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Abstract

Using �nite-size scaling techniques, we study the critical properties

of the site-diluted Ising model in four dimensions . We carry out a

high statistics Monte Carlo simulation for several values of the dilu-

tion. The results support the perturbative scenario: there is only the

Ising �xed point with large logarithmic scaling corrections. We ob-

tain, using the Perturbative Renormalization Group, functional forms

for the scaling of several observables that are in agreement with the

numerical data.
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1 Introduction

A possible way to obtain new Universality Classes (UC) is to add disorder to

known pure systems. The Harris criterion [1] says that, if the speci�c heat

diverges with a power law in the pure system, then, the disorder will change

the critical behavior of the model, i.e. a new UC will appear. Conversely,

if the speci�c heat does not diverge in the pure system, then, the critical

exponents of the disordered system will remain unchanged. In the limiting

case, what amounts to a discontinuous or a logarithmically divergent speci�c

heat, the criterion does not apply and we need to study analytically or/and

numerically the system.

The quest and the characterization of new UC are very important in

dimensions two and three (with a direct relevance on Condensed Matter

Physics) and in four dimensions (with implications on High Energy Physics).

In the last case it is crucial to characterize all the possible UC, in order to be

able to de�ne a Field Theory on a non-perturbative basis. As the Gaussian

model gives a trivial one (i.e. at long distances the theory will be free) we

are interested in �nding a non-Gaussian UC.

In this paper we will study the four dimensional site-diluted Ising model

that was previously studied [2] by two of the authors, who calculated numeri-

cally the critical exponents, analyzing the divergences with the temperature.

Their results pointed to non Gaussian critical exponents, for large values

of the dilution, but it was noted the possibility of a crossover between the

behavior found and the Gaussian one.

In order to obtain accurate measures of the critical properties we have

repeated the simulations in a greater number of spin con�gurations. The use

of Finite Size Scaling (FSS) techniques allows us to work in large lattices at

the critical point.

Using the Perturbative Renormalization Group (PRG) equations we cal-

culate the dependence of the observables at the critical point with the scale

of the system including logarithmic corrections. These are di�erent from the

pure system.

Our determination of the critical exponents and other critical properties

matches very well with the predictions of the PRG: a Gaussian critical be-

havior with logarithmic corrections. We check this behavior along the critical

line in a wide range of concentrations, from p = 0:8 to p = 0:3 (the percola-

tion threshold is near 0.2). We remark that a scenario based on hyperscaling

seems completely unlikely from our numerical simulations.
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The structure of the paper is as follows. In the next section we de�ne the

model and the observables. In section 3 we present our analytical calcula-

tions, obtaining the FSS formulas and calculating the values of two di�erent

Binder cumulants in the thermodynamic limit. In section 4 we describe the

numerical methods and the di�erent techniques that we will use to analyze

the observables. In section 5 we show our numerical results confronting them

with the analytical predictions. Finally we report the conclusions.

2 The model

The model we study numerically in this article, is de�ned in terms of Z

2

spin-variables placed in the nodes of a hypercubic four-dimensional lattice.

The action is

S = ��

X

<i;j>

�

i

�

j

�

i

�

j

; (1)

where the sum is extended over nearest-neighbors, and the �

i

are quenched,

uncorrelated random variables, taking the value 1, with probability p, and 0

with probability 1� p. An actual f�

i

g con�guration, will be called a sample

from now on. For every observable it is understood that �rst one performs

the Ising model calculation and then the �-average.

In the following, we shall denote an Ising average with brackets, while

the sample average will be overlined. The observables will be denoted with

calligraphic letters, i.e. O and with italics the double average O = hOi. We

de�ne the total nearest-neighbor energy and the normalized magnetization

as

E =

X

hi;ji

�

i

�

i

�

j

�

j

; M =

1

V

X

i

�

i

�

i

; (2)

V being the volume (de�ned as L

4

, where L is the lattice size). We also

de�ne the susceptibility as

� = V hM

2

i : (3)

Another very useful quantity is the Binder parameter:
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g

4

=

3

2

�

1

2

hM

4

i

hM

2

i

2

: (4)

Other kind of Binder parameter, meaningless for the pure system, can be

de�ned as

g

2

=

hM

2

i

2

� hM

2

i

2

hM

2

i

2

: (5)

A very convenient de�nition of the correlation length in a �nite lattice,

reads [3]

� =

�

�=F � 1

4 sin

2

(�=L)

�

1

2

; (6)

where F is de�ned in terms of the Fourier transform of the magnetization

F(k ) =

1

V

X

r

e

ik �r

�

r

�

r

; (7)

as

F =

V

4

hjF(2�=L; 0; 0; 0)j

2

+ permutationsi : (8)

This de�nition is very well behaved for the �nite-size scaling (FSS) method

we employ [4], and it is also fair natural for considerations about triviality [5].

