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ABSTRACT

An overview of recent works on mass and heat trans-
port in a dilute binary mixture under steady shear flow
is presented. The physical situation is such that an arbi-
trary shear rate coexists with a weak concentration gra-
dient. Under these conditions mass and heat transport
are induced in the system and the relevant transport co-
efficients are explicitly obtained. The analysis is made
following a perturbation solution in powers of the concen-
tration gradient but taking the steady shear flow as the
reference state. In the first order of the expansion the re-
sults show that the mass and heat fluxes are proportional
to the concentration gradient but, due to the anisotropy
of the problem, mutual diffusion and Dufour tensors are
identified, respectively. Both tensors are explicitly deter-
mined in terms of the shear rate and the parameters of
the mixture (particles masses, concentrations, and force
constants).

1 INTRODUCTION

The description of systems in which different transport
processes occur, is well established for states near equi-
librium. For such states, the Curie principle forbids the
coupling between fluxes and forces of different tensorial
rank {1]. For instance, when a fluid mixture is simultane-
ously subjected to both weak velocity and concentration
gradients, the presence of the velocity gradient (second-
rank tensorial quantity) cannot modify vectorial quanti-
ties such as mass and heat fluxes, which are generated
by the concentration gradients. Nevertheless, beyond the
linear regime, Curie’s principle is not necessarily satis-
fied and the mass and heat fluxes can be modified by the
shear flow even if the concentration gradient is small.

A prototype system for the study of such a nonlinear
problem is a binary mixture in the low density regime.
From a kinetic point of view, the state of the system

is characterized by the one-particle velocity distribution
functions f,{r,v;t) (s = 1, 2) of each species. In terms of
the first moments of f;, the number density n,, the mean
velocity ug, and the “temperature” T of species s, are
defined, respectively, as

{na, nots, nokpT} = / dv{l,v,(v=w)?}fe, (1)

where kg is the Boltzmann constant and m; is the mass of
a particle of species s. From the above partial quantities,
one can define the hydrodynamic fields of the mixture,
namely, the total number density » = n; + ng, the flow
velocity u = 3_; psus/p, ps = msn, being the mass den-
sity of species s, p = py + p2, and the temperature of the
mixture T as

2
nkpT = Z (nschTs + -;—ps(us - u)2> . (2)

s=1

The corresponding balance equations associated with
the conserved quantities (mass of each species, total mo-
mentum, and total energy) define the dissipative fluxes
of mass

Jjs = /dvms(v —u)fs = ps(us — uj , 3)

momentum (pressure tensor)
2 2
P=3 [avm(v-wv-wf=3P, @)
s=1 =1
and energy (heat flux)
2 2
m
a=3 [ev R -wPv-wh=Ya. ©)
s=1 s=1

These fluxes define the relevant transport coefficients
of the mixture. In particular, in a mixture the presence of
a concentration gradient not only induces a mass current
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but also a heat flux. According to linear irreversible ther-
modynamics, the macroscopic linear relations governing
such fluxes can be written as [1}

mymsen

js = DoVn, , (6)
. 5. s ds
o = q— —kBTZ =
2 =1 s
k
= —-BPp Vn,. @)
P1P2

In writing these equations, for simplicity, we have as-
sumed that n and T are constants and have chosen —V{p, -
w2)/T = —(kpp/p1p2)Vn1 as the force conjugate to j,
and jg, ps being the chemical potential of species s. In
Eqgs. (6) and (7), we have introduced the mutual diffusion
coefficient Do and the Dufour coefficient Lg.

In the low-density regime, the evolution of the binary
mixture is described by the set of two coupled nonlin-
ear Boltzmann equations [2]. However, it is a very hard
task to find explicit solutions of the Boltzmann equa-
tions, especially in states far from equilibrium. One of
the rare exceptions corresponds to the so-called uniform
shear flow (USF). In this state the only non-zero gradient
is Ouz/0y = @ = const, where u is the flow velocity of
the mixture. The relevant transport coefficients of USF
are the nonlinear shear viscosity 7 and viscometric func-
tions ¥, 2 which are related to the total pressure tensor
P. In the case of a single monocomponent gas of Maxwell
molecules (repulsive 7% potential), Ikenberry and Trues-
-dell [3] obtained explicit expressions of the rheological
properties 7 and W, for arbritary values of the shear
rate a. Recently, this solution has been extended to the
case of multicomponent systems with arbritary values of
masses, concentrations, and force constants [4].

