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Abstract Transport properties of granular mixtures surrounded by an interstitial gas
are determined by solving theBoltzmann kinetic equation bymeans of theChapman–
Enskog method. As usual, the influence of the viscous gas on solid particles is
accounted for by an effective external force composed of two terms: a drag force pro-
portional to the particle velocity plus a stochastic Langevin-like term. Before consid-
ering inhomogeneous situations, we study first the homogeneous steady state where
collisional cooling and viscous friction are compensated for by the energy gained by
grains due to their interaction with the interstitial gas. Then, the Chapman–Enskog
method is used to solve the Boltzmann equation and express the Navier–Stokes trans-
port coefficients in terms of the solutions of a set of coupled linear integral equations.
Explicit forms are obtained here in the tracer limit for the diffusion transport coef-
ficients which are explicitly determined by considering the so-called first Sonine
approximation. As an application of the previous results, thermal diffusion segrega-
tion of an intruder immersed in a granular suspension is analyzed and compared with
previous theoretical attempts where the effect of the interstitial gas was neglected.

1 Introduction

Granular matter in nature is generally surrounded by an interstitial fluid, like water
or air. Although in many situations the effect of the surrounding fluid on the dynamic
properties of grains can be neglected, there are also other situations (for instance,
when the stress exerted by the fluid phase on grains is significant) where the influence
of the interstitial fluid must necessarily be taken into account. A typical example of it
refers to the species segregation in granular mixtures [1]. Since a granular suspension
is a multiphase process, in the context of kinetic theory, one could start from a set of
coupled kinetic equations for each one of the velocity distribution functions of the
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phases. However, this approach involves many technical intricacies, especially in the
case of granular mixtures. Thus, to avoid this problem, the effect of the interstitial
fluid on grains is usually taken into account by means of an effective external force
[2]. This fluid–solid force is composed of two terms: (i) a viscous drag force (Stokes’
law) proportional to the particles velocity and (ii) a stochastic force modeled as a
Gaussian white noise. While the first term mimics the friction of grains with the
surrounding gas, the second term accounts for the energy gained by grains due to
their interaction with the particles of the gas phase (thermal reservoir).

An interesting and challenging problem is to assess the impact of gas phase on
the Navier–Stokes transport coefficients of a binary granular mixture modeled as an
ensemble of smooth inelastic hard spheres. This problem is not only relevant from a
fundamental point of view but also from a realistic point of view since granular sus-
pensions are present in nature formed by grains of different masses, sizes, densities,
and coefficients of restitution. However, the determination of the transport coeffi-
cients of bidisperse gas–solid flows is a quite ambitious target due essentially to the
large number of integro-differential equations involved as well as the wide parame-
ter space of the system. For this reason and in order to offer a complete description,
we consider here binary granular suspensions at low-density where the Boltzmann
kinetic equation turns out to be a reliable starting point [3, 4].

As in previous papers [6–8], the Boltzmann equation (BE) is solved by means of
the Chapman–Enskog (CE)method [9] adapted to dissipative dynamics. A subtle and
important point of the expansion method is the choice of the reference distribution in
the perturbation scheme. Although we are interested here in obtaining the transport
coefficients under steady conditions, the presence of the surrounding fluid gives
rise to a local energy unbalance in such a way the zeroth-order distributions f (0)

i
of each species (reference states) are not in general stationary distributions. Thus,
in order to determine the Navier–Stokes transport coefficients, one has to obtain
first the unsteady integral equations defining the above transport coefficients and
solve (approximately) then these equations in steady-state conditions. An important
consequence of this procedure is that the transport properties depend not only on the
steady temperature but also on quantities such as the derivatives of the temperature
ratio on the temperature.

