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ABSTRACT

An overview of recent work on plane shock waves
in a hard-sphere fluid is presented. The analysis is
made within the framework of the Enskog theory and
three different and complementary routes are used: (i)
the standard hydrodynamic approaches at the levels
of Navier-Stokes and (linear) Burnett orders but con-
sidering the expressions of the transport coefficients
derived from the Enskog equation; (ii) the use of Ho-
lian’s hypothesis which takes the Navier-Stokes rela-
tions but modifying the thermal dependence of the
transport coefficients; and (i) the solution of the
full Enskog equation by means of the direct simu-
lation Monte Carlo method. A comparison between
the profiles of the hydrodynamic fields and dissipative
fluxes obtained from the different approaches is car-

* ried out for several values of density and Mach num-
ber. The results indicate that the theoretical predic-
tions underestimate the shock thickness. This effect
becomes more important at low densities and high
Mach numbers. In general, the Holian theory agrees
much better with Monte Carlo simulations than the
Navier-Stokes and (linear) Burnett approximations,
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in contrast to the well-known superiority of the Bur-
nett theory for dilute gases.

1 INTRODUCTION

Needless to say, normal shock waves is one of the most
interesting problems in fluid dynamics. They pro-
vide a convenient way of determining thermodynamic
data under extreme conditions. These waves occupy a
small, rapidly moving transition region in space con-
necting two equilibrium states, namely, a relatively
cold, low-pressure region and a relative hot, high-
pressure region [1]. Strong shock waves appear in
many and different physical phenomena where their
common characteristic is the abrupt spatial change of
the hydrodynamic fields over a (macroscopic) short
distance. Because of the extremely sharp gradients
in the hydrodynamic fields, the search for accurate
theories to fully describe the shock profiles is still
an open problem. As a matter of fact, it is well-
known that the Navier-Stokes (NS) equations do not
accurately describe the shock profiles under condi-
tions of low-density hypersonic flows [2, 3, 4, 5, 6].
This inconvenient has motivated the use of alterna-
tive theoretical approaches. In the context of the
continuum description, the Burnett theory [4, 5, 6)
and a modified NS approach [7] give an improvement
over the standard NS predictions as compared with
simulations. Other different approaches carried out
are the bimodal distribution of Mott-Smith [8] and
the Grad’s moment method {9]. All these theories
have been complemented by computer simulations,
both using molecular dynamics [6, 10, 11] and Monte
Carlo methods [12]. In absence of experimental data,
the numerical results obtained via microscopic simu-
lations must be considered as the only way to check
and determine the range of validity of the different
theoretical approaches.

In the case of a dilute gas, the Chapman-Enskog
expansion of the Boltzmann equation provides ex-
plicit formulas of the transport coefficients both in
the NS and Burnett approximations [13]. As said be-
fore, under conditions of hypersonic flows, Fiscko and
Chapman [2] and Salomons and Mareschal [6] have
shown that the Burnett predictions are significantly
more accurate than that of the NS. This conclusion
was obtained by comparing the theoretical shock pro-
files with the numerical results obtained from Monte
Carlo and molecular dynamics simulations. On the

other hand, since the NS equations provide a reason-
able description of the shock profiles and preserve a
much simpler mathematical structure, Holian {7] in-
troduced a slight modification to the NS equations.
In this modification, designated as Holian’s conjec-
ture, the temperature dependence of the NS transport
coefficients is through the component of the temper-
ature Ty, in the direction of the shock wave prop-
agation instead of the average temperature ¥ The
theory of Holian leads to a substantial improvement
of the agreement with simulation data over the stan-
dard NS equations [14]. Nevertheless, recently Uribe
et al. [15] have given evidence of the superiority of the
Burnett approach over the NS and Holian theories.