Finally, we measure the speci�c heat

C = V

�1

hE

2

i � hEi

2

: (9)

3 Analytical predictions

The �eld-theoretical study of the model (1) is performed by means of a �

4

theory with a random mass term, whose action is

S[�] =

Z

d

d

x

�

1

2

(@

�

�)

2

+

1

2

m

2

(x)�

2

+

1

4!

v�

4

�

: (10)

Here it is assumed that the mass term is a quenched, spatially-uncorrelated,

stochastic variable. We will later argue that the only relevant parameters of

the disorder distribution are its mean, r, and variance, �

2

, so we will assume

for simplicity the Gaussian distribution
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dP [m

2

(x)] / d[m

2

] exp

�

�

(m

2

(x)� r)

2

2�

2

�

: (11)

When the disorder is quenched we need to compute, in a �rst step, the free

energy of the system for a given choice of the disorder (in this case of the mass

term), and then average this free energy with the probability distribution of

the disorder. To manage this kind of problems it is very useful to use the

so-called replica trick [6].

Let us introduce n replicas of the initial system, �

i

, with i = 1; : : : ; n.

The average of the replicated partition function over the Gaussian disorder

will be denoted by overlines.

F = logZ = lim

n!0

1

n

�

Z

n

� 1

�

: (12)

Now we can de�ne an e�ective action by means of

Z

n

= Z

e�

=

Z

d[�

i

] exp(�S

e�

[�

i

]) ; (13)

with

S

e�

[�

i

] =

Z

d

d

x

2

4

1

2

n

X

i=1

(@

�

�

i

)

2

+

r

2

n

X

i=1

�

2

i

+

u

4!

"

n

X

i=1

�

2

i

#

2

+

v

4!

n

X

i=1

�

4

i

3

5

; (14)

where u = �3�

2

. This gives us a starting point for the analytical calculation.

The n! 0 limit should be taken at the end.

For v = 0 the action is O(n)-invariant. When u = 0 the action describes

n decoupled Ising models. We remark that u is negative and proportional to

the dilution. It is possible to show that for a non-Gaussian distribution, terms

associated with higher connected momenta of the distribution appear in the

e�ective action. The s-momentum couples to �

2s

thus, if s > 2, is irrelevant

in four dimensions and can be neglected. In our numerical simulation a site

is occupied with probability p, so �

2

= p(1� p).

The action (14) was studied in ref. [7] by using PRG techniques. Consid-

ering a di�erential dilatation, the following equations are obtained:

dr

d log b

= 2r + 4K

d

(2u+ 3v)(1 � r) ;
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dv

d log b

= �v � 12K

d

v(4u+ 3v) ; (15)

du

d log b

= �u� 8K

d

u(4u+ 3v) ;

where � � 4 � d, d being the dimension, K

d

is a constant that depends on

the dimension, and b is the Renormalization Group (RG) scaling factor. In

the previous formulas third order terms in u; v have been neglected, and the

n ! 0 limit has been considered. In the following we shall set � = 0, as we

study a four dimensional problem.

The initial conditions of the system, typically verify ju

0

j � v

0

. Therefore,

the RG evolution, driven by eqs. (15), will present two interesting regimes

1. A transient regime in which �u � v

2=3

. We �nd v(b) � 1= log b or

equivalently v(L) � 1= log L.

2. An asymptotic regime reached by following the RG evolution until the

equation 4u+ 3v = O(u

2

) �nally holds. We obtain, including the next

term in the perturbative expansion, u

2

(b); v

2

(b) / 1= log b, or 1= log L.

Thus, we expect a crossover between the pure situation where the relevant

coupling, v, goes to zero as v(L) � 1= log L and the disordered one where

u and v are similar in magnitude and v(L) � 1=

p

logL, i.e. the relevant

coupling (u or v) goes to zero more slowly than in the initial regime.

