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Abstract

Using �nite-size scaling methods we measure the thermal and mag-

netic exponents of the site percolation in four dimensions, obtaining

a value for the anomalous dimension very di�erent from the results

found in the literature. We also obtain the leading corrections-to-

scaling exponent and, with great accuracy, the critical density.
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1 Introduction

From the point of view of its de�nition, the simplest statistical system is

perhaps the percolation. In the case of the site percolation, we �ll the sites

of a given lattice with probability p. Then we construct the clusters as sets

of contiguous �lled sites.

The critical properties of the system can be described in terms of the clus-

ters. For instance, at the critical percolation the mean cluster size diverges.

We de�ne the percolating cluster as the one that contains, in the thermody-

namical limit, an in�nite number of sites. The strength of this cluster (i.e.

the probability of containing an arbitrary point) is the order parameter of

the transition: it is zero for p < p

c

, and �nite for p > p

c

[1].

Another interesting model is the bond percolation. In this case we �ll the

lattice bonds with a given probability and construct clusters analogously. It

is believed that both models belong to the same Universality Class (share

the critical exponents).

It is possible to relate the percolation problem (in the bond version) with

the q-states Potts model using the \Fortuin-Kasteleyn" representation of the

latter. The bond percolation is obtained in the q ! 1 limit [2].

Moreover it is possible to write down a �eld theoretical description of the

percolation. In general, the Potts model is described by means of a �

3

theory,

where the coe�cient of the cubic term is proportional to q� 2. For the Ising

model (q = 2) this term vanishes, and the leading term is �

4

, recovering the

standard �eld theory representation. For q 6= 2 we can write

S =

Z

d

d
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�
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�

; (1)

where the coe�cients d

ijk

depend on the model (Potts, percolation, Lee-Yang

singularities, etc.), and n � q � 1 is the number of components of the �eld

�

i

. Thus, the percolation is described by the action (1) in the limit of zero

components of the �elds.

Using the standard tools it is possible to obtain an �-expansion for this

model (and in particular for the percolation). The power counting tells us

that the upper critical dimension of the model is six and thereby the expan-

sion parameter is � = 6 � d. Results up to three loops can be found in the

literature [3].

For large dimensions (d = 5, and, of course, 6) there is a good agreement

between the results obtained from the �-expansion (resumed using Pad�e tech-
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niques), the values from numerical simulations, and the results from high

temperature expansions.

In lower dimensions, the results disagree for the anomalous dimension, �.

The �-expansion predicts a clear negative value, while in the two dimensional

case � should be non-negative because the correlation function is decreasing

with the distance. In fact, in this case, it has been conjectured [4] that

� = 5=24.

In this paper we will show that the value of the four dimensional � expo-

nent turns out to be large by a 30%, compared to the �-expansion. Thereby

it remains as an open problem to understand why the convergence of the

�-expansion for this model is so poor even for small values of � [5]. In order

to calculate critical exponents we extend some recently developed accurate

�nite-size scaling techniques [6] to site percolation. As a benchmark we re-

port the two dimensional critical exponents (for which there are almost exact

analytical estimates).

A related model with the site percolation is the diluted Ising model [7].

It is de�ned as a standard Ising model where the spins live only on �lled

(with probability p) sites. The �eld theoretical description of this model is a

�

4

-theory with a random mass term. Using the replica trick it can be related

with an O(N) symmetric �

4

theory with cubic anisotropy, in the limit of zero

�eld components (i.e. N ! 0) [8, 9].

The limit of zero temperature (large �) of the diluted Ising model is the

site percolation while when p ! 1 it is the pure Ising model. A precise

determination of the critical exponents of the d = 4 percolation is also a very

useful �rst step to understand the phase diagram (�; p) in the diluted Ising

model. On the other hand, the site percolation is useful as a benchmark to

develop and test di�erent tools to apply to more complicated systems as the

d = 4 diluted Ising model [10].

Finally, we remark that we are specially interested in these four dimen-

sional models in relation with the triviality issue (is there an interacting

continuum limit in four dimensions?). In order to solve the triviality prob-

lem is crucial to characterize all the possible �xed points in four dimensions.