The aim of this review is to analyze the transport of
mass and energy created by a concentration gradient in a
binary mixture under USF. The physical situation is such
that an arbitrary shear rate is coupled with a weak con-
centration gradient. Firstly, under these conditions, one
expects that the mass and heat fluxes are proportional
to the concentration gradient [c.f. Egs. (6) and (7)] but,
due to the anisotropy induced by the shear flow, mutual
diffusion and Dufour tensors rather than scalars can be
identified. In the case of the diffusion tensor, we have de-
rived an explicit expression of this tensor from the Boltz-
mann equation in the case of Maxwell molecules. Such
an expression generalizes previous results derived in the
case of tagged particles (self-diffusion) [5, 6, 7] and tracer
particles [8, 9]. In the case of the Dufour tensor, we have
not been able to get an explicit expression of this tensor
from the exact Boltzmann equation. The main reason is

that we need the fourth-degree moments of USF whose
explicit expressions are not known in the context of the
Boltzmann equation. In order to overcome such diffi-
culty, we use a convenient kinetic model that preserves
the essential features of the Boltzmann equation but ad-
mits more practical analysis. Specifically, we consider
the well-known Gross-Krook (GK) model [10] for a bi-
nary mixture of Maxwell molecules, for which an exact
solution of the USF state has also been recently obtained
[11).

The organization of the paper is as follows. In Sec-
tion 2 we describe the uniform shear flow state and intro-
duce the GK model. Section 3 contains the main results
of the review. By performing a perturbation expansion
around the shear flow solution, we compute the mass and
heat fluxes to linear order in the concentration gradient.
The associated transport coefficients are identified and
given as nonlinear functions of the shear rate and the pa-
rameters of the mixture (mass ratio, concentration ratio,
and force constant ratios). The shear-rate dependence of
these coefficients is illustrated for several values of the pa-
rameters of the mixture, and, in the case of the diffusion
tensor, a comparison between the results derived from
the Boltzmann and GK equations is carried out. Finally,
we close the paper in Section 4 with some concluding
remarks.

2 TUNIFORM SHEAR FLOW

Let us consider a dilute binary mixture under uniform
shear flow. This state is macroscopically characterized
by constant partial densities n,, uniform temperatures
T,, and a linear profile of the © component of the flow
velocities along the y direction:

ng, = cte. , (8)
VT, =0, (9)
'u,s',- =U; = a,-jrj y (I,,-j = aé;zéjy y (10)

a being the constant shear rate. Equation (8) implies that
there is no mutual diffusion in the USF problem. Conse-
quently, the shear rate is the only nonequilibrium param-
eter of the system and the momentum transport is the rel-
evant phenomenon. This transport is measured through
the pressure tensor, which defines the main transport co-
efficients of the problem, i.e., the nonlinearshear viscosity

P,
n(a) = k! (11)

and the viscometric functions
Uy (a) = _PL"_[:I_I. , 12)

a?
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() = L2l
In the USF problem, the temperature incréases in time
due to viscous heating, so that the state is not stationary.
Nevertheless, in the long time limit, it is possible to get
a stationary description using convenient scaled quanti-
ties. In this context, Eqs. (11)-(13) must be understood
in the long-time limit, where the influence of the initial
conditions have disappeared.

At a microscopic level, the USF corresponds to a state
that is uniform when one refers the velocities of the parti-
cles to the Lagrangian frame moving with the flow veloc-
ity u. In this local frame, the velocity distribution func-
tion adopts the homogeneous form f,(r,v;t) = f,(V,t),
where V; = v; — ajjr;. Therefore, the corresponding set
of Boltzmann equations can be written as

8
at

(13)

i}
h - Waijvjfl =Julf, Al + Ji2lfi, £}, (14)
and a similar equation for f;. Here, Jy[fs, fr] is the
Boltzmann collision term, which in standard notation
reads [2]

Tulfo £] = j dvy j QLY — v]a,s(v ~ v1,6)
XA V)LV = L))l - (15)

In the particular case of Maxwell molecules, Eq. (14) can
be recursively solved by the moment method. The key
point is that the collision rate go(g,8) is independent of
the relative velocity g, so that the collisional moments of
order k only involve moments of degree smaller than or
equal to k {3].