The plan of the paper is as follows. The granular suspension model as well as the
balance equations for the densities of mass, momentum, and energy are derived in
Sect. 2. Then, the steady homogeneous state is studied in Sect. 3 where the tempera-
ture ratio T1/T2 of both species is calculated and compared against the Monte Carlo
simulations. Section4 addresses the application of the CE method up to first order
in the spatial gradients. As expected, transport coefficients are given in terms of the
solutions of a set of coupled linear integral equations. These integral equations are
approximately solved by considering the leading Sonine approximation; this proce-
dure is explicitly displayed here for the diffusion transport coefficients in the special
limit case where one of the components of the mixture is present in tracer concen-
tration. As an application of the previous results, thermal diffusion segregation of an
intruder or tracer particle is analyzed in Sect. 5. The paper is closed in Sect. 6 with a
brief discussion of the results obtained in this work.
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2 Granular Suspension Model

We consider a granular binary mixture of inelastic hard disks (d = 2) or spheres
(d = 3) of masses mi and diameters σi (i = 1, 2). The spheres are assumed to be
completely smooth and so, the inelasticity of collisions is characterized by three
constant (positive) coefficients of normal restitution αi j ≤ 1. The solid particles are
surrounded by amolecular gas of viscosity ηg and temperature Tex. As said before, the
influence of the interstitial gas on grains is modeled via a fluid–solid force constituted
by two terms: a deterministic drag force plus a stochastic force. In the low-density
limit and taking into account the above terms, the one-particle velocity distribution
function of each species verifies the Boltzmann kinetic equation [8]

∂ fi
∂t

+ v · ∇ fi − γi�U · ∂ fi
∂v

− γi
∂

∂v
· V fi − γi Tex

mi

∂2 fi
∂v2

=
2∑

j=1

Ji j [ fi , f j ], (1)

where Ji j [ fi , f j ] is the Boltzmann collision operator [4]. In addition,�U = U − Ug ,
V = v − U is the peculiar velocity,

U = ρ−1
2∑

i=1

∫
dv miv fi (v) (2)

is themeanflowvelocity of the solid particles, andUg is the knownmeanflowvelocity
of the interstitial gas. The friction coefficients γi are proportional to the gas viscosity
ηg and are functions of the partial volume fractions φi = (πd/2/(2d−1d� (d/2))niσd

i ,
where

ni =
∫

dv fi (v) (3)

is the number density of species i . In the dilute limit, every particle is only subjected
to its respective Stokes’ drag [10] so that for hard spheres (d = 3) γi is

γi = γ0Ri , γ0 = 18ηg
ρσ2

12

, Ri = ρσ2
12

ρiσ
2
i

φi . (4)

Here, ρi = mini , ρ = ρ1 + ρ2 is the totalmass density, andσ12 = (σ1 + σ2)/2.Apart
from the partial densities ni and the mean flow velocity U, the other relevant hydro-
dynamic field is the granular temperature T , defined as

T = 1

n

2∑

i=1

∫
dv

mi

d
V 2 fi (v), (5)

where n = n1 + n2 is the total number density.
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The Boltzmann collision operators Ji j [ fi , f j ] conserve the number densities of
each species and the total momentum but the total energy is not conserved:

∫
dv

{
1,

∑

i, j

miv,
∑

i, j

mi V
2
}
Ji j [v| fi , f j ] =

{
0, 0,−dnT ζ

}
, (6)

where ζ is the total cooling rate due to inelastic collisions among all species. The
macroscopic balance equations for the densities of mass, momentum, and energy
can be easily obtained by multiplying both sides of the BE (1) by 1, miv, and miV 2;
integrating over v; and taking into account the properties (6). After some algebra,
one gets

Dtni + ni∇ · U + ∇ · ji
mi

= 0, (7)

DtU + ρ−1∇ · P = −ρ−1�U
2∑

i=1

ρiγi − ρ−1 (γ1 − γ2) j1, (8)

DtT − T

n

2∑

i=1

∇ · ji
mi

+ 2

dn
(∇ · q + P : ∇U) = − 2

dn
�U ·

2∑

i=1

γi ji

+2
2∑

i=1

xiγi (Tex − Ti ) − ζT . (9)

In the above equations, Dt = ∂t + U · ∇ is the material derivative,

ji = mi

∫
dv V fi (v) (j1 = −j2) (10)

is the mass flux for the component i relative to the local flow U,

P =
2∑

i=1

∫
dv miVV fi (v) (11)

is the pressure tensor, and

q =
2∑

i=1

∫
dv

mi

2
V 2V fi (v) (12)

is the heat flux. In addition, the partial kinetic temperature Ti is
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Ti = mi

dni

∫
dv V 2 fi (v). (13)

The partial temperature Ti measures themean kinetic energy of particles of species
i . The relationship between the granular temperature T and the partial temperatures
Ti is simply given by T = ∑

i xi Ti , where xi = ni/n is the concentration of species
i . The breakdown of energy equipartition in granular systems (Ti �= T ) predicted by
kinetic theory [4] has been confirmed in computer simulations [11] as well as in real
experiments [12].