In the context of dense fluids, pioneering papers
[10, 11] using molecular dynamics simulations for a
Lennard-Jones fluid showed that the discrepancies
between simulation data and the NS predictions were
very small. An interesting question is whether, as oc-
curs in a dilute gas, the NS predictions for the shock
profiles are qualitatively improved when the Burnett
corrections are taken into account. One of the main
difficulties in extending the continuum approach be-
yond the low-density limit is that, in general, the den-
sity dependence of the transport coefficients is not ex-
plicitly known. Nevertheless, a notable exception is
the hard-sphere model, for which the Enskog theory
[16] represents an adequate description over a wide
range of length and time scales. In this framework,
the transport coefficients have been calculated up to
the linearized Burnett hydrodynamic order [17, 18],
and the corresponding density, velocity, and temper-
ature profiles have been numerically computed for
different values of both the Mach number and the
reduced density [19]. In order to determine the accu-
racy of the different approaches, the NS and Burnett
predictions have been compared with simulation data
obtained from a recently proposed simulation Monte
Carlo method [20]. The results [21] indicate that
the NS theory leads to a description of plane shock
waves better for dense gases than for dilute gases,
thus confirming previous observations for other po-
tentials [10, 11]. Surprisingly, the NS predictions are
even better than those of the (linear) Burnett theory
at moderate densities and high Mach numbers. This
last result motivated to Montanero ef al. [22] to ex-
tend the Holian’s recipe to the finite density regime.
The comparison shows that Holian’s recipe exhibits
the best overall performance over the remaining ap-
proaches.
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In this review, we present a survey of recent work
on strong shock waves in a hard-sphere fluid described
by the Enskog equation. The organization of the re-
view is as follows. In Sec. II, we expose the standard
hydrodynamic approaches at the levels of the NS and
Burnett orders but considering the expressions of the
transport coeflicients derived from the standard and
revised Enskog theory. The use of Holian’s hypothesis
is extended for a dense hard-sphere fluid in Sec. III.
In Sec. IV, we briefly describe the direct Monte Carlo
simulation method as applied to the plane shock wave
problem. In Sec. V, we present the results for the
profiles of the hydrodynamic fields, dissipative fuxes,
and the shock thickness obtained from the different
continuum approaches and from the simulation algo-
rithm. This study is carried out for several values of
density and Mach number. The paper is closed in
Sec. VI with some concluding remarks.

2 HYDRODYNAMIC DESCRIPTION OF
PLANE SHOCK WAVES

2.1 Balance equations

In order to describe the (one-dimensional) hydrody-
namic profiles of a plane shock wave, it is convenient
to choose a reference frame moving with the shock
front, so that the shock is stationary in this frame.
Consequently, taking the z axis as the shock wave
direction, the hydrodynamic balance equations read

p(z)u(z) = const , (1)
Puo(s) + pla)u’(a) = const,, @)

p(z)u(z)le(z) + 5u° ()] + Pez(2)u(z) + ¢(2) = const ,

(3)
where p is the mass density, v is the z component
of the flow velocity, P, is the zz normal component
of the pressure tensor, e is the internal energy per
mass unit, and ¢ is the £ component of the heat flux.
Asymptotically far from the shock front, the fluid is at
equilibrium, so that ¢ = 0 and P;; = p, where pis the
hydrostatic pressure. Labeling the unshocked “cold”
equilibrium state (upstream) by the subscript 0 and
the shocked “hot” equilibrium state (downstream) by
the subscript 1, Egs. (1)-(3) lead to the well-known
Rankine-Huginot relations [1]:

Poto = P11, (4)

Po+ ooty = Py + 1y (5)
pouo(eo + 3ul) + Poug = prur(er + 3ul) + prus . (6)

The set of equations (1)-(3) [or (4)-(6)] aze a conse-
quence of the conservation of mass, momentum and
energy, respectively, so that they apply for any fluid
system. In what follows, we will consider the hard-
sphere model in the context of the Enskog theory and
will use the corresponding explicit expressions for the
transport coefficients.