De�ning t � r � 4K

4

u, eqs. (15) in the asymptotic regime reduce to

dt

d log b

= 2t+ 8K

4

ut ;

du

d log b

= �

1696

3

K

2

4

u

3

: (16)

For large b, the solutions are

t(b) = t

0

b

2

exp

"

�2

r

3 log b

53

#

;

u(b) = �

r

3

3392K

2

4

log b

;

(17)
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where t

0

is an integration constant and in the large b regime u(b) does not

depend on the initial condition u

0

.

Using these formulas it is possible to obtain the expressions for the cor-

relation length, susceptibility and speci�c heat as functions of the reduced

temperature.

We �nd just one slight di�erence with ref. [7]. The equation for the wave

function renormalization, �(b), is

d�

d log b

= �


�

(u; v) = �8K

2

4

(2u

2

+ 6uv + 3v

2

) : (18)

In the pure model � is constant, but in the asymptotic region one obtains

�(b) / (log b)

1=212

which a�ects to the susceptibility. This correction is neg-

ligible from a practical point of view, but it could be important in related

models (for instance in spin glasses and percolation [8]). So the formula for

the susceptibility reads:

� ' t

�1

0

exp

"

r

6

53

j log t

0

j

1=2

#

j log t

0

j

1=106

; (19)

where we have used that � = �

2

�

2

[9]. In ref. [7] the term �

2

is absent.

3.1 Calculation of Binder Cumulants

In this section we will calculate the values of g

2

and g

4

, with the techniques

introduced in ref. [10] for the study of �nite geometries using Field Theoret-

ical methods.

The main idea is to expand the �eld �(x) in Fourier modes. In a �nite

geometry the biggest contribution comes from the zero mode. It can be shown

that it has to be treated non perturbatively while this is not necessary for

the rest of the modes [10].

In our case the e�ective action for the zero mode, that we will denote as

 

i

is, in a L

d

volume and just at the MF critical point (i.e. r = 0),

S

e�

[ 

i

] = L

d

2

4

u

4!

 

n

X

i=1

 

2

i

!

2

+

v

4!

n

X

i=1

 

4

i

3

5

: (20)

and the partition function is

Z

e�

(n) =

Z

 

n

Y

i=1

d 

i

!

exp(�S

e�

[ 

i

]) : (21)
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In the asymptotic regime, the relation 4u+ 3v ' 0 is satis�ed with good

precision, and so:

Z

e�

(n) =

1

p

3�

Z

 

n

Y

i=1

d 

i

!

d� exp

"

�

1

3

�

2

+ �

X

i

 

2

i

�

X

i

 

4

i

#

; (22)

where we have introduced a Gaussian �-integration in order to decouple the

term (

P

n

i=1

 

2

i

)

2

. It is possible to see that dimensionless ratios, like g

4

and g

2

,

do not depend on the speci�c value of v, thereby we have also �xed v = 4!=L

d

in the previous formula and in the rest of the section.

We remark that the ratio between u and v in d � 4 is universal, because

there, we have a (limiting) �xed ratio u=v. For instance, in four dimensions u

and v go to zero with a limiting ratio, u=v! �4=3, whereas in d < 4, u and

v go to the non trivial �xed points u

�

and v

�

, respectively, and u=v ! u

�

=v

�

.

In d > 4 it is impossible to �x this ratio: it depends on the parameters

in the Hamiltonian. It is possible to show that using the �-expansion one

can obtain for a Binder cumulant the MF value (calculated in d > 4) plus

corrections that are proportional to real and positive powers of � [10]. So we

can �x the ratio between u and v to the four dimensions value and then do

the computation directly in d > 4 (i.e. avoiding the loop e�ects).

We can perform the integrals on the  variables

Z

e�

(n) =

1

p

3�

Z

d� e

��

2

=3

I

0

(�)

n

; (23)

where

I

m

(�) �

Z

d exp

�

� 

2

�  

4

�

 

m

: (24)

For the calculation of the cumulants we need to evaluate with the action

(22) the following averages [6]:

hM

2

i ! h 

2

a

i ;

hM

4

i ! h 

4

a

i ; (25)

hM

2

i

2

! h 

2

a

 

2

b

i with a 6= b :

For instance

h 

2m

a

i = (

p

3�Z

e�

)

�1

Z

d� e

��

2

=3

I

2m

(�)I

0

(�)

n�1

: (26)
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The moments in the n! 0 limit are

h 

2m

a

i =

1

p

3�

Z

d�

I

2m

(�)

I

0

(�)

e

��

2

=3

;

h 

2

a

 

2

b

i =

1

p

3�

Z

d�

�

I

2

(�)

I

0

(�)

�

2

e

��

2

=3

;

(27)

where a 6= b.