Exact expressions for the nonzero elements of the
pressure tensor of a binary mixture of Maxwell molecules
under uniform shear flow have been recently obtained [4].
As we will see later, the knowledge of the pressure tensor
(second-degree moments) allows us to analyze the influ-
ence of the shear field on the mass flux generated by a
concentration gradient [13].

Nevertheless, in order to study the effect of the shear
flow on the heat flux, we need the fourth-degree moments
of USF whose explicit expressions are not known in the
context of Boltzmann equation. For this reason, we use
the GK model [10], where the exact collision integral of
the Boltzmann equation is replaced by a relaxation term
of the form

JGE Sy fl = —ver(fs = fur) (16)

where the reference distribution function f,. is given by

- m, 3/2 My 2
o= (igm) g,

129
and myu, +
sUs T MU
e = T_I-_m—r— ) (18)
= MMy _ T . — )2
T, =T+ 20 (@ -7+ G -y
(19)

It is worth remarking that the above terms are explic-
itly obtained when one requires that the collisional trans-
fer of momentum and energy given by Eq. (16) are the
same as those of the Boltzmann equation for Maxwell
molecules [10]. This leads to identify the effective colli-
sion frequency v, as

1/2
ms+ mr) /
mym, !

Ve = An, (n,r (20)
where A is a pure number and k,, is a proportionality
constant in the force law. This constant A will be fixed
by requiring that the model reproduces some transport
coefficient of the Boltzmann equation. The GK model
has been recently solved in the USF state [11]. In par-
ticular, the GK predictions for the pressure tensor are -
in good agreement with those obtained from the exact
Boltzmann equation. This shows again the reliability of
the GK model in computing nonlinear transport proper-
ties.

Before analyzing the incidence of the velocity gradient
in the' mass and heat fluxes, it is instructive to show that
Eq. (14) (and its corresponding GK version) admits a
nice scaling property in the case of Maxwell molecules.
Let us introduce the scaled quantities

V=e°V, (21)
73(v1 t) = eamf:(v7t) ) (22)

where « is an arbitrary constant. In terms of these scaled
variables, Eq. (14) reduces to

85— _ — o _
5771~ 59 @V5 +aVIT, = JulFo T+ Jull Tl

. (23)
In deriving Eq. (23), use has been made of the property
Tolf o e} = Jor[Fs» F,] Which only applies for Maxwell
molecules [14]. Equation (23) can be seen as the Boltz-
mann equation in the USF under the action of a noncon-
servative drag force

F, = —-m,aV. (24)

This shows the equivalence between the description with
and without the external forces F, in the case of Maxwell
molecules. Most computer simulations of USF use forces
of this kind to enforce constant temperature [15]. In this
context, « is chosen as a function of the shear rate by
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the condition that the temperature achieves a constant
value in the long-time limit. We will adopt this point
of view and will incorporate isothermal constraints. For
non-Maxwell molecules, the presence of the thermostat
does not play a neutral role in the results and a certain
influence in the evaluation of the rheological properties
exists [14].

3 MASS AND HEAT TRANSPORT
UNDER SHEAR FLOW

As said before, in a binary mixture the presence of a
concentration gradient simultaneously produces mass and
heat fluxes. Both fluxes define two relevant transport co-
efficients: the mutual diffusion coefficient Dy, defined by
Eq. (6), and the Dufour coefficient Lo, defined by Eq.
(7). In the absence of shear field, both transport coef-
ficients can be obtained by using the Chapman-Enskog
expansion [2]. In the case of the Boltzmann equation for
Maxwell molecules, Ly = 0 and Dy = kgT'/nA2, where

mimg )1/2

25
my + me (25)

’\12 = 1.69% (Klg
The fact that Ly = 0 is a consequence of the particu-
lar potential considered (Maxwell molecules), since for
other potentials the Boltzmann equation leads to addi-
tional contributions to the Dufour coefficient. The GK
model also predicts Lo = 0 while its mutual diffusion
coefficient is the same as the Boltzmann one when one
chooses the constant A = 1.697. Henceforth, we will
take this value for A.