2.2 Application to a dense hard-sphére fluid

Let us consider now the hard-sphere fluid. For a dense
hard-sphere gas there is no potential contribution to
the internal energy, so that e is simply proportional
to the temperature T'. More precisely,

= 3ksT ’ )

2m

where kg and m are, respectively, the Boltzmann con-
stant and the mass of a particle. The equation of state
is

T
p= 20 1 ()], )

where 7 = wpo®/6m is the packing fraction, o be-
ing the sphere diameter, and x(7) is the equilibrium
value of the pair of correlation function at the point
of contact. Here, we will use the Carnahan-Starling
approximation [23] for the density dependence of ¥,
Le, x(n) = (1 -n/2)/(1~n)*

To close the problem, we need to specify the re-
lationship between the fluxes and the hydrodynamic
gradients. Obviously, this is a crucial point in the hy-
drodynamic description of any kind of problem. To
linear Burnett order and for the particular geome-
try of the plane shock wave problem, the constitutive
equations can be written as

Py(z) = p(z) - [5u(z) + (@)e'(z) - [5ea(2)
—a(2))6" (z) + [Feu () + e2(2)1T"(2) ,
(9)

q(z) = ~A\2)T'(z) + [} (z) ~ Bo(@)lu"(z) , (10)

where the primes denote spatial derivatives. The
transport coefficients p (shear viscosity), & (bulk vis-
cosity), A (thermal conductivity), ¢, and B, depend
on space through their dependence on the local den-
sity p(z) and temperature T'(z). This dependence
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can be obtained from the Chapman-Enskog method
[13] applied to the Enskog equation. On the other
hand, the expressions for the fluxes in the NS order
are derived by dropping the terms containing »” and
T". The explicit expressions for the NS transport
coefficients are

=1 (2) oxmimmesr, ()
u= ;(1—75[1 +x(Pus+35,  (12)
A= X—(ln—)[l + Znx(n)PAs + g%ﬁ . (13)

Here, up and Ap are the shear viscosity and the ther-
mal conductivity of a dilute hard-sphere gas, respec-
tively. Their values are [13]

/2
pp = 1.0160 x % (m':TBT> o, (14)

/\3 = 1.0251 x l;%pg . (15)
The linear Burnett coefficients given by the standard
Enskog theory {SET) and the revised Enskog theory
(RET) can be found in Refs. [17] and [18], respec-
tively. For the sake of self-consistency, we write their
corresponding expressions in Appendix A.
Unfortunately, the nonlinear Burnett coefficients
of the Enskog equation have not been derived, al-
though these coeflicients are the same in both the
SET and the RET. A possible way to overcome such
difficulty is to consider the low-density gas. In this
case, the complete Burnett transport coefficients are
quoted for instance, in the textbook of Chapman and
Cowling [13]. In the geometry of the wave, the ex-
pressions of the momentum and heat fluxes are

2
P = p—jusu + Z—I;gwl - Hwr+ zwelu?
2 Mp w7 Tu'? v Ty
+3c2pT [wz( u u? - U
" T2 Ty 2
+wi T + wy (T - —u) +w5—7;7} , (16)
I 8
¢ = 2T + c2:T [(91 — 86, + 205)u/'T”
+2(8, — 02)Tu" + 2050/ (T' - @—)] ,
v /1)

where ¢ = 1.0160 and the numerical values of the
coefficients w, and 6, are: w; = 1.014 x 4, wp =
1.014 x 2, ws = 0.806 x 3, wq = 0.681, ws = § x 0.806,

we = 0928 x 8, 6, = T x1.035, 6, = £ x1.035,
03 = -3 x 1.03, 6, = 3 x 0.806 and 65 = 8.3855. By
substituting Eqgs. (9) and (10) [or (16) and (17) in
the case of a dilute gas] into the conservation equa-
tions (1)-(3) and using the jump conditions (4)- (6),
one derives a closed system of nonlinear differential
equations for p(z), u(z) and T'(z). Its solution must
be carried out numerically. In addition, since the
mathematical stability of the set of equations is di-
rectional, the numerical integration must start at the
hot equilibrium side. More technical details on the
integration of this system of equations can be found
in Ref. [19].