Evaluating numerically the previous integrals we obtain

g

disordered

4

= 0:32455 : : : ; (28)

g

disordered

2

= 0:31024 : : : : (29)

We recall that the MF values for the moments in the pure case are [10]

hM

2m

i =

I

2m

(0)

I

0

(0)

; (30)

and for the cumulants

g

pure

4

= 0:40578 : : : ; (31)

g

pure

2

= 0 : (32)

Now the interpretation of the formulas (27) is clear. We have a �-model with

action S = � 

2

� 

4

, with � distributed with a Gaussian weight exp(��

2

=3).

Averaging with this probability distribution the moments I

2m

(�)=I

0

(�) of

these �-models we obtain the right Binder cumulants for the diluted one.

Obviously when the mass term is zero we recover the MF result (30) for the

pure model.

3.2 FSS in the diluted model

The scaling of the singular part of the free energy in the presence of a mag-

netic �eld, h

0

, is

f

sing

�

r

0

; u

0

; v

0

; h

0

;

1

L

�

= b

�4

f

sing

�

r(b); u(b); v(b); h(b);

b

L

�

; (33)

where we have introduced a new coupling, the system size L, which scales

trivially with a RG transformation. As usually the magnetic �eld veri�es [9]:

d log h(b)

d log b

=

d

2

+ 1 �




�

(u; v)

2

: (34)
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In the asymptotic regime, the solution of (34) is

h(b) = h

0

b

3

(log b)

1

212

: (35)

Performing a RG transformation with b = L, we keep just one degree of

freedom (see ref. [11] for more details). The free energy of this system in the

asymptotic regime is

f(r

0

; u

0

; h

0

; L = 1) � log

Z

 

n

Y

i=1

d�

i

!

�

exp

8

<

:

�

2

4

r

0

2

n

X

i=1

�

2

i

� h

0

n

X

i=1

�

i

+

u

0

4!

 

n

X

i=1

�

2

i

!

2

�

u

0

3!

n

X

i=1

�

4

i

3

5

9

=

;

:

(36)

We re-scale the �

i

variables by means of �

0

i

= u

1=4

�

i

. The free energy can be

written as

f(r

0

; u

0

; h

0

; L = 1) =

^

f

�

r

0

u

01=2

; 1;

h

0

u

01=4

�

; (37)

obtaining �nally

f

sing

�

r

0

; u

0

; v

0

; h

0

;

1

L

�

= L

�4

^

f

�

r(L)

u(L)

1=2

; 1;

h(L)

u(L)

1=4

�

: (38)

We remark that the u variable is a dangerous (marginally) irrelevant

variable [12, 13], and we need to do with care all the analytical steps (it is

not correct to substitute u for its asymptotically value, u = 0, because the

free energy depends on inverse powers of u).

As

^

f is an analytical function, the n! 0 limit can be taken in the RHS of

(38) substituting r; h; u by their limiting values. For clarity, in the following

we will omit the L dependence in the functions r; u and h.

To compute the thermodynamical quantities in the critical region one just

need to take the appropriate derivatives of f

sing

. It will prove convenient to

keep in mind eqs. (17) and (33), and the following Taylor expansion (which

depends on the relations r = t+ 4K

4

u and the fact that t(L) = 0 whenever

t

0

= 0)

@

2

i

^

f(r=u

1=2

; 1; 0)

�

�

�

t

0

=0

= @

2

i

^

f(4K

4

u

1=2

; 1; 0)

= @

2

i

^

f(0; 1; 0) +O(u

1=2

) ;

(39)
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where @

i

is the partial derivative with respect to the i-th argument.