The main goal of this paper is to analyze the effect of
the shear flow on the mass and heat fluxes generated by a
small concentration gradient. In this situation, symmetry
arguments suggest that the above-mentioned fluxes are
still proportional to the concentration gradient, Eqs. (6)
and (7), although the coefficients Do and Lo must be re-
placed by their corresponding shear-rate dependent mu-
tual diffusion D and Dufour L tensors, respectively. The
presence of new transport coefficients (which do not exist
for hydrodynamics near equilibrium) is a consequence of
the anisotropy induced in the mixture by the presence of
the shear flow. The evaluation of these tensors as a func-
tion of the shear rate and the parameters characterizing
the mixture (mass ratio p = m;/mg, concentration ratio
§ = ny/n9, and force constant ratios wy; = Kii/Ki2) is
the main result of this review. The analysis will be made
for a mixture of Maxwell gases from the exact Boltzmann
equation (in the case of the diffusion tensor) and from the
GK model (in the case of both the diffusion and Dufour
tensors). .

Let us assume that we perturb the USF state by intro-

ducing a weak concentration gradient Vn,. On physical
grounds, we also assume that the total density » and tem-
perature T" are constant. As a consequence, the concen-
tration gradients are not independent but satisfy the re-
lation Vny = —~Vng. These are the typical experimental
conditions for measuring the mutual diffusion coefficient
in a binary mixture close to equilibrium. At a kinetic
level, we will look for solutions in which all the space de-
pendence occurs through a functional dependence on the
densities n;, since the space dependence on the flow ve-
locity is completely absorbed by the peculiar velocity V.
In other words, we look for normal solutions of the form
fs(r,v) = fs(ni(r), na(r); V). Therefore, in the steady
state, the Boltzmann equations for the mixture are given
by

i} g
- a—vi(aijvj +aVi)fi+ (Vi + aij"j)a—rifl =

Julfu, A1+ Jeffi, il - (26)

and similarly for f,. Here, we have introduced the ther-
mostat force (24) to keep the temperature constant. In
the following, we will focus on the properties of species 1.
The corresponding properties for species 2 can be easily
obtained by changing the indices.

In the same spirit as the usual Chapman-Enskog ex-
pansion {2}, we solve Eq. (26) by means of an expansion
in powers of Vn; but taking the pure shear flow state as
the zeroth order approximation. This is the main feature
of our method. Thus, we write

A=f044., @7

where fl(") is of order ¢ in Vn, but retains all the hydrody-
namic orders in the shear rate. The distribution function
fl(o) corresponds to the USF distribution but taking into
account now the local dependence on densities n,. In this
review, we will only consider the first order of the expan-
sion, and will solve the kinetic equations for fl(l) and fél)
by using the Boltzmann and GK equations.

3.1 Description based on the Boltzmann equa-
tion
In the first order approximation, the steady Boltzmann
equation for fl(l) is
a a o

AL 1“)+(Ve+a-'jrj)g O =a+ae
(28)

where J = J,,[f}o), f,gl)]+J,,-['fs(l), fr(o)]. Soine remarks

follow from the structure of the balance equations asso-

ciated with Eq. (28) and its counterpart for fél). First,
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the mass and total momentum balance equations imply
that

Q3T aa n =0, (29)
1 18
ku}c ) +au$1) oo ,(k) R (30)

where u(!) is the first order perturbation to the veloc1ty
of the mixture, i.e.,

2
alV = %Z/dvm,v_f_,(l) (31)
s=1

and P(® is the total pressure tensor in the uniform shear
flow state. Equation (29) implies that, in order to keep
the mixture in a steady state, the concentration gradient
must be orthogonal to the direction of the shear flow, i.e.,
On1/0x = 0. On the other hand, according to Eq. (30),
only in the case that the total pressure tensor is uniform
the velocity field is not perturbed by the presence of the
concentration gradient. If a = P(o) = nkpTd;; = cte.,
so u) = 0. For nonzero shea.r ra.tes, there are only
‘two limit cases for which P{?) is constant: the case of
mechanically equivalent particles [7} (1 =1, K11 = K22 =
K12) and the tracer limit (n; < n3) {9]. In both cases
P(o) = nkpTF(a), F'(a) being a nonlinear function of the
constant shear rate. Beyond these limit cases the pressure
tensor depends on space through its dependence on the
partial densities, so that the concentration gradient not
only induces a mass flux but it also disturbs the linear
shear flow. The solution to Eq. (30) is

w__1 (s _“i)i ()
)= (a,k “) aPs (32)
The mass flux J( )is given by

it =3 - pra (33)

where J( ) is the mass flux defined with respect to the
linear shear field, i.e.,