3 THEORY OF HOLIAN FOR A DENSE
HARD-SPHERE FLUID

The numerical difficulties inherent to the integration
of the nonlinear Burnett equations have motivated
the search for simpler alternatives that exhibit a bet-
ter accuracy than that of the NS approximation. A
possibility is to assume the validity of the linear re-
lationships between fluxes and gradients but modi-
fying the thermal dependence of the transport coef-
ficients. Having in mind these requirements, Holian
(7, 14] proposed a very simple and accurate theory for
strong shock waves in a dilute gas. The basic idea is
to use the NS equations but replacing T by T in the
expressions of the transport coefficients. Here, T, is
the component of the temperature in the direction of
the shock wave propagation. Very recently, Holian’s
recipe has been extended to a dense hard-sphere flnid
[22]. In the case of a dense gas, the coraponent of the
temperature Ty, is, by definition, Ty, = (m/pkp)PL,,
where P¥_ refers to the kinetic part of the zz normal
component of the pressure tensor. In fact, the (total)
pressure tensor P can be written as P = P*+P¢, with
P¢ indicating the collisional transfer contribution. In
order to implement the Holian's conjecture is nec-
essary to specify Ty, in terms of the hydrodynamic
fields p, u and T. This will be done below.

First, taking into account the Rankine-Hugoniot
condition (5), the hydrodynamic equation (2) for the
conservation of momentum can be written as

Pzz(:v) + p(I)uz(I) =po+ Poug . (18)



Strong shock waves in a dense gas

117

On the other hand, at the NS level, the kinetic part
P* is given by
p(z)ksT(z) '

Pie) = 22T iy, o)
where the coefficient u* corresponds to the kinetic
contribution to the shear viscosity u, and its value is
given by the relation [13]

Y= ;(1,3[1 + Emx(n)ls - (20)

In the context of the Enskog equation, it must be
pointed that all the NS transport coefficients are pro-
portional to VT, i-e., {u(p, T), x(p, T), A(p, T), 4*(p, T)}
= {(0), &e), Mp), B*(p)} VT. Consequently, ac-
cording to the NS approximation [see Egs. (9) and
(19)], one gets

Pl — phoT/m __j*
Ppz—p o+ %R

=A(p). (21)

From the identities (18) and (21), one easily writes
T, as a function of the hydrodynamic fields:

T. = T{1-[1+anx(n}A(p)} + A(p)u{%
x[1 + 4nox ()] + ;n—B(Uo -w)}, (22

where 7 is the value of the packing fraction corre-
sponding to the unshocked equilibrium state. In the
low-density limit (n — 0), the expression (22) reduces
to the one originally obtained in previous works [7].

As said before, Holian’s recipe consists in describ-
ing the shock wave profiles by means of the NS equa-
tions but setting T, instead of T in the transport
coeflicients expressions. Specifically, the generaliza-
tion of the Holian’s recipe to the case of a dense
hard-sphere fluid described by the Enskog equation
consists in replacing the temperature T by the value
T, given by (22) into the formulas (11)-(13).

4 MONTE CARLO SIMULATION OF THE
ENSKOG EQUATION

In the early 1960’s, Bird [12] devised the so-called di-
rect simulation Monte Carlo (DSMC) method to nu-
merically solve the Boltzmann equation. This method
has been widely applied to different phenomena in

rarefied gases, and several comparisons with known
exact solutions of the Boltzmann equation show the
accuracy of the DSMC method. In the context of
a dense hard-sphere fluid described by the Enskog
equation, an extension of the DSMC method [the so-
called Enskog simulation Monte Carlo (ESMC) meth-
od] has been recently proposed [20]. In the same way
as the original DSMC, the ESMC algorithm has been
shown to be a fruitful and efficient tool to solve the
Enskog equation. In particular, this method repro-
duces quite well the density dependence of the En-
skog transport coefficients, namely, the shear viscos-
ity [20, 24], the viscometric functions [24] and the
thermal conductivity [25). Hence, the results ob-
tained by means of the ESMC method are the ad-
equate reference to check the performance of the dif-
ferent continuum approaches in describing the shock
profiles.