The site percolation has the unusual feature of having the critical dimension

at d = 6, thus, it does not present the usual Mean Field exponents at d = 4.
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2 Numerical Methods

We will work in a hypercubic lattice of linear size L with periodic boundary

conditions. The Monte Carlo (MC) procedure for generating con�gurations

in this model is straightforward: we �ll each lattice site with probability p.

The next step is to build the clusters, what is a deterministic procedure. To

save computer memory in the larger lattices, we use a self-recurrent algorithm

(in C language). In this way the total memory employed to sketch the clusters

is almost negligible (it grows nearly as the lattice size squared).

Due to the absence of MC dynamics, the system is specially vulnerable

to eventual pathologies of the random number generator. We have observed

signi�cant deviations in some quantities for a commonly used shift register

generator [11], specially in the larger lattices. To avoid these e�ects, we have

used as generator the sum (modulus 1) of the output of the generator of ref.

[11] and a congruential one, since it is known that their respective drawbacks

are very di�erent.

1

To de�ne the observables that wemeasure, it is useful to consider a related

model that is a diluted Ising model with nearest neighbors in�nite coupling,

where the spins, �

i

= �1, live only in �lled sites. It is easy to show that the

magnetization of the latter model,

M =

1

V

X

i

�

i

; (2)

V being the volume, coincides with the strength of the percolating cluster in

the thermodynamical limit and at T = 0.

Knowing the size of the clusters, as their spins must take the same sign,

we can write

M =

1

V

X

c

s

c

n

c

; (3)

where s

c

is the sign of the cluster c, n

c

its size, and the sum runs over all

clusters. As s

c

are statistically independent, we can construct an improved

estimator for even powers of M (the only non-vanishing in a �nite lattice)

averaging over all possible values of fs

c

g, that henceforth we will denote as

1

We have used X

n+1

= 16807X

n

mod(2

31

� 1) for the congruential random generator,

whereas the shift register formulas read: X

n

= X

n�24

+ X

n�55

; using as pseudorandom

number X

n

xor X

n�61

.
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(� � �). For the second power we have

M

2

=

1

V

2

X

c

n

2

c

: (4)

We de�ne the susceptibility as

� = V

D

M

2

E

: (5)

To compute the Binder parameter V

M

we can construct an improved esti-

mator for the fourth power of the magnetization. Averaging over signs, we

obtain after some algebra

M

4

= 3

�

M

2

�

2

�

2

V

4

X

c

n

4

c

; (6)

from which

2

V

M

=

3

2

�

1

2

hM

4

i

hM

2

i

2

: (7)

For the �nite-size scaling (FSS) method that we employ, it is very useful

an accurate measure of the correlation length. We have used the second

momentum de�nition [13] in the associated Ising model, that, in a �nite

lattice, reads

� =

�

�=F � 1

4 sin

2

(�=L)

�

1=2

; (8)

where F is de�ned in terms of the Fourier transform of the magnetization

c

M(k ) =

1

V

X

r

e

ik �r

�

r

; (9)

as

F =

1

4

D

j

c

M(2�=L; 0; 0; 0)j

2

+ permutations

E

: (10)

It is also possible to construct an improved estimator for j

c

Mj

2

as

j

c

M(k )j

2

=

X

c

jbn

c

(k )j

2

; bn

c

(k ) �

1

V

X

r2c

e

ik �r

: (11)

2

For another application of the Binder cumulant in percolation theory see [12].
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To measure the critical exponents we use a form of the FSS ansatz that

only involves measures on a �nite lattice. For an operator O that diverges as

(p � p

c

)

�x

O

, its mean value in a size L lattice can be written, in the critical

region, as

O(L; p) = L

x

O

=�

�

F

O

(�(L; p)=L) +O(L

�!

)

�

; (12)

where F

O

is a scaling function and ! is the universal leading corrections-to-

scaling exponent. From a Renormalization Group point of view, ! corre-

sponds to the leading irrelevant operator.

We can eliminate the unknown scaling function using the values from two

di�erent lattice sizes measuring at a p value where the �=L quotients match.

Speci�cally, de�ning

Q

O

= O(sL; p)=O(L; p); (13)

we can write

Q

O

j

Q

�

=s

= s

x

O

=�

+O(L

�!

): (14)

Other examples of application of this method can be found in refs. [6].

The form of the scaling corrections allows to parameterize the �nite-size

e�ect on the determination of the critical exponents as

�

x

O

�

�

1

�

�

x

O

�

�

(L;sL)

/ L

�!