It is quite apparent that the balance equations (7)–(9) become a closed set of
differential equations for n1, n2, U, and T when the fluxes, the cooling rate, and
the partial temperatures are expressed in terms of the hydrodynamic fields and their
gradients. These constitutive equations for ji , P, q, ζ, and Ti may be derived by
solving the BE (1) by the CE expansion up to first order in spatial gradients. This
will be analyzed in Sect. 4.

3 Homogeneous Steady States

As a first step and before studying inhomogeneous situations, we consider homo-
geneous states. In this case, ni and T are spatially uniform, and with a convenient
choice of the reference frame, the mean velocities vanish (U = Ug = 0). For times
longer than the mean free time, it is expected that the suspension achieves a steady
state (∂t fi = 0) where the BE (1) reads

− γi
∂

∂v
· v fi − γi Tex

mi

∂2 fi
∂v2

=
2∑

j=1

Ji j [ fi , f j ]. (14)

The balance equation for the partial temperature Ti can be easily derived by multi-
plying both sides of Eq. (14) by miv

2 and integrating over velocity:

2γi (Tex − Ti ) = ζi Ti , (15)

where the partial cooling rates ζi for the partial temperatures Ti are defined as

ζi = − mi

dni Ti

2∑

j=1

∫
dv v2 Ji j [ fi , f j ], (i = 1, 2). (16)

The relationship between ζ and ζi is

ζ =
2∑

i=1

xiτiζi , (17)
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Fig. 1 Temperature ratio T1/T2 versus the (common) coefficient of restitution α for d = 3, x1 =
0.5, σ1/σ2 = 1, T ∗

ex = 1, and three different values of themass ratio:m1/m2 = 0.5 (a),m1/m2 = 4
(b), and m1/m2 = 10 (c). Lines are the theoretical results while symbols refer to the Monte Carlo
simulations

where τi = Ti/T is the temperature ratio of the species i . Upon deriving Eq. (17),
use has been made of the relation T = ∑

i xi Ti and Eq. (6).
For elastic collisions (αi j = 1), ζ = ζi = 0, Eq. (15) yields Ti = Tex = T so that

the Maxwellian distribution with a common temperature is a solution of the BE
(14). On the other hand, for inelastic collisions (αi j �= 1), ζi and ζ are different from
zero and to date the solution to Eq. (14) is unknown. Thus, one has to consider
an approximate form for the distributions fi to estimate ζi . Here, we take the sim-
plest approximation for both distributions, namely the Maxwellian distributions fi,M
defined with the partial temperatures Ti :

fi (v) → fi,M(v) = ni

(
mi

2πTi

)d/2

exp
(

− miv
2

2Ti

)
. (18)

The partial cooling rates can be computed from Eq. (16) by replacing fi by fi,M. The
result is [4]

ζ1 =
√
2π(d−1)/2

d�
(
d
2

) n1σ
d−1
1

(
2T1
m1

)1/2 (
1 − α2

11

) + 4π(d−1)/2

d�
(
d
2

) n2σ
d−1
12 μ21

×
(
2T1
m1

+ 2T2
m2

)1/2

(1 + α12)

[
1 − μ21

2
(1 + α12)

(
1 + m1T2

m2T1

)]
, (19)

where μi j = mi/(mi + m j ). The expression for ζ2 can be easily obtained from Eq.
(19) by making the change 1 ↔ 2.