The ESMC algorithm as applied to the plane shock
wave problem proceeds as follows [21]. A system of
length D along the z direction is occupied by N parti-
cles. The boundaries of the system are sufficiently far
away from the shock front, so they can be considered
at equilibrium. This implies that D must be much
larger than the shock thickness. The system is split
into L layers of width Az = D/L smaller than both
the mean free path and the shock thickness, which
is the characteristic hydrodynamic length. The num-
ber N has a statistical meaning, so that the physical
density of the layer I = 1,..., L is ny = TL{(N;/N),
where 7 is the average density and Ny is the number
of simulated particles in layer J. Those particles ly-
ing in cells separated from the boundaries a distance
smaller than or equal to o represent “bath” particles,
while the remaining ones represent “actual” particles.

The velocity distributions of the bath particles are
kept to be Maxwellians. The role of these particles
is to sample the upstream and downstream equilib-
rium conditions. The positions and velocities of all
particles are updated due to free streaming and col-
lisions. Both stages are decoupled for a time step At
much smaller than both the mean free time and the
hydrodynamic time. In the free streaming stage, the
particles move freely and those particles leaving the
system are reentered through the opposite boundary
with the same velocity. As a consequence, the flux of
mass is conserved. Before proceeding to the collision
stage, the velocities of the bath particles are replaced
by those randomly obtained from a Maxwellian distri-



118

José M. Montanero & Vicente Garzo

bution of probability characterized by the upstream
or downstream hydrodynamic fields, namely, uo; and
Ta'].

In the ESMC method, the collision stage is modi-
fied with respect to the DSMC algorithm by incor-
porating the density effects present in the Enskog
equation. For each layer I, a sample of %N;wmu
particles are chosen at random with equiprobability,
where wmay is an upper bound of the quantity w,, de-
fined below. For each particle ¢ of this sample the
following steps are taken: (1) a given direction & is
chosen at random with equiprobability; (2) a parti-
cle 7 belonging to the layer J that contains the point
T, + 00, is chosen at random with equiprobability;
(3) the collision between particles 7 and 7 is accepted
with a probability equal to ©(&, - g;;)w;; /wWmax, Where
gy = Vi —V, and w;, = 0%47(6; - 8yy) Xy, N1 A, Xsy be-
ing the pair correlation associated with the positions
of the spheres i and j7; and (4) if the collision is ac-
cepted, the postcollision velocities v} = v,—(5,-g,,)0,
and v = v, + (& - gi;)8, are immediately assigned
to particles i and j, respectively. This change does
not apply for the bath particles. In our simulations
we have implemented the SET rather than the RET.
This implies that x,, = x(nx), where K denotes the
layer equidistant from layers I and J. In order to
avoid any systematic bias, the sorting of the cell [
is chosen randomly. The initial conditions have been
taken as corresponding to two different equilibrium
distributions for £ <0 and = > 0 characterized by
the upstream and downstream hydrodynamic fields,
respectively. After a certain transient regime, the
stationary state is reached. This can be tested by
checking that the balance equations (1)—(3) are veri-
fied along the whole system. In the stationary state,
the physical properties are evaluated in every layer
by averaging over the particles inside that layer and
also over an ensemble of A independent realizations.
In each realization, the local flow velocity and tem-
perature are, respectively, u; = 1/N;3, ;v, and
Tr = m/(3kpNi) X, ;(vi — u;)%. Once the hydro-
dynamic fields are measured, the dissipative fluxes
P;.(z) and ¢(z) can be obtained from the balance
equations (1)-(3).

The quantities D, N, Az, and At are technical
parameters whose values must be determined depend-
ing on the case considered. In fact, the values of Az
and At must be chosen smaller as the shock front be-
comes sharper. For example, in the case of 7y = 0.2

and M = 1.3 we have taken D = 70y, N = 350 000,
Az = 0.1)x, and At = 0.003)/\/2ksTy/m, Ay be-
ing the mean free path Ao = [v2mpox(mg)o?/m)~! of
the hard-sphere gas in the cold region. On the other
hand, the value of NV is typically around 5.

