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ABSTRACT

An overview of recent work on nonlinear Couette flow in
a dilute gas is presented. The analysis is made within the
framework of the Boltzmann equation by following three
different and complementary routes: (i) the application
of the Grad method to the Boltzmann equation, (ii) the
analytical solutions of the BGK and ellipsoidal statistical
(ES) models, and (iii) the use of the Direct Simulation
Monte Carlo (DSMC) method to numerically solve the
true Boltzmann equation. In the bulk domain, we found
a solution characterized by constant pressure, and linear
velocity and parabolic temperature profiles with respect
to a scaled variable. The main transport coefficients of
the problem are obtained as nonlinear functions of the re-
duced shear rate. The predictions of the kinetic models
and those obtained by using the Grad method are com-
pared with both molecular dynamics and Monte Carlo
simulations. The comparison shows that the results de-
rived from the kinetic models present a better agreement
with the computer simulations than these obtained from
the Grad method, especially in the case of the ES model.

1 INTRODUCTION

The steady planar Couette flow is one of the most inter-
esting states to analyze transport phenomena. The phys-
ical situation corresponds to a fluid enclosed between two
infinite parallel plates in relative motion and, in general,
kept at different temperatures. These boundary condi-
tions lead to combined heat and momentum transport
across the system. Let z and y be the coordinates paral-
lel to the flow and orthogonal to the plates, respectively.
In the steady state, the corresponding hydrodynamic bal-

ance equations are
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where u = u;X is the flow velocity, P is the pressure
tensor, and q = ¢;X + ¢,¥ is the heat flux. Equation
(2) shows that a thermal gradient 87'/dy is present due
to the nonzero velocity gradient, even if both plates are
at the same temperature. In addition, Eqs. (1) and (2)
do not constitute a closed set unless one knows the de-
pendence of the pressure tensor and the heat flux on the
hydrodynamic fields. Thus, if the strength of the gradi-
ents is small, the fluxes P and q are correctly given by the
Navier-Stokes (NS) constitutive relations, which in this
problem yield
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where 7y and kg are the NS shear viscosity and thermal
conductivity coefficients, respectively. According to Eqs.
(1) and (3) the hydrostatic pressure p = [Prz+Pyy+(d—~
2)P,,}/d is a constant, where d represents the dimension-
ality of the system (d =2 or d = 3).

Even in the NS regime, the Couette flow problem can
be only exactly solved when one knows the spatial depen-
dence of the transport coefficients. One possibility is to
consider a dilute gas for which the state of the system is
completely determined by the velocity distribution func-
tion, f(r,v;t) satisfying the Boltzmann equation (BE)
[1]. A solution of the BE can be obtained by means of
the Chapman-Enskog method [2] as an expansion of the
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distribution function in terms of the Knudsen number
Kn=MA/fy, X and £, being the mean free path and the
scale length of the hydrodynamic gradients, respectively.
The results indicate that the ratio 79 /xg is a constant, so
that Egs. (1)-(4) lead to

T

du
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Equation (5) shows that the velocity profile is not strictly
linear since 77p depends on y through the temperature.
In the same way as ug, the temperature profile is not
strictly parabolic. As a matter of fact, the specific form
of both hydrodynamic profiles depend on the interaction
potential considered.

Our main goal is to get the hydrodynamic profiles
and the transport properties for arbitrary values of the
shear rate and the thermal gradient. In this regime, the
linrear NS relationships are not valid and the transport
must be described by nonlinear constitutive equations.
In the context of the BE, Tij and Santos [3] have shown
that the BE admits a consistent solution in the nonlinear
Couette problem for gas of Maxwell molecules (particles
interacting via an r~* potential). This solution is char-
acterized by a constant pressure p and similar profiles
as those of the linear regime, but replacing in (5) and
(6) the transport coefficients 779 and ko by a generalized
shear viscosity 7 and a generalized thermal conductivity
Kyy, respectively. However, these functions may not be
explicitly obtained since it involves the infinite hierarchy
of moment equations which cannot be recursively solved.
For this reason, Tij and Santos [3] used a perturbation
expansion in powers of the shear rate up to the super-
Burnett approximation. Therefore, if one is interested in
getting the full shear rate dependence of the transport co-
efficients, either one performs computer simulations or on
the analytical side one considers alternative approximate
methods.