The partial temperatures Ti can be obtained from Eq. (15) (for i = 1, 2) when
the expressions (19) for ζ1 and ζ2 are considered. Figure1 plots the temperature
ratio T1/T2 as a function of the (common) coefficient of restitution α ≡ αi j for
x1 = 0.5, σ1 = σ2, T ∗

ex = 1, and three different values of the mass ratio. Here,
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T ∗
ex = Tex/(mσ2

12γ
2
0) and m = (m1 + m2)/2. Theory is compared against the Monte

Carlo simulations [13]. As expected, energy equipartition is broken for inelastic col-
lisions; the extent of the energy violation is greater when the mass disparity is large.
The excellent agreement found between theory and computer simulations is also
quite apparent, except for quite small values of α (extreme inelasticity) where small
discrepancies appear.

4 Chapman–Enskog Method. First-Order Solution

We assume now that the homogeneous steady state is perturbed by small spatial
gradients. The existence of these gradients gives rise to nonzero contributions to
the fluxes of mass, momentum, and energy. To first order in spatial gradients, the
knowledge of the above fluxes allows one to identify the relevant Navier–Stokes
transport coefficients of the granular suspension. As usual in the CE scheme [9],
for times longer than the mean free time and distances larger than the mean free
path, we suppose that the system achieves a hydrodynamic regime. This means that
(i) the system has completely “forgotten” its initial preparation (initial conditions)
and (ii) only the bulk domain of the system (namely, far away from the boundaries)
is considered. Under these conditions, the BE (1) admits an special solution: the
so-called normal or hydrodynamic solution where all space and time dependence of
the distributions fi (r, v; t) is through a functional dependence on the hydrodynamic
fields. This means that in the hydrodynamic regime, fi (r, v; t) adopts the normal
form

fi (r, v; t) = fi
[
v|n1(t), n2(t), T (t),U(t)

]
. (20)

The notation on the right-hand side of Eq. (20) indicates a functional dependence on
the partial densities, temperature, and flow velocity. For small Knudsen numbers, the
functional dependence (20) can be made local in space by expanding fi in powers
of the spatial gradients

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (21)

where ε is a bookkeeping parameter that denotes an implicit spatial gradient (for
instance, a term of order ε is of first order in gradients). This parameter is taken to
be equal to 1 at the end of the calculations.

An important point in the CE expansion is to characterize the magnitude of the
friction coefficients γi and the term �U with respect to the spatial gradients. On the
one hand, since γi does not create any flux, then it is assumed to be to zeroth order
in ε. On the other hand, because �U = 0 in the absence of gradients, it should be
considered to be at least of first order in spatial gradients (first order in ε).

The implementation of the CE method to solve the BE (1) to first order in spatial
gradients is very large and beyond the scope of the present contribution. We refer
the interested reader to Ref. [8] for specific details. Since we want here to analyze



180 R. Gómez González and V. Garzó

thermal diffusion segregation in a granular suspension, in order to showmore clearly
the different competing mechanisms appearing in this phenomenon, we consider a
binary mixture where the concentration of one of the species (let’s say species 1) is
much smaller than that of the other species 2 (tracer limit, x1 → 0). The consideration
of this simple situation allows us to offer a simplified theory where a segregation
criterion can be explicitly obtained.

In the tracer limit, the pressure tensor Pi j , the heat flux q, and the cooling rate
ζ of the binary mixture are the same as that of the excess species. While the fluxes
Pi j and q are of first order in the spatial gradients in the Navier–Stokes description,
the expression of ζ must retain terms up to second order in gradients. Part of these
second-order contributions to ζ have been computed by Brey et al. [5] for dry (dilute)
granular gases, while the complete set of these contributions has been determined by
Brilliantov and Pöschel [14] for granular gases of viscoelastic particles. Nevertheless,
it has been shown [5] that these second-order contributions to ζ are negligible as
compared with its zeroth-order counterparts. We expect that the same occurs for the
case of binary granular suspensions and hence, they can be ignored.