3 =my [av v, (34)

The flux :]:(11) can be obtained by multiplying both sides
of Eq. (28) by m;V and integrating over V. The result
is

Phiz =y _ P2 NO

i Y 5;;

1
a.ufz+a.1()+ momg Il =

where we have used the relation [16]

/ dv V(I + ) = ”*”( - pu®) . (36)

From the solution of Eq. (35), and taking into account
Egs. (32) and (33), the mass flux can be cast in the form
of a generalized Fick’s law, namely,

IO UL LY S0 VA (37)

where the elements of the mutual diffusion tensor D;; are

- (1+;u$)(1+<$)2 { 1 ( - ay )
Dy b "\a¥8 Bt a'+f
7] )
X [53 1,Il£_(7") + Tij] - li—yl‘.-j}. (38)

Here, Do = kpT/nA;2,

1 d .
Iy== (a,k ) L (39)

and we have introduced the dimensionless quantities. F; =(0)

P(O)/nkBTa aj, = @i/ N2, @" = @/712, With

1/2

_ mime

7Mm2=52271mn (512———(m1 n m2)3) (40)
being an effective collision frequency. Furthermore,
{1+ p)(1 + pé)
0.324————2—_——° 41
8= e (@)
00802

=03 (42)

It must be recalled that Eq. (38) applies for arbitrary
values of the shear rate and no restriction on the val-
ues of the mass ratio, the concentration ratio, and/or
the force constant ratios have been considered. In the
limits of tagged and tracer particles we recover previous
results derived for the self-diffusion [7} and tracer diffu-
sion tensors [9], respectively. As it was expected, in the
absence of the shear field (a = 0), D;j = Dodij, Do being
the mutual diffusion coefficient given by the conventional
Chapman-Enskog method [2}. Furthermore, according to
Eq. (38), D,; = Dy, = D,, = 0, in agreement with the
symmetry of the problem. Since no concentration gradi-
ent exists along the z direction, the only relevant compo-
nents are Dy, = D, and D,,. Notice that the equality
Py = Ps 2, implies that Dy, = D,,. This fact is proba-
bly a consequence of the particular interaction considered
since only for Maxwell molecules the yy and zz of the
pressure tensor are equal. For non-Maxwell molecules,
recent simulation results performed in the case of a sin-
gle dilute hard sphere gas show that these elements are
in general different [17]. This is also consistent with the
simulation results recently obtained for a Lennard-Jones
mixture [18], where Dy, > D,.
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Unfortunately, no explicit information on the shear-
rate dependent Dufour tensor L can be obtained from the
exact Boltzmann equation. For this reason, we resort to
the well-known GK kinetic model.

3.2 Description based on the Gross-Krook equa-

tion

In the context of the GK model, fl(l) verifies the steady

equation
9 s (Vi + aVi) f o4 + (Vi + aijrj)=— 4 (0)+u f(l)—
17N 3 o
V11f11 +V12f(1) +(43)
where
M _ - v gm (0)
D= VAP, (44)
M _ ! (ul—f? g
12 n1kgTy2 1+ u A
1+u6
+p TV ) D )
3/2 2
©) _ . [ _miVe
1) oo () o

From Egs. (43) and its counterpart for fz(l), the velocity
uf) can be obtained. It is easy to see that, in the same
way as the Boltzmann equation, u{!) is also given by Eq.
(32) although the corresponding expressions for the ther-
mostat parameter & and the pressure tensor P(%) obtained
from the GK model are different from those derived from
the Boltzmann equation [4].