A well-known technique of solving the BE is the Grad
moment expansion method [4]. By using it, Risso and
Cordero [4] have explicitly evaluated 7 and «y, for d =2
and d = 3. When the physical quantities are conveniently
scaled, their results are valid for general interaction po-
tentials. Beyond the NS regime, they found that these
coefficients turn out to be highly nonlinear functions of
the shear rate. On the other hand, the use of kinetic
models [5]-[9] can be also considered as another reliable
tool to analyze transport phenomena. In this context, ex-
plicit expressions for the nonlinear transport coefficients

of the Couette flow problem have been obtained from ex-
act solutions of the Bhatnagar-Gross-Krook (BGK) [5, 6]
and ellipsoidal statistical (ES) [7]~[9] models. The results
also apply for general\ interaction potentials.

As a complementary alternative to analytical meth-
ods, one can get semiezperimental results from micro-
scopic computational techniques by using molecular dy-
namics (MD) or Monte Carlo simulations. In order to
validate their analytical predictions, Risso and-Corderc
[4] have also performed MD simulations of a hard disk
gas to compute the shear rate dependence of the trans-
port coefficients. Comparison between the results derived
from the different theories with those obtained from sim-
ulations shows that in general, the results given by the
kinetic models are in better agreement than those given
by the Grad method[9]. Nevertheless, the above com-
parison is restricted to values of shear rates for which
non-Newtonian effects are not quite significant. This is
basically due to the difficulties inherent to MD simula-
tions to achieve large shear rates. A possible way to
overcome such problem and extend the range of values of
shear rates is to use the so-called Direct Simulation Monte
Carlo (DSMC) method [10]. This method has been shown
in the past few years as an efficient algorithm to numeri-
cally solve the BE. Very recently, the DSMC method has
been applied to the BE in the steady planar Couette flow
in the cases of Maxwell molecules and hard spheres [11].
Since our interest lies on describing transport in the bulk
domain (far away from the boundaries), new nonequilib-
rium boundary conditions based on the solution of the
BGK model for the Couette low have been employed to
diminish the influence of the finite size effects.

In this paper we present a short review of recent work
on nonlinear Couette flow in a dilute gas. The plan of
the paper is as follows. In Sec. II we give a brief descrip-
tion of the planar Couette flow. A summary of the main
analytical results obtained from the BE and from the ki-
netic models is given in Sec. IIL. In Sec. IV we offer a
comparison between the different theoretical predictions
and those obtained from MD simulations for hard disks.
Section V is mainly devoted to introduce the boundary
conditions in the DSMC simulations while in Sec. VI we
compare all the analytical results with those given by the
Monte Carlo simulations. The paper is closed in Sec. VII
with some concluding remarks.

2 DESCRIPTION OF THE PROBLEM

For a dilute gas, the state of the system is completely
specified through the one-particle velocity distribution
function f(r,v;t). This distribution function obeys the
nonlinear ‘BE, which in the absence of external forces
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is the collision operator. In this equation, I(g, ﬁ) is the
differential cross section, g = |v — v;| being the relative
velocity, and (v/,v}) are precollisional velocities yielding
postcollisional velocities (v,v1). From the distribution
function, one may define the local number deunsity

n=[avs, ©)
the local flow velocity
1
= - 1
u= - / dvvf, (10)
the local temperature
=T 2
T gy /de f (11)
the pressure tensor
P=m[deVf, (12)
and the heat flux
a=7 / dv V2V f. (13)

In the above expressions, m is the mass of a particle, kp
is the Boltzmann constant and V = v —u is the peculiar
velocity. In addition, the equation of state is p = nkpT.

The NS transport coeflicients 79 and kg as obtained
from the Chapman-Enskog method in the first Sonine
approximation are [2]

P _d+2 kp
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where v = On, @ being an eigenvalue of the linearized
Boltzmann collision operator [12]. Here, Pr is the Prandtl
number, which in the first Sonine approximation is Pr=1—
1/d. TFor the special case of Maxwell wmolecules (3D-
particles interacting via an r~4 potential), the expres-
sions (14) and the above formula for the Prandtl number
are exact {2].

As said in the Introduction, we want to study the
planar Couette flow for a dilute gas. We consider a gas
enclosed between two parallel plates in relative motion
and maintained at different temperatures. In the steady

ested in describing the state of the gas in the hydrody-
namic regime, namely, for times much longer than the
mean free time and for distances from the boundaries
much larger than the mean free path. The main feature
of this “normal” solution is that all the space dependence
of f is given through the local density, the local velocity,
the local temperature and their gradients. In the partic-

ular case of Maxwell molecules, Eq. (15) admits an exact
normal solution [3] characterized by the following hydro-
dynamic profiles:

p = const, (16)

;—(15% = a = const, (17)
T2
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These profiles can be seen as simple generalizations of
those predicted by the NS approximation, Eqs. (5) and
(6). The dimensionless parameter y(a) is a measure of
the temperature profile curvature, and its value depends
on the reduced shear rate a. In the limit a — 0, the
curvature y(a) behaves as v = a?/5. In addition, the
pressure tensor does not depend on the thermal gradient
and the heat flux is proportional to the (local) thermal
gradient (generalized Fourier’s law).