5 RESULTS

In previous sections we have presented the different
alternatives to analyze the shock wave problem in the
case of a dense hard-sphere fluid described by the En-
skog equation. Now, we are in a position to check the
performance of the different continuum approaches
by comparison with computer simulations. In what
follows, we will scale the distance z with the mean
free path Ag of the hard-sphere dense gas in the cold
region. As usual, we choose the origin z = 0 of the
shock front as the point where u = (ug +v;)/2. An
elemental dimensional analysis allows us to conclude
that the relevant dimensionless parameters character-
izing the problem can be taken as the packing frac-
tion upstream, 7, and the Mach number M = uy/ag,
where ag is the speed of sound upstream. By using
thermodynamics relations [26], it can be shown that
the speed of sound a in a hard-sphere fluid is

5kgT\"/? t2fo2 L9\
a—(*ﬁ) 14 8nx +0° | 8x +3d77 .

Note that, in contrast to other choices, both Ay and
ap refer to quantities of a dense gas, so that M is the
real Mach number.

In Fig. 1 we display the (reduced) velocity and
temperature profiles as obtained from the NS equa-
tions and the ESMC simulations for 7y = 0.2 and
M = 1.3. Since the value of the Mach number is
not large enough, the NS approximation describes the
shock profiles accurately, so that no further approx-
imation is needed. On the other hand, we have also
compared our Monte Carlo data with those obtained
from molecular dynamics simulations [27], finding an
excellent agreement. This last result confirms the va-
lidity of the SET to describe the shock wave profiles
for moderate densities. _

Discrepancies between the NS profiles and the sim-
ulation results appear as the shock front becomes
sharper (namely, 7, decreases and/or M increases).
As an illustration, Figure 2 shows the velocity and
temperature profiles for 79 = 0.2 and M = 3.5 as ob-
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Figure 1: Profiles of (a) the reduced velocity (u —
u1)/(uo — u1) and (b) the reduced temperature (T -
TO)/(Tl - To) at N = 0.2 and M = 1.3. The dashed
lines correspond to the NS solutions, and the circles
refer to the ESMC data.

1.0

08}
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Figure 2: Profiles of (a) the reduced velocity (u —
u1)/(uo — ;) and (b) the reduced temperature (T —
To)/(Ty — Tp) at 19 = 0.2 and M = 3.5. The solid
lines correspond to the Holian theory, the dashed lines
to the NS theory, and the dotted lines refer to the
(linear) Burnett theory. The circles are the ESMC
data.

tained from the different continuum approaches and
the ESMC simulation method. We have calculated
the (linear) Burnett profiles by considering the trans-

port coefficients given by the SET and the RET, but
they are practically indistinguishable. Due to numer-
ical instabilities, these profiles are interrupted on the
cold side [19]. Fiscko and Chapman [2] were able to
overcome this difficulty in the case of a dilute gas
by solving the time-dependent equations rather than
the steady-state ones. For our purposes, this does
not represent a serious drawback. In fact, we will fo-
cus later on the shock thickness which is evaluated
from the maximum value of the density gradient. For
the values of 17, and M considered, the density profile
near its inflection point is not affected by the numeri-
cal instabilities. The results indicate that the velocity
and temperature profiles are rather well described by
the NS and Holian theories on the hot side. Never-
theless, it must be pointed out that the theoretical
curves fail to capture the longer relaxation towards
the cold end equilibrium values reflected in the simu-
lation results. In any case, the superiority of the Ho-
lian approach is clear. In Fig. 3 we show the stress

0.06 —— y — T
0.05
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P_p
0.03
0.02
0.01

0.001
-0.05

-0.10]

-0.15 ~
-5 10 5 0 5 10 15

Figure 3: The same as in Fig. 2, but for the stress
P.. — p, measured in units of 2ksT /A3, and for the
heat flux g, measured in units of m(2ksTy/m)%2/A3.
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P:; — p and the heat flux ¢ profiles for the same val-
ues of the packing fracticen 7y and Mach number M.
The agreement is worse for these quantities, but the
Holian theory improves again the predictions made
by the remaining continuum approaches.