As we are interested in the behavior with the lattice size just at the in�nite

volume critical temperature, the susceptibility can be written as

� /

@

2

f

sing

@h

2

0

�

�

�

�

h

0

=t

0

=0

= L

�4

�

@h

@h

0

�

2

@

2

@h

2

^

f (r=u

1

2

; 1; h=u

1

4

)

�

�

�

�

h

0

=t

0

=0

' L

2

(logL)

1

4

+

1

106

: (40)

The speci�c heat can be computed analogously

C /

@

2

f

sing

@t

2

0

�

�

�

�

h

0

=t

0

=0

= L

�4

�

@r

@t

0

�

2

@

2

@r

2

^

f(r=u

1

2

; 1; h=u

1

4

)

�

�

�

�

h

0

=t

0

=0

' (log L)

1

2

e

�

p

48

53

j logLj

: (41)

At zero magnetic �eld, the correlation length scales as

�(r

0

; u

0

; 1=L)j

t

0

=0

= L �(r; u; 1)j

t

0

=0

; (42)

where �(r; u; 1) must be evaluated with the free energy (37). Consequently,

the mass squared term is

�

�(r; u; 1)j

t

0

=0

�

�2

=

r

u

1=2

�

�

�

t

0

=0

/ u

1=2

; (43)

and so

�(r

0

; u

0

; 1=L) /

L

u

1=4

' L(logL)

1

8

: (44)

Finally we can also compute the shift of the apparent critical temperature.

It can be de�ned as the temperature where the susceptibility (or speci�c heat)

measured in a �nite volume shows a maximum. Using the formula (40) for

the susceptibility without imposing the constraint t

0

= 0 we obtain

� / L

2

(logL)

1

4

+

1

106

@

2

3

^

f(r=u

1=2

; 1; 0) : (45)

The maximum of � as a function of L and t is not just at t

0

= 0, but it

is �xed by the condition

r=u

1

2

= (t+ 4K

4

u)=u

1

2

= x

max

; (46)

i.e. the function @

2

3

^

f(x; 1; 0) has a maximum at x = x

max

.
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As t / T

c

(1)� T

c

(L), it follows that

T

c

(1)� T

c

(L) / L

�2

(logL)

�

1

4

e

p

12

53

logL

: (47)

To �nish this section we will report, for completeness, the �nite size for-

mulas for the same observables in the pure case [14]:

� / L(logL)

1

4

;

� / L

2

(logL)

1

2

;

C / (logL)

1

3

; (48)

T

c

(1)� T

c

(L) / L

�2

(logL)

�

1

6

:

The latter expressions can also be obtained with the method described

above.

4 Numerical Methods

The choice of the Monte Carlo (MC) update algorithm should be carefully

considered. The Wol� single cluster method [15] is the best choice for the

pure model. However in the diluted case, small isolated clusters of spins are

very likely to appear. Those clusters are scarcely visited by the Wol� method.

Therefore, we have complemented the updating method with a Metropolis

sweep per measure. We have checked that this algorithm thermalizes appro-

priately the con�gurations for p � 0:5, by comparing the numerical results

from cold and hot starts. However, for p � 0:4, equilibration by this method

becomes really hard to achieve. This is due to the presence of intermediate

size clusters almost isolated from the percolating one. We have then turned

to the Swendsen-Wang (SW) [16] algorithm which guarantees that all-sized

spin-clusters are considered. In this way, we �nd complete agreement be-

tween hot and cold starts. We have also compared the results of a SW and a

single-cluster simulation at p = 0:5 on our largest lattice, �nding compatible

results. However, to get a statistically-independent new con�guration takes

signi�cantly longer (in CPU time) with the SW algorithm.

For every observable, one �rst averages in the sample, then averages be-

tween di�erent samples. Therefore, a crucial point is how long each sample

simulation should be. Assuming full statistical independence between dif-

ferent measures (quite possible with a cluster method), and also between

measures taken in di�erent samples, the variance of such a mean is

12



�

2

T

=

1

N

S

�

�

2

S

+

�

2

I

N

I

�

; (49)

where N

S

is the number of samples generated and N

I

is the number of mea-

sures in each Ising-model simulation. The variance between samples of the

thermal average of our observable is �

2

S

and, �nally, �

2

I

is the average of the

variances in each sample. On the other hand, the computational e�ort is

roughly proportional to N

S

N

I

, as the computer usually spends a �xed frac-

tion of the time measuring. It is then clear that the optimum value of N

I

cannot be much bigger that �

2

I

=�

2

S

. One could even be tempted to mea-

sure just once by sample. However, we shall come back to this point when

discussing re-weighting methods.