Since all the fluxes are nonlinear functions of the re-
duced shear rate a, it is convenient to introduce gener-
alized transport coefficients characterizing the nonlinear
response of the system. First, the fluxes Py and gy can
be written as

Suz Ous
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where 77(a) and k,y(a) are the generalized shear viscosity
and the generalized thermal conductivity, respectively.
The dimensionless viscosity function Fy(a) and the ther-
mal conductivity function Fyx(a) are the most relevant
quaitities of the problem. The curvature y(a) can be éx-
pressed in terms of Fy(a) and Fi(a) as v(a) = ¢?F,(a)/
5F,(a). A curious non-Newtonian effect is the existence
of a (nonzero) component of the heat flux orthogonal to
the thermal gradient. This flux can be characterized by
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a new generalized transport coefficient K.y (a) defined as
a a
Gz = -—n,y(a)aT = —no@(a)ab;T. (21)

The function ®(a) is a generalization of a Burnett coef-
ficient. In fact, (0) = —7/2 for Maxwell molecules and
for hard spheres in the first Sonine approximation [2].
Normal stress differences are different from zero and are
measured by the viscometric functions. However, since
no MD simulation data for these elements have been re-
ported, we have considered here more convenient to focus
our attention on the study of Fy, F, and ®.

3 ANALYTICAL RESULTS

3.1 Perturbative solution of the BE for Maxwell
molecules

As said above, an exact solution of the BE has been found
in the nonlinear Couette flow state for Maxwell molecules.
Nevertheless, in order to calculate the full nonlinear de-

pendence of F;;, F and @ on a one has to deal with an,

infinite hierarchy. This hierarchy can only be solved step
by step by performing a perturbation expansion in pow-
ers of the shear rate. Tij and Santos (3} have computed
the solution up to super-Burnett order. The result is

Fy(a) =1-3.111a% + O(a%), (22)
Fi(a) = 1-7.259a% + O(a?). (23)

The limitation of these results is evident since on the
one hand, they are restricted to Maxwell molecules and
on the other hand, they are not useful when the shear
rate is not small. Consequently, one has to consider al-
ternative approximate schemes, such as the application
of the Grad method to the BE and/or the use of kinetic
models. In both approaches, one looks for a solution hav-
ing the same hydrodynamic profiles as in the case of the
BE for Maxwell molecules, cf. Egs. (16)—(18). This solu-
tion describes the transport in the hydrodynamic regime
and so, it i3 insensitive to the details of the boundary
conditions. Furthermore, since the reduced shear rate is
defined as in Eq. (17) with v = p/sp, the results obtained
from Grad’s method [4] and from the kinetic models {8]
are universal, namely, the functions Fy(a), Fx(a), and
®(a) do not depend on the interaction potential.

3.2 Grad’s method as applied to the BE
In the thirteen-moment Grad method the actual distri-

bution function is replaced by [4]

V2
f - fL{1+—n(kT:T)2 [(;—n@—l)v-q
+3 (Py - p85) ViVj| }, (24)

where
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is the local equilibrium distribution function. From the
approximation (24), a closed set of equations for n, u,
P, and q is derived when one takes velocity moments in
the BE (7). Taking into account the planar Couette flow
geometry, it can be seen that there are only eight inde-
pendent moments, instead of the original thirteen mo-
ments appearing in Eq. (24). When the nonlinear terms
in the fluxes are neglected, the set of independent moment
equations admits a solution consistent with the profiles
(16)-(18). In Ref. [4], explicit expressions for the gener-
alized transport coefficients F;;, F,, and & were obtained
as nonlinear functions of the reduced shear rate a. In the
case of d = 2, their expressions are

8
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Fi(a) = =303 —9) (27)
8(a) = 8 — 54a? + 27a* + (3a? — 2)Ala) )

4a?(3a% — 1)(3a2 — 4) ’

where Aa) = v16 + 120a% — 63a3. For small shear rates,
the above transport coefficients behave as Fy ~ 1— #q2,
Fr~ 1+ 836% and @ = —~J(1 + 1a?). The corresponding

expressions for d = 3 are

2
Fla) = —7W =~
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T 182 L 3AY(a)’
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®(a) = -7 125 (31)