In order to carried out a more systematic study, it
is convenient to introduce a parameter that captures
the global shape of the shock wave profiles. Since
the velocity and temperature profiles exhibit in this
problem a high degree of symmetry, a good candidate
to asses the merit of the different theories is the shock
thickness. As usual, we define the reciprocal shock
thickness as the maximum of the normalized density

gradient:
(5—1 = 1 (é.p_) ; (24)
PL— po \dZ )

In Fig. 4 we display the density dependence of 4!
at M = 2. The error bars on the simulation points
indicate the uncertainty associated with statistical
fluctuations and with the localization of (dp/dz)max-
In general, all the theories correctly predict that the
shock thickness (in units of the upstream mean free
path A) increases with density, but underestimate its
value. In the low-density regime it is clear that the
{linear) Burnett theory leads to a better agreement
with simulations than both the NS and Holian predic-

0.35

0.15

0.10

0 05 -L P S - i 1 Fa— ra— |
000 004 008 012 016 020
T

Figure 4: Density dependence of the reciprocal shock
thickness (in units of the mean free path ) at M =
2 The solid line corresponds to the Holian theory,
the dashed line to the NS theory, and the dotted line
refers to the (linear) Burnett theory. The circles are
the ESMC data.

tions. However, as the density increases the Holian
theory becomes superior to the Burnett one. In fact,
for 7y ~ 0.1 (and M = 2) both approaches lead to
the same value of §. Beyond this density boundary
value, the Holian theory is clearly the best overall
performance. According to the different simulations
carried out for a range of densities and Mach num-
bers, we can conclude that the density value beyond
which the Holian theory improves the Burnett predic-
tions is practically independent of the Mach number
considered. From a practical point of view, we can
state that for M 2 1.5, only if 7y < 0.1, the (linear)
Burnett theory provides the best description. Out-
side this density range, the Holian theory is clearly
superior to all other continuum approaches.

As a complement, in Fig. 5 we show the depen-
dence of & on M for two values of the density. In the
low density regime (7p = 0) we see again that the
Burnett theory leads to a better agreement with sim-
ulations than both the NS and Holian predictions.
A similar conclusion was also reached in Ref. [13].
Nevertheless, it must be pointed out that the best
overall performance is given by the linearized rather
than the complete [see Egs. (16) and (17)] Burnett
equations. In fact, for 7y = 0 and M = 134 (which
is the case studied in Refs. [6], [14], and [15]), we
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Figure 5: Mach dependence of the reciprocal shock
thickness (in units of the mean free path Aq) at (a)
7o = 0 and (b) my = 0.2 as obtained from the Holian
theory (—), the NS theory (~- — —), the linear
Burnett theory (- - -), and the full Burnett theory
(— - —-) . The circles are the ESMC data.
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get 685 = 1.13) for the NS theory, 6% = 1.27) for
the Holian theory, 6% = 1.68) for the complete Bur-
nett theory, and §'B = 1.74)¢ for the linear Burnett
theory, while the thickness estimated from the molec-
ular dynamics results of Ref. [6] is 6 = 2.3),. Tak-
ing into account these results, one has serious doubts
about the convenience of retaining super-Burnett and
higher order gradient terms as the Mach number in-
creases.

On the other hand, for the finite density 7y = ¢.2,
surprisingly, the Burnett ‘thickness is smaller than
the NS thickness for sufficiently large value of the
Mach number M. Considering the previous discus-
sion about the results obtained for a dilute gas, one
could suggest that the above discrepancy is not only
due to the absence of the nonlinear Burnett terms in
the constitutive equations but also to the nonconver-
gent asymptotic character of the Chapman-Enskog
expansion. Moreover; the NS predictions are clearly
improved when Holian’s recipe is introduced. In fact,
when the error bars are accounted for, all the sim-
ulation results fall on top of the theoretical Holian
line. Thus, for g = 0.2 and M = 3.5 one gets
oNS = 8.09Xy, OLB = T7.76), and 6¥ = 9.27), while
the simulation result is § = (10 £ 1)),.