4.1 Derivatives and Re-weighting Methods

The critical curve slope (see �g. 1) changes quite abruptly. It is nearly vertical

for large p and almost horizontal close to the percolation threshold. It is

therefore wise to choose a re-weighting method such that we may extrapolate

to di�erent � values close to the pure model, but to di�erent p values at very

strong dilution. Let us then comment both extrapolation methods separately.

4.1.1 �-extrapolation

The energy measures allow the calculation of �-derivatives of observables,

and the use of the standard re-weighting methods, before the sample-average

is performed. However, an important point should be made now, so let us

recall how are they calculated:

@

�

hOi = @

�

hOi =




OE � hOihEi

�

; (50)

hOi(� +��) = hOe

��E

i=he

��E

i : (51)

It is clear that both expressions are biased. For instance, the expectation

value of eq. (50), when the averages are calculated with N

I

measures, is

really

�

1 �

2�

N

I

�

@

�

hOi ; (52)
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Figure 1: Phase diagram of the four dimensional site-diluted Ising model.

The points correspond to the simulated values, and the arrow indicates the

percolation limit.

� being the integrated autocorrelation time [17], which depends on the sam-

ple. The bias for eq. (51) is also of order 2�=N

I

, but terms of higher order

in 1=N

I

are to be expected.

These biases are immaterial for usual MC investigations, as the statis-

tical error decreases with the square root of the number of measurements.

However, in our case the bias is of order 1=N

I

, while the statistical error is

of order 1=

p

N

S

, which are similar in our simulations!

The cure for this is to introduce unbiased estimators. A possible method

would be to measure in completely independent samples, ensuring 2� = 1 for

every sample. In this case the unbiased estimator is constructed multiplying

by 1=(1 � 1=N

I

) the �-derivatives and by other more complex functions the

extrapolated observables. However, this would be too expensive from the

computational point of view. The solution we �nd is to work with � & 1,

14



repeat the calculations with di�erent values of N

I

and extrapolate N

I

!1.

Speci�cally, in each sample, we calculate the derivative with the full MC

history, obtaining a number y

1

, the bias being proportional to 2�=N

I

. We

then consider two contiguous halves of the MC history, repeat the calculation

for each one and average the �nal result. This value, y

2

, has a bias that goes

as 4�=N

I

. The next term, y

3

, is obtained with four quarters with a bias

proportional to 8�=N

I

.

The linear extrapolation is

y

L

= 2y

1

� y

2

; (53)

and the quadratic one

y

Q

=

8

3

y

1

� 2y

2

+

1

3

y

3

: (54)

We then average y

L

and y

Q

for all the samples, checking that the di�erence

is negligible compared with the statistical error. In fact, we have found that

the slope in the (y; 1=N

I

) plane is a very clean and easy measure of � , which

we have used to achieve statistical independence between di�erent measures.

See �g. 2 for an example.

We proceed analogously with the extrapolations of observables or their

derivatives.

Another approach to eliminate the biases is to split the measures in sta-

tistically independent sets and multiply the average of some operator in the

�rst set by the average of another operator in the second set. In some cases

(for instance derivatives extrapolated at di�erent couplings) it could be nec-

essary to work with more than two independent sets. As in practice one

have contiguous MC measures, the statistical independence of the measures

becomes involved when splitting in several sets.

The comparison between the quadratic extrapolation and the linear one

makes it possible to monitor this short MC history e�ects. In some cases

due to the necessity of a large extrapolation in the coupling, we have found

di�erences between y

L

and y

Q

around one half of the statistical error; then

we have repeated the simulation at a nearer point.

4.1.2 p-extrapolation

In addition to the standard �-extrapolation [18], it is also possible to extrap-

olate the mean values obtained at a given dilution probability, p, to a close

15



Figure 2: In the upper part we show the sample-averaged y

1

value for @

�

�,

taking one out of each k measures, in a L = 48 lattice at p = 0:5, with

� � 8. As both � and N

I

get divided by k, we obtain an stable value until

k = 10. In the lower part, we plot the sample-averaged y

1

, y

2

and y

3

values,

as a function of the inverse number of MC measures, in a L = 32 lattice, at

p = 0:5, with � � 0:8. The linear behavior is apparent.

one p

0

(see [19]). Let us simply recall that the probability of �nding a occu-

pation number q, when �lling sites with probability p, is binomial. Therefore

the re-weighting is calculated from a set of N

S

mean values of an observable

O and the actual density of the con�guration f(hOi

i

(�); q

i

)g:

hOi(p

0

; �) =

1

N

S

N

S

X

i

�

p

0

p

�

q

i

V

�

1 � p

0

1 � p

�

(1�q

i

)V

hOi

i

(�) : (55)

The visible region is of course constrained to the variance of the binomial

distribution p(1 � p)=V . Fortunately, it has been enough for us.