1+ £a2 + (1 = $a?)A'(a)’

where Af{a) = /1 + 38a? — Blot. For smallshearrates,

the above transport coefficients behave as Fy ~1 -~ Eaz,-
Fe~ 1+ Za? and @ ~ —1(1— 2a?). As said before, all
these results are independent of the interaction potential.
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3.3 Kinetic models of the BE

A kinetic model is constructed by replacing the compli-
cated Boltzmann collision operator J[f, f] by a simpler
collision term which retains the qualitative and average
properties of the true J[f,f] . In the case of the ES
model, one replaces J{f, f] by [1]

I f1 =+ =¢f = fr)s (32)

where ( is an effective collision frequency which can de-
pend on the density and temperature, and

fr(v) = mr‘dﬂ(det A)1/2 exp(—Ay;V;V;). » (33)

Here, A = [Al — (B/mn)P]"!, A = (2kgT/m)Pr L, |
is the unit tensor, and B = 2(Pr~! — 1). The Prandtl
number Pr plays here the role of an extra parameter. If
one takes Pr=1, fg reduces to the local Maxwellian and
the ES model reduces to the well-known BGK equation
[1). Cousequently, the ES model can be seen as an exten-
sion of the simple BGK model to account for the correct
Prandt] number Pr= 1—-1/d. This can be particularly im-
portant in situations where combined heat and momen-
tum transport occurs, as it is the case of steady Couette
flow. In the ES model, it is straightforward to evaluate
the NS transport coefficients, namely, the shear viscosity
coefficient 79 and the thermal conductivity coeficient «g.
The result is 79 = p/((Pr™!) and xg = (d + 2)pkg/2m(.
Thus, if we identify ¢ as (Pr~! = v and take Pr = 1--1/d,
then the ES expressions of the transport coefficients co-
incide with those derived from the BE in the first Sonine
approximation. Here, v is the collision frequency appear-
ing in Eqs. (14).

In the nonlinear Couette flow problem, it is conve-
nient to express the generalized transport coefficients of
the ES model in terms of an auxiliary parameter g, de-
fined as the solution of the implicit equation [8, 9]

a®> = B[Pr(Pr+PrCy)]? [2F, + dFy(Pr + PrCy))
X[PI(F(?P—I + FiPr) + Fl-‘cl(FgP_r + 2FPr)
+CIRPY - 26FRPT ], (34)

where Pr = Pr -1,
Ci(B) = 28(F1 +2F) - 1, (35)
and Fy(B) = ((d/dB)B]" Fo(B),

F(B) = % /0 wdtte-"/2K0(2ﬂ-1/4:1/2), _ (36)

Ky being the zeroth-order modified Bessel function. The
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function -y(a) is given by
7=[1+Pr(1+Cy)|PAB. (37)

The generalized transport coefficients are
2
Fy-—= o @9
(Pr+PrCy)?
Pr a?
Pr‘ac,; 3
= {4 F, +5F3 + 8Fy + 4F:
o] a(2+d){aC'4( 2+ 5F; + 8Fy + 4F)

+6Pr a2C4Cs(F2 +4F+4Fy) + Pr2a[SC3F2
+Ca{Fs + 2F5)(2 + 3CE) + 2(d — 2)Cs F]
+Pr3Cs[3CsF1 + Ca(Fy + 2F)(1 + C2)
+(d-2)Cs A} (40)

In the above equations,

Ca(B) =2pF; — 1, (41

1 ,
(Pr + 1_31:01)3(Pr + ﬁcﬂ
X[C\Pr(dC2Pr + dPr + 2) + PrCy(dPr - 1)
+Pr(dPr + 1)] - a2F2Pr2Pr (Pr + PrCy)},

Gs(f) = {(PrC1 +Pr)

2)
Clb)= 5o (#3)
Csl6) = 5 e (44)

Colf) = %a . (45)

The corresponding BGK results can be obtained from
Eqs. (34)-(45) by taking Pr=1.

When a =0, one has F;; = F, =1 and & =0, so that
the NS results are reobtained. In the limit of small shear
rates one gets

. 6PrTl(1+2Pr) , 4
Ffl = 1 bt Ta + O(G ), (46)

Fy = 1—Pr 2[Pr*(20 + 4d) -- Pr(104 + 22d) .
—16 —8d)(2 + d)~%a® + O(a%), (47)

1 (4+d)}(Pr+1)

$®=-~P
2+d

+ O(a?). (48)



110

José M. Montanero & Vicente Garzd

Apart from obtaining the nonlinear transport coeffi-
cients, the use of a kinetic model allows one to explicitly
get the velocity distribution function f(r,v). The distri-
bution function can be written as f(r,v) = n{m/2rkpT)%?
¥(£), where T(¢) is given by the expression [9]