Let us introduce the dimensionless velocity moments
Mls,lt)m corresponding to the approximation f(l) as

M(l) _ l (QkBT)

lm(l)
(52 /dVVVVf()

(47)
The hierarchy obeying these moments can be obtained

by multiplying both sides of Eq. (43) by VI"Vy‘Vz'" and
integrating over the velocity space. Thus, one gets

kMO, gy A+ Gl Hm)IMY) | = Riem , (48)
where

i)
Rigm = —C [1+ (1+48) 36]
X (Mk,c+1,m€1.v + Ml(=,t),m+1€1,2)
+2I/11X9_1)/2 [Ak+1.l.mM 1(,10).0 + Ak.z+1.mM(g.11).o

+ Ak,t,m+1 Mé}()),l]

20(1 - §)
1+p
+ Ak er1,m Mé'll)'o + Ag.em+1 Mé,lo),l]
ub(1+6)?
— V12
1+p
+ ArtrimAyy)ery + AkemirAzzr] -
{49)

Ak+ 1,,m Ml(llo),o

+ (g~1)/2 [

V12X12

X(lgz—l)/2 [(Ak+r,emDzy

Here, M,S l)m refers to the moments of the pure USF state
given in the reference [11], ¢ = (n/n2)niz, g =k+L+m,

Xs = Ts/T, Xor = Tor/T, and we have introduced the
reduced concentration gradient
2k5T\Y?1
= ~VI R 50
€ ( o ) CV nny (50)
and the dimensionless tensor
¢ a;, 0 t(O)
A= 2(6 P9 51
7 o (6 k — )66 ( )
The solution to Eq. (48) can be written as
(1) g k! q —(149)
Mklm = q;om(—a) [Vl + (k+£+m)a]
X Bi—gttqm - (52)

Equation (52) is still formal since we need to know the
first-degree moments. After some algebra, it is easy to
see that these moments can be written as

Mé,ll),o = _f)wel.y ’ (53)
M(g_lo)'l = "‘Dzzel,z i (54)
M{Qy=~De.er,s (55)
where
Dy =D, = !
W (1+ po+ vi2(1+ 6p)
9
x {(1 +u)¢ [1 +(1+ 6)636] M§,
1
+3ou(1+ 6)21/12Aw} . (56)
B - 1
o 2[(1 + p)a + 112 (1 + 8p))

{601+ 8)*umnzhzy — 201+ w)Dyy
ARYC)
204+ p)¢ [14+0+ )5 53] M) (57

From Eqs. (33), and (53)-(57), the mass flux _]( ) can be
finally obtained. It can be written again in the form of
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a generalized Fick’s law, Eq. (37), where now the mutual 242 + 2 %
diffusion tensor is given by Y1 = [Mz(ogz + Méo)q + : Méo'z)z z M1(01)2]
1 1
1+ ,uzs 2 5 2 2
Dy = Doy [2THEe Dy - wd 1+ OAs] L (58) sdt2e 5 o 5426 64
1+ 1+5 +4, TREAE] 2z + 14(1+#)Z:13Azz . (64)

Dg being the mutual diffusion coefficient at equilibrium.
Just as it was obtained from the Boltzmann equation in
the previous section, Dy, = Dy, = D,y = 0, which is
consistent with the symmetry of the problem.

Once the mass fluxes jgl) have been obtained, all the
velocity moments of fﬁl) can be explicitly determined
from Eq. (52) and its corresponding counterpart for the
component 2. We are now interested in calculating the
total heat flux q*) given by

2
) > m? / dv V2V 1) _ gpu(l) _pl0) . 40
s=1

Il

q

2

~ 3
Z qgl) - 5pu(l) — plO) 4(1), (59)
s=1
‘"The fluxes q( ) can be obtained from Eq. (52). By col-
lecting all the contributions coming from both species,

the flux _](1) can be obtained. After some algebra, jgl)
can be written as

V= _EL -V,
i P1p2

where the elements of the generalized Dufour tensor L;;
are

(60)

__ kT2 p1po y_ s+
L= e 5 2(Xn 45~ #¥245) — Trm

3 . 1-pu)(1+6
x( :k+P(O)) kj — 2——-—-—( 1+)546 )

) o

The nonzero elements of the tensor ¥, are given by
Yiay = —é [G‘ISM(E(?O +az (Mcgo)z + Mcﬂ)o + 3M2(?2),0)
- ( :§01)o+ MI(OI)Z) ~ z1(2} +6‘12)M1(?3),0
(722 + 18a%)aDy, — (52% + 6a%)21 Dy,

-4
2(1+ p)2f
-B; (72} + 18a*)alyy — (521 + 64%) 21 Asy (62)
41+ p)2} ’
©) 242 +21

A
Yryy = Z M0,2,2 + Mz(oz)o +——

(522 +6a2) Dy, — 2ale,y

+A
! 200+ py}
B, (522 + 6aZ)Ayy — 2a21Agy
41+ p)2} '