4.1 Tracer Limit. Diffusion Transport Coefficients

In the tracer limit, the first-order contribution j(1)1 to the mass flux is [8]

j(1)1 = −m2
1

ρ
D11∇n1 − m1m2

ρ
D12∇n2 − ρ

T
DT

1 ∇T − DU
1 �U, (22)

where the diffusion transport coefficients are defined as

D11 = − ρ

ρ1d

∫
dvV · B11 (V) , D12 = − 1

d

∫
dvV · B12 (V) , (23)

DT
1 = −m1

ρd

∫
dvV · A1 (V) , DU

1 = −m1

d

∫
dvV · E1 (V) . (24)

The unknowns A1(V), B11 (V), B12 (V), and E1(V) are the solutions of a set of
coupled linear integral equations [8]. In the tracer limit, this set reads

−
(
2γ2θ

−1 + 1

2
ζ(0)

)
A1 − γ1

∂

∂V
· (VA1) −γ1

Tex
m1

∂2A1

∂v2
− J12[A1, f (0)

2 ]

= A1 + J12[ f (0)
1 ,A2], (25)

− γ1
∂

∂V
· (VB11) − γ1

Tex
m1

∂2B11

∂v2
− J12[B11, f (0)

1 ] = B11, (26)
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− γ1
∂

∂V
· (VB12) −γ1

Tex
m1

∂2B12

∂v2
− J12[B12, f (0)

2 ] = B12 + J12[ f (0)
1 ,B21]

+
[
ζ(0) − 2γ2

(
θ−1 − 1

) + 2λ1
∂τ1

∂λ1

]
A1, (27)

− γ1
∂

∂V
· (VE1) − γ1

Tex
m1

∂2E1

∂v2
− J12[E1, f (0)

2 ] = E1. (28)

In the integral equations (25)–(28), ζ(0) is the zeroth-order approximation to the
cooling rate, θ = T/Tex, λ1 = (2T ∗

ex)
−1/2(R1/nσd

12), andA2 and B21 refer to quan-
tities of the excess species 2. These quantities obey certain integral equations; their
explicit forms are not needed for evaluating the diffusion transport coefficients in
the so-called first Sonine approximation. In addition, the expression of the derivative
∂λ1τ1 can be found in Appendix A of Ref. [8] while the inhomogeneous terms A1,
B11, B12, and E1 are given, respectively, by

A1 (V) = −V
∂ f (0)

1

∂T
− p

ρ

∂ f (0)
1

∂V
, B11 (V) = −Vn1

∂ f (0)
1

∂n1
, (29)

B12 (V) = −Vn2
∂ f (0)

1

∂n2
− T

m2

∂ f (0)
1

∂V
, E1(V) = (γ1 − γ2)

∂ f (0)
1

∂V
. (30)

Note that Eqs. (25)–(28) have been obtained under steady-state conditions, namely
when the conditions (15) apply. Furthermore, in order to obtain the above set of
coupled integral equations, we have taken into account that while in the tracer limit
D11 is independent of x1, the coefficients D12, DT

1 , and DU
1 are proportional to

x1. This dependence on x1 will be then self-consistently confirmed. Accordingly,
A1 ∝ x1, B12 ∝ x1, and E1 ∝ x1.

Although the exact formof the zeroth-order distributions f (0)
i is not known, dimen-

sional analysis requires that they have the scaled form f (0)
i (V) = niv

−d
th ϕi (c, γ∗

i , θ).
Here, c = V/vth and γ∗

i = γi/ν0, where ν0 = nσd−1
12 vth is an effective collision fre-

quency, and vth = √
2T/m is the thermal velocity. Thus, one has the property

T
∂ f (0)

i

∂T
= −1

2

∂

∂V
· V f (0)

i + niv
−d
th θ

∂ϕi

∂θ
. (31)

4.2 Leading Sonine Approximation

Equations (25)–(28) are still exact. However, the determination of the diffusion trans-
port coefficients requires to solve the above integral equations as well as to know
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the zeroth-order distributions f (0)
i . The results derived for driven granular mixtures

[15] have shown that non-Gaussian corrections to f (0)
i (which are measured through

the fourth cumulants ci ) are in general very small. Thus, f (0)
i is well represented

by its Maxwellian form (18) and so, a theory incorporating the cumulants ci seems
to be unnecessary in practice for computing the diffusion transport coefficients.
Regarding the functions Ai , Bi j , and E i , as usual we consider the leading terms in
a series expansion of these quantities in Sonine polynomials. In this case, A2 → 0,
B21 → 0, and the quantitiesA1,B11,B12, andE1 corresponding to the tracer species
are approximated by

A1(V) → − f1,MV
ρ

n1T1
DT

1 , B11(V) → − f1,MV
m2

1

ρT1
D11, (32)