26(1 + 8)4/2 _ -4 b
e = L @on ot [Cap
Pr Elfy| to
_ _ —(l+d—) _ 26 1 - t )
(1 J)tzl 2’ exp ( 1 + JPI_lﬁfy

1+4 " )
xexP{—2t—(1—6)t7 [C3 (5” 1+6
1-t

x-_—)2 (cit+cich) e+ I=2g
€ 4 63 Y Cs z
aort (e + 25 )]} @

Here, (to,t1) = (0,1) if § > 0 and (o, t1) = [1,2/(1 - 9)]
if € < 0. Furthermore, £ = (m/2kgT)"/?V,

€

= 50
(€2 +87)'/% (50)
and 12
€= 25 1or (51)
mT ¢ 8y

is a reduced local thermal gradient. . The nonlinear de-
pendence of ¥(£) on the dimensionless gradients @ and ¢
is very apparent.

4 COMPARISON WITH MD SIMULATIONS

As mentioned in the Introduction, Risso and Cordero [4]
have performed computer MD experiments to analyze
the shear-rate dependence of the generalized transport
coefficients for a hard disk gas (d = 2). In their MD
simulations a system of hard disks is enclosed inside a
square box and the vertical walls (along the y direction)
are treated as periodic boundaries. When a particle col-
lides with a horizontal wall, its velocity is replaced by
one randomly chosen from the local equilibrium velocity
distribution function characterized by the hydrodynamic
fields imposed in this boundary. In this section we com-
pare their simulation data with the theoretical results
derived from Grad’s method of the BE and from the ki-
netic models. This comparison will be useful to assess
the reliability of the different approaches.

Figures 1-3 show the shear-rate dependence of Fy, F
and &, respectively, as obtained from MD simulations,
from Grad’s method, and from the ES and BGK mod-
els. The nonlinear (reduced) shear viscosity Fy (Fig. 1)
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Figure 1: Plot of the viscosity function F; versus the
reduced shear rate g for a hard disk gas as obtained from
MD simulation (circles), from the ES model (solid line),
frcm Grad’s method (dotted line), and from the BGK
model (dashed line).

20 v T v T M T T LI

Figure 2: Same as in Fig. 1, but for the thermal conduc-
tivity function Fj.

is probably the most relevant transport coefficient of the
problem. We observe that the qualitative trends pre-
dicted by all the approximations are confirmed by the
simulation data, namely, the viscosity decreases as the
shear rate increases (shear thinning effect). At a quanti-
tative level, the discrepancies observed for this coefficient
between the theories and the simulation are smaller than
3%. Figure 2 shows the behavior of the thermal con-
ductivity coefficient. In this case is evident that Grad’s
solution fails to capture the shear-rate dependence of Fj.
This disagreement could be anticipated from the compar-
ison with the perturbation solution of the BE for Maxwell
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Figure 3: Same as in Fig. 1, but for the cross coefficient
®(a), relative to the Burnett value $(0).

molecules in the 3D case. On the other hand, the ES
and BGK models fit quite well the. MD data, the dis-
crepancies being smaller than 1% in the case of the ES
model. As it can be observed in Fig. 3, the kinetic mod-
els are again clearly superior over Grad’s approximation
in predicting the shear-rate dependence of ®. Thus, for
instance at a ~ 0.2, the kinetic models lead to a relative
error smaller than 9%. Although Grad’s theory provides
the exact asymptotic value ®(0), its predictions worsen
as the system goes away from equilibrium.

Needless to say, the BE is only valid in the zero den-
sity limit. Nevertheless, in a MD experiment one has to
fix a nonzero (but very small) average density, which is
related to the ratio of the number of simulated particles
to the area of the system. As a consequence, the colli-
sional contributions to the transport coefficients are not
strictly zero. Therefore, the BE cannot exactly reproduce
the simulation data, although the discrepancies between
both can be neglected as the density becomes very small.
In the simulations of Ref. [4] the disks covered 1% of the
system area, so that the corrections to the equation of
state due to density effects are less than 2%. This slight
discrepancy can be avoided using the Monte Carlo sim-
ulation method. In addition, it is important to keep in
mind that boundary effects cannot be completely elimi-
nated in the simulations, and so there exist velocity slips
and temperature jumps near the horizontal walls. As a
consequence, the bulk region (where the nonlinear trans-
port coefficients are computed) becomes smaller as the
shear rate increases. This is the reason for which the MD
simulations performed in Ref. [4] are restricted to a range
of shear rates where non-Newtonian effects are hardly sig-

nificant. Thus, in order to state clearly what of the ana-
Iytical -approximations is superior, we have to extend the
range of values of a considered in the MD simulations.
To overcome all the above drawbacks, we have recently
used the DSMC method to numerically solve the BE in
the steady planar Couette flow for Maxwell molecules and
hard spheres [11].