Using equation (55) p-derivatives of observables can also be computed,
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but statistical errors are about eight times bigger than for �-derivatives.

Therefore, our choice is to study p-extrapolated �-derivatives, where all

the above comments for the bias in the derivative are in order, but the re-

weighting is unbiased.

4.2 Numerical FSS techniques

As already stated in the introduction, we consider the possibility of �nding

a non-Gaussian �xed point in four dimensions, where hyperscaling relations

were ful�lled. In such a case, the usual FSS ansatz is expected to hold.

However, the PRG analysis rather suggests the presence of logarithmic cor-

rections to the Gaussian behavior. Therefore, we should also consider the

modi�cations in the FSS ansatz induced by the logarithmic corrections. In

this section, we shall �rst remind how critical exponents are measured (see

refs. [4, 19] for similar calculations), then we shall show how to deal with

logarithmic corrections.

When hyperscaling holds, a very accurate way of measuring critical ex-

ponents involves a form of the FSS ansatz where everything is directly mea-

surable on a lattice:

O(L; �; p) = L

x

O

=�

�

F

O

(�(L; �; p)=L) +O(L

�!

)

�

; (56)

where a critical behavior t

�x

O

is expected for the operator O, ! is the uni-

versal scaling-corrections exponent, and F

O

is a (smooth) scaling function.

Notice that terms of order �

�!

L=1

are dropped from eq. (56), so we are deep

within the scaling region. From a Renormalization Group point of view, !

corresponds to the leading irrelevant operator.

In order to calculate the critical exponents, we study the quotient of

O(sL) and O(L), de�ned as

Q

O

= O(sL; �; p)=O(L; �; p) : (57)

Measuring at a value of the couplings where the quotient for the correlation-

length is s the scaling function may be eliminated and we obtain:

Q

O

j

Q

�

=s

= s

x

O

=�

+O(L

�!

) : (58)

If there are logarithmic corrections to hyperscaling, the critical behavior

of the operator O is modi�ed to

O(L; �

c

; p

c

) / L

x

O

=�

(logL)

�

O

: (59)
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We remark that the scaling variable is again �(L; �; p)=L. This is clear from

formulas (42), (43) and (38): the scaling variable is r=u

1=2

that is equal to

(�=L)

2

, and so one readily obtains that the scaling variable is �=L without

logarithmic corrections.

For the susceptibility exponent we �nd from eq. (40) after some algebra

x

�

�

=

log Q

�

j

Q

�

=s

log s

+O

�

1

logL

�

: (60)

Thus, the corrections to the � exponent are proportional to 1= log L as in the

pure case.

To estimate the logarithmic correction to the critical behavior of the �-

derivative of the correlation length we start from eqs. (42) and (43) and

get

� = �(r

0

; u

0

; 1=L) = L

u

1=4

r

1=2

: (61)

Taking the t

0

derivative and using eqs. (17) we obtain

@

�

� / L

3

(logL)

1=4

�

�

L

�

3

exp

"

�2

r

3 log L

53

#

: (62)

It is easy to check that

x

@

�

�

�

=

log Q

@

�

�

�

�

Q

�

=s

log s

+O

�

1

p

logL

�

; (63)

where the correctionO(1=

p

logL) arises from the exponential term in eq. (62).

For the lattice sizes simulated, we expect some dependence on the dilution

in the coe�cient of the 1=

p

logL term. In the initial regime the corrections

are proportional to 1= log L (the pure model). Until the system forget the

initial conditions (in particular the dependence on the dilution) the coe�cient

of the 1=

p

logL term could change.

5 Numerical Results

The lattice sizes that we have studied have been L = 8; 12; 16; 24 and 32.

We have generated N

S

=10,000 samples, for each lattice size, at dilution val-

ues p = 0:8; 0:65; 0:5; 0:4; 0:3. In each sample, we measure N

I

= 100 times
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after equilibration. The number of clusters traced (or SW updates) between

measures have been chosen to yield 2� � 1 (see eq. (52)). The pure (p = 1)

model has also been studied for L = 8; 12; 16; 24; 32; 48 and 64, as a contrast

of the disorder-induced e�ects.