: (15)

To compute the ! exponent, we can use equation (12) for an operator

with x

O

= 0 (as, for instance, V

M

or �=L) obtaining for the shift of the

crossing point of lattice sizes L and sL [14]

�p

L;sL

� [p

c

(L; sL)� p

c

(1)] /

1 � s

�!

s

1

�

� 1

L

�!�

1

�

: (16)

To e�ciently use the FSS formulas, it is necessary to use a reweighting

method to move in the critical region. For this model there is not a Boltz-

mann weight, but the role of the energy is carried out by the density of the

con�guration, and the probability distribution is binomial.

The probability of �nding a density q when �lling sites with a probability

p is

�

p

(q) =

V !

(qV )!((1� q)V )!

p

qV

(1 � p)

(1�q)V

: (17)

From a set of N measures of an observable O and the actual density of the

con�guration f(O

i

; q

i

)g we can compute the mean value of the observable for
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a neighbor density p

0

as

O(p

0

) =

1

N

X

i

�

p

0

(q

i

)

�

p

(q

i

)

O

i

=

1

N

X

i

�

p

0

p

�

q

i

V

�

1 � p

0

1 � p

�

(1�q

i

)V

O

i

: (18)

Using equation (18) p-derivatives of observables can also be computed.

Obviously we cannot extrapolate much further than

p

p(1 � p)=V , which

is the dispersion of the distribution (17). Therefore the visible region de-

creases as L

�d=2

. Fortunately, it is enough for our purposes since to use

eq. (14) we need to move in a neighborhood of the critical point whose size

decreases as L

�!�1=�

(� L

�2:5

).

3 Numerical Results

We have produced a million of independent samples for each L

4

lattices, with

L = 8; 12; 16; 24; 32 and 48.

To measure the thermal critical exponent we have used as operators:

d log �=dp (x

d log�=dp

= 1) and d�=dp (x

d�=dp

= 1 + �). For the magnetic

exponents we have used the susceptibility � (x

�

= 
). We remark that,

although � is a fast varying function of p at the critical region (see refs. [6]),

the use of eq. (14) allows a very precise measure. Moreover as what we

directly measure is the quotient 
=� = 2 � �, we can obtain a very accurate

determination of the anomalous dimension �.

We have checked the method in the d = 2 case, where there is a very solid

conjecture [4] for the values of the critical exponents, which is con�rmed by

conformal group analysis. We present the measured critical exponents for

the two dimensional site percolation in table 1, obtained from a million of

samples for each lattice size. The conjectured values by Nienhuis [4] are

� = 5=24 = 0:20833 : : :, � = 4=3 and ! = 2. The agreement is very good.

In the four dimensional case (see table 2), we observe a very stable value

for the � exponent when using the operator d�=dp. However, the results for

the exponents � or � computed from measures of other operators do need an

in�nite volume extrapolation, what will be considered next.

To measure the critical density and the corrections-to-scaling exponent

!, we have studied the crossing points of V

M

and �=L for di�erent pairs of

lattice sizes, �tting the displacements to the functional form (16). As the

behavior of V

M

and �=L is very di�erent regarding the corrections-to-scaling,

we obtain a great improvement performing a joint �t.

7



� �

L d�=dp d log(�)=dp �

24 1.324(9) 1.326(14) 0.2155(5)

32 1.330(8) 1.30(2) 0.2121(4)

48 1.344(10) 1.36(2) 0.2085(4)

64 1.330(9) 1.36(2) 0.2082(4)

Table 1: Estimates for the critical exponents of two dimensional site per-

colation obtained from the �nite-size scaling analysis using data from lattice

sizes L and 2L. In the second row we show the operator used for each column.

Practically we can read from the last row the conjectured values.

We show in �gure 1 the crossing points of V

M

and �=L as a function of

L

�(!+1=�)

, where we have used � = 0:689 and ! = 1:13.

We �x the lattices ratio to s = 2 and perform the �t twice, for L � 8 and

for L � 12. In both cases we obtain compatible values for the ! exponent and

for the critical density. We get acceptable �ts, for example �

2

=d:o:f: = 4:7=4

for the former. We give the central values from the former �t but with the

error bars coming from the latter �t:

! = 1:13(10); p

c

(1) = 0:196901(5): (19)

The error bars have been slightly (20%) increased to take into account the

error in the value of �.
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L-(ω+1/ν)
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p c(L
,2

L
)

ξ/L

Figure 1: p

c

(L; 2L) as a function of L

�(!+1=�)

for the observables V

M

and

�=L.