5 MONTE CARLO SIMULATION: BOUND-
ARY CONDITIONS

In this Section, we briefly describe the Direct Simulation
Monte Carlo (DSMC) method [10] as well as its applica-
tion to the planar Couette flow problem [11].

In the DSMC method [10], the velocity distribution
function is represented by the velocities and positions of
a sufficiently large number of particles. Given the geom-
etry of the problem, the physical system is split into lay-
ers of width sufficiently smaller than the mean free path.
The velocities and coordinates are updated in two stages
(streaming and collisions) that are decoupled at each time
step. The time step is much smaler than the mean free
time. In the streaming stage, the particles are moved bal-
listically, and those particles crossing the boundaries are
reentered with velocities sampled from the correspond-
ing probability distribution. The collision stage proceeds
following certain stochastic rules which depend on the
interaction potential considered. The algorithm captures
the dynamics associated to the BE, preserving proper-
ties such as the molecular chaos (stosszahlansatz). Start-
ing from an equilibrium initial state, the system evolves
driven by the boundary conditions. After a transient pe-
riod, the system reaches a steady state. In the course of
the simulations, local values of the hydrodynamic fields
and of the fluxes are computed averaging the correspond-
ing microscopic quantities over the particles inside the
layer. From these averages one can get local values of the
gradients and of the transport coefficients.

In the DSMC simulations, nonequilibrium boundary
conditions have been employed to diminish the influence
of finite-size effects [11]. We now describe these new
boundary conditions and the differences between them
and the standard ones. In order to be concrete, we will
focus on the 3D-system case. As said before, the simu-
lated gas is enclosed between two parallel plates located
at y = 0 and y = L. The plates are moving along the
g-direction with velocities Uy = UpX and Uy, = UrX, re-
spectively. In addition, they are kept at temperatures Tp
and T%, respectively. . The corresponding boundary con-
ditions can be characterized by the kernels Ky r(v,v’)
defined as follows. When a particle with velocity v’ hits
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the wall at y = L, the probability of being remitted with
a velocity v within the range dv is K (v, v')dv; the ker-
nel Ko(v,v’) represents the same but at y = 0. The
boundary conditions are then [13]

Ow) Inlfly={0.Lhv) = 0(v,) [ v I

x KoL (v,v)O(Fv) fy = {0, L}, V', 1).
(52)

In the case of complete accommodation with the walls,
Ko,L(v, V') = Ko,1(v) does not depend on the incoming
velocity v’ and can be written as

Ko, (v) = A5 1©(Fvy)lvy|do,L(v), (83)

Aop = [aven)luibostv). (4

The functions ¢o,(v) can be interpreted as the proba-
bility distribution of a fictitious gas in contact with the
system at y = L. Equations (53) and (54) mean that
when a particle hits a wall, it is replaced by a particle
leaving from the fictitious gas. Obviously, the functions
¢o,1.(v) are consistent with the velocity and the temper-
ature of the walls, ie.,

Vo = / dv v (), (55)

kaTo = gm [ dv (v = Upu)dou().  (56)

The usual choice of ¢, (v} is that of a Maxwell-Boltzmann

distribution:
3/2 2
MB/. oy _ m _m(v-Upr)
$o.L(¥) ( ) exp [ WaTor ] .
57)

27 kBTO,L

These boundary conditions were used in the MD simula-
tions of Ref. [4]. In this case, the system is understood
to be enclosed between two independent baths at equilib-
rium. This type of boundary condition is adequate if one
is interested in studying realistic boundary effects [14],
but not when one wants to measure transport properties
in the bulk region.