B12(V) → − f1,MV
m1

n1T1
D12, E1(V) → − f1,MV

1

n1T1
DU

1 . (33)

Now, we substitute first Eqs. (32) and (33) into the integral equations (25)–(28),
multiply them by m1V, and integrate over v. After some algebra, D11, DT

1 , D12, and
DU

1 can be written, respectively, as

D11 = ρT

m2
1ν0

τ1

ν∗
D + γ∗

1

, DT
1 = nT

ρν0
x1

θ ∂τ1
∂θ

− (μ − τ1)

ν∗
D + γ∗

1 − 2γ∗
2θ

−1 − 1
2ζ

∗
0

, (34)

D12 = x1ρT

m1m2ν0

[
ζ∗
0 − 2γ∗

2

(
θ−1 − 1

) ]
x−1
1 DT∗

1 − μ − 2λ1
∂τ1
∂λ1

ν∗
D + γ∗

1

, (35)

DU
1 = ρ1

γ∗
1 − γ∗

2

γ∗
1 − ν∗

D

. (36)

Here, μ = m1/m2 is the mass ratio, the derivative ∂θτ1 is given in Appendix A of
Ref. [8],

ζ∗
0 = π(d−1)/2

d�
(
d
2

)
( σ2

σ12

)d−1
μ

−1/2
21

(
1 − α2

22

)
, (37)

and the reduced collision frequency ν∗
D is

ν∗
D = 2

√
2π(d−1)/2

d�
(
d
2

) μ
3/2
21

(1 + β

β

)1/2
(1 + α12), (38)

where β = β1/β2 = μ/τ1.
Figure2 shows the dependence of the reduced diffusion transport coefficients

Di j (α)/Di j (1), DT
1 (α)/DT

1 (1), and DU
1 (α)/DU

1 (1) for σ1/σ2 = 1, m1/m2 = 10,
and T ∗

ex = 0.1. Here, Di j (1), DT
1 (1), and DU

1 (1) are the values of these coefficients
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Fig. 2 Plot of the (reduced) transport coefficients D11(α)/D11(1) (a), D12(α)/D12(1) (b),
DT
1 (α)/DT

1 (1) (c), and DU
1 (α)/DU

1 (1) (d) as a function of the common coefficient of restitu-
tion for a binary mixture of hard spheres (d = 3) in the tracer limit (x1 → 0) with σ1/σ2 = 1,
m1/m2 = 10, and T ∗

ex = 0.1

for elastic collisions.We observe that the impact of inelasticity on those coefficients is
in general quite important since they differ clearly from their elastic forms, especially
in the case of the thermal diffusion coefficient DT

1 . Moreover, a comparison with the
results obtained in the dry granular limit (no gas phase) shows important qualitative
differences between both theories (see, for instance, Fig. 6.3 of Ref. [4] for the
diffusion coefficient D11).

5 Thermal Diffusion Segregation of an Intruder
in a Granular Suspension

Anice application of the previous results is the study of thermal diffusion segregation
of an intruder or tracer particle in a granular suspension. Needless to say, segregation
and mixing of dissimilar grains are one of the most interesting problems in granular
mixtures, not only from a fundamental point of view but also from a more practical
perspective. This problem has been widely studied in the past few years for dry
granular mixtures. The objective here is to assess the influence of the interstitial gas
phase on the segregation criterion.

Thermal diffusion is originated by the relative motion of the components of a
mixture due to the presence of a temperature gradient. Due to this motion, concen-
tration gradients appear in the mixture producing ordinary diffusion. A steady state
is finally achieved in which the separating effect emerging from thermal diffusion is
offset by the remixing effect arising from ordinary diffusion [16]. The partial separa-
tion between both components of the mixture is then observed; this effect is usually
referred to as the Soret effect.