6 CONCLUDING REMARKS

In this paper we have offered an overview of recent
work on plane shock waves in a hard-sphere fluid
within the framework of the Enskog theory. The
results have been obtained from three different and
complementary routes: (i) the standard hydrodynamic
approaches at the levels of NS and (linear) Burnett
orders; (ii) the use of Holian’s conjecture; and (iii)
the numerical solution of the full Enskog equation by
means of the ESMC method. The comparison with
simulation results allows us to assess the merit of the
different approaches. At a qualitatively level, we can
conclude that the theoretical predictions underesti-
mate the shock thickness. This effect becomes more
important at low densities and high Mach numbers.
In other words, the hydrodynamic theories tend to
provide a better description of the shock-wave struc-
ture as the density increases. This can be partially
explained by the fact that the thickness, in units of
the mean free path, increases with the density. On
the other hand, for finite densities the Holian the-
ory agrees much better with Monte Carlo simulations

than the NS and (linear) Burnett approximations, in
contrast to the well-known superiority of the (linear)
Burnett theory for dilute gases. In addition, the Ho-
lian’s recipe combines reasonable accuracy for such
a complicated problem with relative simplicity, since
it only takes into account the linear relationships be-
tween fluxes and gradients. In this sense, it must be
noticed that, although the Holian constitutive equa-
tions are formally linear, a non-Newtonian descrip-
tion is carried out due to the nonlinear dependence
of the viscosity and thermal conductivity coefficients
on the strain rate u’'.

Finally, we must point out that since the present
results have been derived in the context of the Enskog
equation, the above conclusions cannot be extrapo-
lated without caution to real systems. In particular,
one would hope that the Holian’s recipe would work
not only for dense hard-sphere gases but for other flu-
ids. However, this extension is not clearcut. In this
context, the performance of more simulations would
be welcome to show if the above conjecture whether
fulfilled.
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Grant No. PB97-1501 and from the Junta de Ex-
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A LINEAR BURNETT TRANSPORT CO-
EFFICIENTS FOR A DENSE HARD-
SPHERE FLUID

The linear Burnett transport coefficients can be writ-
ten as a1 = (18/cp)’a,; @2 = (4p/*PT)gas, @3 =
(4B/cP) 905, s = (1%/0T)g0s, Br = (u/c*p) 95,
and By = (u%/c?p)gp,, where ¢ = 1.0160 and the
functions g,, and g, are dimensionless quantities. In
the particular case of a hard-sphere fluid described by
the SET, these functions are given by the following
expressions [17]:

a006 1 11 9% 3
9oy (1) = Br 37 (1 + g;-;) (xn)° (25)
1
goaln) = 5133 (1+%xm) O, (20)
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9as(7) xi {1+ 20+ (e

+ (‘m — 1250) (xn)* [4+ ®xn

+ (% -12) xn?] %772} , (@)
9eu(n) = % 1+ Zxn+ (% + %2) (an)?

+ (3 + 32 6] (28)

98, (n) = 3l [1+Zxn+ (2 + 22) on?

+ (1112552 +52) 6a] (29)
98:(n) = TSXL [1 + ¥+ (624 123) Gen)?
+ (% m) (xn) ] (30)

The same formulas hold for the RET except for g,,
and g,, which are given by [18]

o0 1 _gﬂa_x) 3
gunlr) = 28 (1522 Gap?, @)

1
gaal) = 13 {1 + Fxn + 55 Ocn)’?
+ (5252 - lfgﬁf’) Oen)® + [4 +%xn

+ (2 + 22 (xn)?] %nz}- (32)
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