Therefore, in order to inhibit the influence of bound-
ary effects, an alternative type of boundary condition has
been proposed [11, 15]. The idea is to imagine that the
above two fictitious baths are in nonegquilibrium states re-
sembling the state of the actual gas near the walls. Since
the distribution function of the actual gas is not known a
priori, we assume that the fictitious gases are described
by the distribution function given by the BGK approxi-
mation for the steady planar Couette flow, Eq. (49) for

Pr=1 and d = 3. More specifically, this second type of
boundary condition is

3/2
BK(y) = aoz_m_cor(lt o)
’ ksTo,L €o,z|vy|

ty
x/ dt 2t — (1— agr)2] ~**
to

92 1/2 L1 —
x exp 4 — ( kBTO,L) 2apr- 1-1
m 1+ ag,1, €0,L0y

__m 1+apy [(vs — Uk
2kpTy 1, 2t — (1- C!o,[,)t2 Yz o.L

2d'agy 1—~1\2
+ 2oL ) +vz+u3]}, (58)

1+agL €L

where (to,%1) = (0,1) if vy > 0 and (&, 1) = [1,2/(1 —
agr)] f vy <0, and a1 = EO,L/[E(ZJ,L + 8vrax(a))]/2.
Here, a' is the estimated value of the reduced shear rate,
as predicted by the BGK model for specific values of the
boundary parameters Up,z, and Ty, z. Moreover, ek (a')
is obtained from Eq. (37) for Pr=1 and d = 3. Given
the values of the four independent boundary parameters
Up,z and Ty 1, (as well as the distance L), the shear rate
a’ and the local thermal gradients €y z, are fixed by the
conditions (16)— (18). Therefore,

o= L=l
L 7

o = L[ 2kBT0.L VT~ Ty 4 msek(a)Pr
0.L=7 m To,L ksTor )

(59)

(60)
The quantity L is related to the actual separation L be-
tween the plates through the nonlinear equation

L ds
L_/O o (61)

Here s is a variable in terms of which the temperature is
a quadratic function. Given the values of the parameters
Uo,L, To,1, and L, the values of the parameters @', €,
and £ can be obtained solving the nonlinear set of equa-
tions (59)-(61). The knowledge of these boundary pa-
rameters allows one to obtain the distributions ¢REK ),
according to Eq. (58).

The numerical algorithm described in this section has
been successfully tested simulating the BGK equation by
a DSMC-like method similar to the one described in Ref.
[16]). Once the boundary conditions are correctly imple-
mented and the simulation parameters are well chosen,
the simulation results exhibit an excellent agreement with
the theoretical BGK predictions, even at the level of the
velocity distribution function [11}.
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6 COMPARISON WITH MONTE CARILO SIM-
ULATIONS

‘We now display a comparison between the transport co-
efficients obtained from the DSMC simulation method
and the (universal) theoretical predictions provided by
Grad’s method and the kinetic models. The simulations
have been performed considering the Maxwell and hard-
sphere interaction potentials [11} and the transport coef-
ficients have been computed inside the bulk domain, i.e.,
the region of the system where boundary effects are neg-
ligible. However, in a simulation with a finite size of the
system, it is not possible to avoid boundary effects com-
pletely. A way of diminishing these effects is to use the
nonequilibrium boundary conditions based on the BGK
distribution, Eq. (58), instead of the conventional equi-
librium boundary conditions (57). This can be confirmed
when one calculates the hydrodynamic profiles by means
of the DSMC method and uses both type of boundary
conditions. In the case of Maxwell molecules, the com-
parison between the simulations results and the (exact)
solution (16)-(18) indeed shows that the velocity slips
and the temperature jumps at the walls are much larger
in the case of the equilibrium boundary conditions than
in the case of the nonequilibrium ones {11]. Further, the
pressure obtained with the BGK boundary conditions is
practically constant, except near the upper plate, while
the one obtained with the equilibrium conditions is only
nearly constant in a small region around y/L =~ 0.75 {11].
These results clearly indicate that the BGK boundary
conditions are much more efficient than the equilibrium
ones to measure transport properties in the bulk region.
Therefore, in what follows we will only consider the BGK
conditions. In each case, a bulk domain comprised be-
tween the layers y = yg and y = y; has been identified.
In this region of the system, a ~ const, p ~ const, and
v = const, and averages of a, Fy, Fy, and & have been
taken over those layers. Typical values are yo/L =~ 0.2
and 3, /L ~ 0.8.

Figure 4 shows the shear rate dependence of the non-
linear viscosity represented by the function Fy(a). At a
qualitatively level, the three theories predict correctly the
behavior of the simulation data and show the shear thin-
ning effect (the decrease of F;, with increasing a). On the
other hand, the results obtained from the kinetic models
(especially from the BGK model) are superior over Grad’s
predictions. It is also interesting to remark a slight influ-
ence of the interaction potential on the viscosity function
F(n). In Fig. 5, we plot the nonlinear thermal conduc-
tivity Fi(a). As it can be observed, Grad’s solution does
not capture the main trends of F,. This failure was al-
ready noted in the case of hard disks (cf. Fig. 2). Again,
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Figure 4: Plot of the the viscosity function Fy, as a func-
tion of the shear rate. The symbols are simulation data
for Maxwell molecules (circles) and for hard spheres (tri-
angles), while the lines are the theoretical predictions
given by the ES kinetic model (solid line), the BGK ki-
netic model (dashed line), and the Grad method (dotted
line).
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Figure 5: Same as in Fig. 4, but for the thermal conduc-
tivity function Fj.