The amount of segregation parallel to the thermal gradientmaybe characterized by
the so-called thermal diffusion factor�. This quantity is defined in an inhomogeneous
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non-convecting (U = Ug = 0) steady state with zero mass flux (j(1)1 = 0) as

− �
∂ ln T

∂z
= ∂

∂z
ln

(n1
n2

)
, (39)

where only gradients along the z-axis havebeen assumed for simplicity. Let us assume
that the bottom plate is hotter than the top plate (∂z ln T < 0). If � is supposed to
be constant over the relevant ranges of composition and temperature of the system,
according to Eq. (39), when � > 0, the tracer particle tends to rise with respect to
the gas particles 2, i.e., ∂z ln(n1/n2) > 0 (tracer particles accumulate near the cold
plate). On the other hand, when � < 0, the tracer particle tends to fall with respect
to the gas particles 2, i.e., ∂z ln(n1/n2) < 0 (tracer particles accumulate near the hot
plate).

Let us determine the thermal diffusion factor. The mass flux j (1)1,z is given by Eq.

(22) with �U = 0. Since j (1)1,z = 0 in the steady state and U = Ug = 0, then Eq. (8)
yields ∂z(nT ) = 0 and so,

∂z ln T = −∂z ln n2. (40)

Here, we have taken into account that n � n2 in the tracer limit. The factor � can be
written in terms of the diffusion coefficients when one takes into account Eq. (40)
and that j (1)1,z = 0. Its expression is finally given by

� = x−1
1 DT ∗

1 − D∗
11 − x−1

1 D∗
12

D∗
11

, (41)

where we have introduced the dimensionless transport coefficients

D∗
11 = m2

1ν0

ρT
D11, D∗

12 = m1m2ν0

ρT
D11, DT∗

1 = ρν0

nT
DT

1 . (42)

The explicit dependence of� on the parameters of the granular suspension (mass
and size ratios, the coefficients of restitution α12 and α22, and the dimensionless
external temperature T ∗

ex) can be obtained when one substitutes Eqs. (34) and (35) of
D11, DT

1 , and D12, respectively, into Eq. (41). Since D∗
11 > 0, the condition � = 0

is
x−1
1 DT ∗

1 = D∗
11 + x−1

1 D∗
12. (43)

Equation (43) gives the marginal segregation curve separating intruder segregation
toward the cold wall (� > 0) from intruder segregation toward the hot wall (� <

0). On the other hand, since the number of parameters involved in the segregation
problem is still large, it is not easy to disentangle the influence of each mechanism
(mass and size ratios, inelasticity in collisions, external temperature, . . .) on the
intruder segregation problem. Thus, it is convenient first to consider some simple
situations.
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5.1 Mechanically Equivalent Particles

This is quite trivial case since the system is in fact monodisperse (m1 = m2, σ1 = σ2,
α11 = α22 ≡ α, γ2 = γ1 ≡ γ). In this limit case, τ1 = 1 and according to Eqs. (34)
and (35), x−1

1 DT∗
1 = 0 and D∗

11 = −x−1
1 D∗

12 = (ν∗
D + γ∗)−1. Therefore, Eq. (41)

yields � = 0 for any value of the coefficients of restitution α12 and α22 and the bath
temperature T ∗

ex. This implies that no segregation is possible, as expected.

5.2 Elastic Collisions

For elastic collisions (α22 = α12 = 1), ζ∗
0 = 0, τ1 = θ = 1,β = μ, andEq. (43) leads

to the condition (
ν∗
D + γ∗

1

) ∂τ1

∂θ
= 2γ∗

2 (μ − 1) . (44)

Upon deriving Eq. (44), we have considered the region of parameter space where
ν∗
D + γ∗

1 − 2γ∗
2 �= 0. It is quite apparent that even for elastic collisions, the seg-

regation criterion (� = 0) is not simple and differs from the simple segregation
criterion obtained in the dry case (μ = 1). Figure3 shows a phase diagram in the
{m2/m1,σ2/σ1}-plane at T ∗

ex = 1. For a given value of the mass ratio m2/m1, it
is quite apparent that the region � > 0 (tracer particle falls with respect to excess
granular gas) is dominant when the size of gas particles is much larger than that of
the tracer particle. This tendency increases with increasing the mass ratio m2/m1.

Fig. 3 Plot of the marginal segregation curve (� = 0) for d = 3, α22 = α12 = 1, and T ∗
ex = 1.

