violation of such expectation since
the Boltzmann and GK equations predict a transi-

tion to a new state where the relative contribution of
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the tracer species becomes finite if the-system is suf-
ficiently far from equilibrium. This phenomenon can
be interpreted as a non-equilibirum phase transition
in velocity space. Our asymptotic analysis shows that
the transition is continuous at the critical point a,
‘for Maxwell molecules (second-order transition) while
the order parameter becomes discontinuous at a. for
non-Maxwell molecules. These predictions are also
supported by Monte Carlo simulations of the Boltz-
mann equation for Maxwell molecules, which indi-
cates that the above transition is not merely an arti-
fact of the algebra.

Although the uniform shear flow state is a useful
prototype for computing rheological properties under
extreme conditions, it is evident that it corresponds
to an idealized (non-trivial) state which may be ex-
perimentally unrealizable for large shear rates. How-
ever, the results derived in this situation allow one to
progress in the understanding of complex transport
mechanisms taking place in more realistic flows, such
as the nonlinear Couette flow. Another reason for
which the exact solution of the Boltzmann equation
described in this paper is important is that it can be
used as a tool to test apprbximate methods, such as
Grad’s method, kinetic models and/or Monte Carlo
simulations. In this context, the comparison made
here between the Boltzmann and GK solutions al-
lows one to infer the degree of reliability of the trans-
port coefficients obtained from the GK model. On

the other hand, it must be noted that any extrapola-

tion of the conclusions reported here to dense fluids
must be made with caution, as the collisional transfer
mechanism {which is the dominant one in a fluid) is
absent in the low-density regime. Howéver, a qualita-
tively good agreement with simulation results could
be obtained by introducing appropriate scaled vari-
ables {23]. Comparisons carried out in the shear flow
problem for a single gas support the above expecta-
tion [24,25].

In summary, it appears that many interesting
questions regarding nonequilibrium statistical me-
chanics of multicomponent systems may be addressed
accurately by using the Boltzmann and GK kinetic
equations. In this context, one expects that new and
more complex situations than those reported here will
be described in the near future. Such exact solutions
can be useful in interpreting a wide class of nonequi-

librium computer simulations.
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