the kinetic models present a good agreement, especially
in the case of the ES model. Finally, the shear rate de-
pendence of the cross-coefficient & is displayed in Fig. 6.
As it was already noted in the case of hard disks, Grad’s
method gives a wrong prediction while the kinetic models
describe fairly well the nonlinear behavior of this func-
tion. In the case of the ES model, the agreement with
the simulation data is practically perfect. In summary,
the general conclusions anticipated from the comparison
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Figure 6: Same as in Fig. 4, but for the cross coefficient
®, relative to the Burnett value $(0).

with MD data for a hard disk system and relatively small
values of the shear rate, are confirmed by considering the
DSMC results for a 3D-system of Maxwell molecules or
hard spheres.

7 CONCLUDING REMARKS

In this review we have studied the steady planar Couette
flow in a dilute gas under conditions for which the (lin-
ear) Navier-Stokes theory does not apply. In this state,
there are two parameters measuring the departure of the
system from equilibrium: the shear rate a and the ther-
mal gradient e. Our goal has been to determine the mo-
mentum and heat fluxes in terms of the nonequilibrium
parameters ¢ and e. These fluxes are mainly character-
ized by three shear-rate dependent generalized transport
coefficients: a viscosity function F;, a thermal conduc-
tivity function F, and a cross coefficient ®. In the non-
Newtonian regime (not small values of the shear rate a),
these transport coefficients are highly nonlinear functions
of a.

The natural framework to determine such a nonlin-
ear dependence is the Boltzmann equation. However,
due to the intricacy of the Boltzmann collision opera-
tor, an exact solution of the Boltzmann equation in the
Couette flow problem is not known. This leads to use
alternative approaches, such as the Grad method and/or
kinetic models (the BGK and ES models) or on the com-
putational side, molecular dynamics and /or Monte Carlo
simulations. The comparison between the simulation and
theory can be considered as an stringent test to assess
the reliability of the above analytic methods to com-
pute nonlinear transport properties. In addition, since

we are interested in transport phenomena occurring in
the bulk region, we have also devised a new “nonequi-
librium” boundary condition to inhibit the influence of
finite-size effects in the DSMC simulations. This bound-
ary condition is based on the actual distribution function
of the BGK model in the Couette flow state.

The comparison with the theoretical predictions shows
that the kinetic models provide a reliable description of
the generalized transport coefficients, even for large val-
ues of the shear rate. With respect to the Grad method,
it essentially captures the shear-rate dependence of the
nonlinear shear viscosity but it dramatically fails for the
coefficients measuring the heat flux. This is basically
due to the truncation scheme of the Grad method at the
level of the heat flux, in contrast to what happens in
the kinetic models where all the velocity moments are
taken into account. On the other hand, in the ES model
the reference distribution function appearing in the colli-
sion term is an anisotropic Gaussian parametrized by the
pressure tensor. This choice yields the correct Prandtl
number Pr=1 - 1/d. In the BGK model, the reference
distribution is that of the local equilibrium and the model
gives the incorrect Prandtl number Pr=1. The agree-
ment with the Monte Carlo simulations of the ES model
is generally better than tlie BGK model, especially in
the heat flux. This fact can justify the use of kinetic
models more sophisticated than the BGK model (such as
the ES model) in the Couette problem, at the expense of
the simplicity of the model. Nevertheless, this conclusion’
cammot be extended to other nonequilibrium situations
where the Prandtl number does not play an important
role [17]. Another important outcome of the simulation -
results is that the shear-rate dependence of the transport
coefficients is hardly sensijtive to the interaction poten-
tial when one scales conveniently the quantities. This
conclusion agrees with the predictions of the kinetic mod-
els where (in appropriate reduced units) their results are
universal, independent of the interaction law considered.

In summary, it appears that many interesting ques-
tions regarding nonlinear transport phenomena may be
addressed by means of the BGK and ES kinetic mod-
els. The results obtained here in the Couette flow prob-
lem support this assertion. On the other hand, it must
be noted that any extension of the conclusions reported
here to dense fluids must be taken with caution, since
the collision transfer mechanism is absent in the low-
density regime. However, a qualitative good agreement
with simulations could be obtained when one introduces
convenient nondimensional variables. Comparisons car-
ried out in the uniform shear flow problem support this
expectation [18].
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