Points below (above) the curve correspond to � > 0 (� < 0)



186 R. Gómez González and V. Garzó

Fig. 4 The same as in Fig. 3 but for α22 = α12 = 0.9. The solid line corresponds to the segregation
criterion for granular suspensions while the dashed line refers to the one derived for dry granular
mixtures. Points below (above) each curve correspond to � > 0 (� < 0)

5.3 Inelastic Collisions

We consider now the general case whereα22 andα12 are different from 1. In this case,
considering the region of parameter space where ν∗

D + γ∗
1 − 2γ∗

2θ
−1 − 1

2ζ
∗
0 �= 0, Eq.

(43) yields

[
ν∗
D + γ∗

1 − ζ∗
0 + 2γ∗

2

(
θ−1 − 1

) ] (
θ
∂τ1

∂θ
− μ + τ1

)
=

(
τ1 − μ − 2λ1

∂τ1

∂λ1

)

×
(
ν∗
D + γ∗

1 − 2γ∗
2θ

−1 − 1

2
ζ∗
0

)
. (45)

This is quite a complex segregation criterion in comparison with the one derived
in the dry granular case (no gas phase) where � = 0 if μ = τ1 [17, 18]. To illustrate
more clearly the differences between both (with and without gas phase) segregation
criteria, Fig. 4 shows the marginal segregation curve (� = 0) for the (common)
coefficient of restitution 0.9. Figure highlights that the impact of gas phase on tracer
segregation is quite significant since, at a given value of the size ratio, the value of the
mass ratio m2/m1 at which � = 0 is greater in the granular suspension than in the
dry granular system. In addition, we also observe that the main effect of gas phase
on tracer segregation is to increase the size of the region � > 0 as σ2/σ1 increases.
This means that the tracer particle attempts to move toward the cold regions as its
size decreases with respect to that of the excess granular gas.
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6 Concluding Remarks

The primary objective of this short review has been to derive the Navier–Stokes
hydrodynamic equations of a binary granular suspension within the context of the
inelastic version of the Boltzmann kinetic equation. As usual, the effect of the inter-
stitial surrounding gas on grains has beenmodeled through an effective external force
constituted by a deterministic drag force plus an stochastic Langevin-like force. This
way of modeling gas–solid flows is essentially based on the following assumptions
and/or simplifications. First, assuming that the granular mixture is rarefied, one sup-
poses that the state of the surrounding gas is not perturbed by the presence of grains
and so, it can be treated as a thermostat. Second, the impact of gas phase on collision
dynamics is very weak, and consequently, the Boltzmann collision operator is not
affected by the presence of the interstitial gas. As a third simplification, one considers
the friction coefficients appearing in the thermal-drag forces to be scalar quantities.
Finally, as a fourth simplification, one assumes low Reynolds numbers so that only
laminar flows are considered.

The road map for obtaining the Navier–Stokes hydrodynamic equations needs
to characterize first the homogeneous state. This is important because the Navier–
Stokes transport coefficients are obtained from the CE expansion around the above
state. Given that the transport coefficients are given in terms of the solutions to a
set of coupled linear integral equations, these equations are approximately solved by
considering the leading terms in a series expansion of Sonine polynomials. This road
map is large and involves many technical steps. Here, for the sake of simplicity, we
have obtained the mass flux of a binary granular suspension where the concentration
of one of the species is negligible (tracer limit). The tracer limit allows us to provide
expressions that are easy to handle for potential applications. In particular, we have
briefly analyzed here the thermal diffusion segregation of an intruder or tracer particle
in a granular suspension. The segregation criterion obtained here shows significant
discrepancies with respect to the one previously derived for dry granular mixtures
[17, 18]. These differences between both situations (with andwithout interstitial gas)
are clearly illustrated in Figs. 3 and 4 for elastic and inelastic collisions, respectively.

Multicomponent granular suspensions exhibit a wide range of interesting phe-
nomena for which kinetic theory and hydrodynamics (in the broader sense) may be
considered as useful tools for understanding the behavior of such complex materials.
However, due to their complexity, many of their features are not still completely
understood. For this reason, from the theoretical side, one has to introduce new
ingredients in the model for approaching more realistic situations. In this context,
the extension of the results presented in this review to inertial suspensions of inelas-
tic rough hard spheres could be an interesting and challenging problem in the near
future.
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