=AM, - lMl“?o

(63)

Here, we have introduced the operator

A= (1+80+055)9®), . (69

and the quantities z; = 1+ 3¢, 41 =
8uviaxaz, Br = pr126(1+6)%x12 . _

In the same way as the diffusion tensor, the tensor L
has three relevant elements: two diagonals Ly, and L.,
and one off-diagonal L.,. However, in contrast to D its
diagonal elements are different, which is a consequence of
the high anisotropy induced by the shear field. For zero
shear rate, one gets the well-known result for Maxwell
binary mixtures near equilibrium, i.e., Lj; = 0 [2]. Also,
if #=1L;; =0even fora#0.

QA+ pruxi+(1-

3.3 SOME ILLUSTRATIVE EXAMPLES

The objective of this Section is to illustrate the shear-
rate dependence of the diffusion and Dufour tensors for
several values of the parameters of a mixture of Maxwell
gases. We also compare the predictions made by the GK
model with those obtained from the Boltzmann equation
at the level of the diffusion tensor. '
Figutes 1 and 2 show the dependence of the reduced
diffusion tensor D}; = D;;/Dg on the reduced shear rate .

l’o .. L I L] I L] I L] l 1 l T
08 b= "\ 5=3 _
Dyy B k o -
06 |~ . —

‘.‘.

04 |- ‘.\. N H° =5 _
02 |- \‘\ A n
- 202 e :

0,0 L l L I L | 1 L L l 1

00 05 I8 15 20 25 30
alg

Figure 1: Plot of the reduced diagonal element of the dif-
fusion tensor Dy, = Dy, /Dq as a function of the reduced
shear rate a/( for K11 = K22 = K12, 6 = 3, and p = 5,
y ¢ = 0.2. The solid lines correspond to the GK results
while the dashed lines refer to the Boltzmann results.
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Figure 2: Plot of the reduced off-diagonal element of the
diffusion tensor D, = —Dgy /Dp as a function of the
reduced shear rate a/¢ for k1) = K22 = K12, 6 = 3, ¥
# =5, and g = 0.2. The solid lines correspond to the
GK results while the dashed lines refer to the Boltzmann
results.

af{ for § = 3, k11 = K22 = K12 and g = 5 and 0.2. The
behaviour for § < 1 can be easily inferred by taking into
account that D;; is invariant under the changes g & p~1,
§ & 871, and Ky & K2. We observe that the GK pre-
dictions present a qualitative good agreement with the
Boltzmann ones, especially when the mass of the excess
component is larger than that of the defect component.
The influence of the shear flow on the mass transport is
quite significant in the region of shear rates analyzed. In
the case of Dy, we see that this element decreases as
the shear rate increases so that the presence of the shear
flow inhibits the mass transport along the direction of the
gradient of the flow velocity (y axes). This inhibition be-
comes more significant when the defect species is heavier
than the excess one. The shear flow induces cross effects
in the diffusion of particles which are measured by the
off-diagonal element D,,. This component, which is zero
in the absence of shear flow, gives the mass flux along the
z direction due to a concentration gradient along the y
direction. It can be seen as a nieasure of the anisotropy
generated in the system by the action of the shear field.
It is negative and its dependence on the shear rate is
quite similar, regardless of which mass ratio considered:
for small shear rates —DZ, increases with a while the
opposite happens for large shear rates. In general, the
dependence of D;; on a found here agrees qualitatively
well with the one observed in molecular dynamics simu-
lations [18] of a strongly shearing Lennard-Jones binary
mixture.’ .

In order to illustrate the dependence of the Dufour
tensor on the shear rate and the parameters of the mix-
ture, it is convenient to reduce it in a proper way. Here,
we introduce the dimensionless Dufour tensor L}; as

mmy ¢ P

L = my +ma kgT? p1p2

Li; . (66)

The reduced tensor L7; possesses the same invariant prop-
erties as the Dufour tensor L;;. In Figs. 3, 4,and 5, we
plot L}, L3,, L3y, a5 2 function of the shear rate, respec-
tively. We consider again § = 3, k11 = K22 = K12, and the

altg

Figure 3: Plot of the reduced diagonal element of the
Dufour tensor Ly, as a function of the reduced shear rate
a/Cfor k) =Kpp=kK;2,6=8,and p=5,y p=10.2.