� �

L d�=dp d log(�)=dp �

8 0.689(3) 0.668(3) -0.0687(7)

12 0.687(3) 0.666(4) -0.0775(7)

16 0.688(4) 0.681(5) -0.0823(6)

24 0.691(5) 0.683(6) -0.0868(8)

1 0.689(10) 0.683(12) -0.0944(17+11)

Table 2: Critical exponents obtained using data from lattice sizes L and

2L for the four dimensional site percolation. In the second row we show

the operator used for each column. The last row corresponds to the in�nite

volume extrapolation using (15).
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d ! � 
 �

6 0 0.5 1 0

5 0.79 0.57 1.18 -0.07

4 1.52 0.68 1.44 -0.12

3 2.23 0.83 1.81 -0.18

2 2.95 1.07 2.41 -0.25

Table 3: Our results using [2,1]-Pad�e resummation for the ! exponent. We

also report (columns three to �ve) the results for the critical exponents (�, 


and � � 2�
=�) obtained in ref. [3] using the [2,1]{Pad�e-Borel resummation.

Using these values, we can obtain an in�nite volume extrapolation for

the critical exponents by means of (15). To control that higher order scaling-

corrections can be neglected, we use an objective criterium. We perform

the �t considering data from lattices of sizes L � L

min

and then repeat it

discarding the smallest lattices data. If both �ts parameters (extrapolated

value and slope) are compatible, we keep the central values from the former

�t and error bars from the latter. We have found that L

min

= 8 is enough

for our data.

The results are displayed in the last row of table 2. For � the �rst term

in the error have been obtained considering ! �xed, and the second one

corresponds to the variation when ! moves within its error bars. In �gure

2 we show the behavior of �(L; 2L) as a function of L

�!

, with ! = 1:13,

together with the extrapolated value.

At this point we can use the results of ref. [3] obtained with the �-

expansion. We are specially interested in the corrections-to-scaling expo-

nent, that is, the derivate of the �-function at the non trivial �xed point (i.e.

g

�

6= 0). Using the �-function and the non trivial �xed point from ref. [3] we

have obtained

! �

d�(g)

dg

�

�

�

�

g

�

= �� 0:760767�

2

+ 2:00886�

3

+O(�

4

): (20)

As �(= 6�d) is large, we have analyzed this series using the Pad�e technique.

Only the [2,1]{Pad�e gives consistent results (i.e. ! = O(�) > 0). This agrees

with the results of ref. [3] where in the �nal Pad�e analysis of their series for

the critical exponents only the [2,1]{Pad�e is reported (the results of the other

Pad�es turned out to be incompatible with the numerical simulation results).
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η(

L
,2

L
)

Figure 2: �(L; 2L) as a function of L

�!

, where ! is the corrections-to-scaling

exponent, that we have �xed in this plot to 1:13 (see text for more details).

The numerical value found in the literature, � = �0:12, is also displayed.

We show our results for ! in table 3. We also display in this table the results

for the exponents �, 
 and � calculated in ref. [3] using the [2,1]{Pad�e-Borel

resummation.

In other cases with � = 2 a good agreement has been found between

resumed series and numerical results. For the two dimensional Ising model

the di�erences in � and ! are 1% and 5 � 35% respectively (taking into

account the error bars of the �-expansion estimate of !)[15]. However, we

have obtained a discrepancy of 30% in the anomalous dimension and of 50%

in the !-exponent. Linking this discrepancy with the behavior of � with

the dimension, reported in the introduction, we �nd the �-expansion not

trustworthy in this case.
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4 Conclusions

Using FSS techniques we have obtained accurate values for the critical expo-

nents of the four dimensional site percolation. We have been able to param-

eterize the leading corrections-to-scaling what allows to largely reduce the

systematic errors coming from �nite-size e�ects.

We have obtained an anomalous dimension that is 30% far away from

previous numerical and analytical (�-expansion) approaches.

We project to extend these methods to the case of the diluted Ising model

in four dimensions, in order to study the possible variation of the critical

exponents on the critical line [10].
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