Figure 4: Plot of the reduced diagonal element of the
Dufour tensor L}, as a function of the reduced shear rate
afCfor Ky =Ky =r,12, =3,y p="5,and p=0.2.
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Figure 5: Plot of the reduced off-diagonal element of the
Dufour tensor —L}, as a function of the reduced shear
rate a/C for k11 = kg2 = K12, 8 =3,and p =5,y p =0.2.

same values of the mass ratio as before, namely, ¢ = 5
and 0.2. To the best of our knowledge, we are not aware
of any previous simulation or calculation of this tensor
so that no comparison is possible at this stage. As Figs.
3-5 show, the nonzero components L}; are nonmonotonic
functions of a, reaching either a maximum or minimum
for a given value of the shear rate. Note that depending
on the value of the mass ratio, the shear-dependent com-
ponents of the generalized Dufour tensor may either be
negative or positive.

4 CONCLUDING REMARKS

Diffusion of particles in a fluid subjected to the uniform
shear flow has been studied in the past few years from a
theoretical point of view as well as from a computer sim-
ulation point of view. Usually, the different analyses have
been made in the particular case in which all the parti-
cles are mechanically equivalent. This situation involves
only single-particle motion and it is therefore somewhat
simpler to treat. In this review we have investigated the
influence of shear flow on the mass and heat fluxes in a
binary mixture constituted by particles mechanically dif-
ferent. The reference frame is the Boltzmann equation
which provides a controlled formulation of the problem.
However, due to the complex mathematical structure of
this equation, we have not been able to get the heat flux,
so that a kinetic model has been used. Specifically, we
have considered the GK model of the Boltzmann equa-
tion whose reability has been shown in the past vears in
different problems [9, 19, 20].

The physical situation is such that a linear ‘profile of

the £ component of the flow velocity along the y direc-
tion coexists with a weak concentration gradient. The
strength of the velocity field is arbitrary so that the mass
flux js and the heat flux j, are disturbed by the shear-
ing motion. In addition, in the same way as computer
simulation studies, thermostat forces are introduced to
remove the heat produced by viscous heating and get an
stationary state. Under these conditions j, and j, are still
proportional to the concentration gradient but the diffu-
sion an Dufour coefficients become shear-rate dependent
tensors. The determination of these tensors in the case of
Maxwell molecules has been the objective of this review.
Apart from the limitation of the interaction considered,
our results apply to arbritary values of masses, concen-
trations, and force constants.

The results show that the diffusion D;; and Dufour
L;; tensors are highly disturbed with respect to their
equilibrium values. As-a matter of fact, both tensors
present a complex nonlinear dependence on the shear rate
a and the parameters of the mixture. Concerning the dif-
fusion tensor, the relevant elements are Dy, = D, and
Dy < 0. The net effect of the shear field on the trans-
port of mass is to inhibit the transport of particles along
the direction of the flow velocity (y axis). In the case of z
direction, — Dy, is not a monotonic function of the shear
rate and has a maximum for a given value of a. With
respect to the Dufour tensor, the results show that, for
nongzero shear rates, Ly, # L., that L;; = 0 both for
e = 0 or for equal masses, and that depending on the
mass ratio the L;;, which are nonmonotonic functions of
the shear rate, may be either positive or negative, reach-
ing a maximum or minimum for given a. As said before,
to our knowledge this is the first derivation of an explicit
expression of the shear-rate dependent diffusion and Du-
four tensors for a binary mixture with arbitrary values
of the mass ratio, the concentration ratios, and the force
constant ratios.

The results reported here can also be of relevance in
connection with computer simulations. As mentioned be-
fore Sarman, Evans, and Baranyai [18] performed molec-
ular dynamics simulations to measure the influence of
the shear rate on the diffusion tensor in a dense mixture.
Nevertheless, the shear rates considered in their simula-
tions are not large enough to clearly observe nonlinear
effects. In the case of binary mixtures at low-density, one
possibility to overcome the difficulties inherent to molec-
ular dynamics to achieve large shear rates is to use the
direct simulation’ Monte Carlo method [21]. We hope
that the results derived here for the mutual diffusion and
Dufour tensors stimulate the performance of computer
simulations to check the accuracy of our predictions.
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