We shall present our numerical results in two steps. First we shall consider

the conventional FSS analysis (i.e. assuming hyperscaling), �nding that the

percolation scenario is extremely unlikely.

After that, we shall look for hyperscaling violations in the data. We shall

�nd that they can be measured, and are indeed of the same order as predicted

by PRG.

5.1 Assuming Hyperscaling

To measure the critical exponents, we use the so-called quotients method,

which allows for a great statistical accuracy [4, 19]. The starting point is eq.

(58). We have �rst approximately located the point where

�(2L; �; p)

2L

=

�(L; �; p)

L

; (64)

then we have used re-weighting techniques to �ne-tune the condition (64).

For p = 1:0, 0:8, 0:65 and 0:5, we have used, �-extrapolation. Therefore, the

critical p is �xed, � being the tunable parameter. For lower dilution values,

we have rather used p-extrapolation, so we have �rst approximately located

the � value, for which condition (64) holds at p ' 0:3; 0:4. Next we �x �,

�ne-tuning p afterwards, so the critical values di�er from p = 0:3; 0:4 by an

amount of less than 1%. However, in tables and �gures, we shall refer to

them as p = 0:4 and 0:3 for brevity.

Eq.(58) applied to the operators @

�

� and �, yields respectively the expo-

nents 1 + 1=� and 2 � �. The numerical results are shown in tables 1 and

2. For the � exponent we �nd, instead of a stable value, a monotonically

decreasing one. For �, such an evolution with growing L is found, but it is

clearly weaker. Therefore, an in�nite volume extrapolation is called for. If

hyperscaling holds, we expect �nite-volume scaling-corrections proportional

to L

�!

. As ! = 1:13(10) in the percolation [19], in the last row of both

tables 1 and 2 we include an in�nite-volume extrapolation with ! = 1. This

�t is shown in �gure 3.

It is clear that the percolation scenario, � = 0:686(2) and � = �0:094(3)

[19], can be ruled out. Moreover, the possibility of a di�erent �xed point
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L p = 1:0 p = 0:8 p = 0:65 p = 0:5 p ' 0:4 p ' 0:3

8 0.5119(9) 0.5175(11) 0.5308(13) 0.5482(16) 0.5604(15) 0.5700(26)

12 0.5074(18) 0.5154(11) 0.5270(13) 0.5428(19) 0.5532(19) 0.5647(22)

16 0.5066(10) 0.5142(13) 0.5251(12) 0.5412(19) 0.5478(18) 0.5583(26)

24 0.5067(18)

32 0.5039(17)

1 0.5019(14) 0.5110(25) 0.5194(26) 0.534(4) 0.536(4) 0.549(5)

Table 1: The � exponent for (L; 2L) pairs at the di�erent dilutions.

L p = 1:0 p = 0:8 p = 0:65 p = 0:5 p ' 0:4 p ' 0:3

8 -0.02644(14) -0.0161(12) -0.0124(11) -0.0055(19) 0.002(8) -0.003(4)

12 -0.02132(26) -0.0138(12) -0.0089(13) -0.0051(17) 0.000(9) -0.0043(21)

16 -0.01656(12) -0.0130(12) -0.0053(10) -0.0073(17) 0.000(11) -0.006(7)

24 -0.01259(29)

32 -0.01445(18)

1 -0.0085(18) -0.0097(25) 0.0013(22) -0.008(4) -0.002(20) -0.007(9)

Table 2: The � exponent for (L; 2L) pairs at di�erent dilutions.

neither Gaussian nor with the percolation critical exponents requires a fairly

exotic FSS behavior. We do not �nd this possibility likely.

At this point, one could claim that this model presents weak universality,

as recently proposed in the two dimensional version of the model [20]. That

is, the exponent � is constant over the critical line, while � is continuously

varying. However, a much less spectacular, but more likely interpretation

will be given in the next subsection.

5.2 The quest for logarithms

As PRG predicts logarithmic corrections to the MF behavior, we should

expect scaling-corrections of order 1= log L (for the � and � exponents in the

pure model and only for the � exponent in the diluted case) and 1=

p

log L

(for the � exponent in the diluted one): both are of the same order for the

lattices that we can a�ord!. In �gures 4 and 5 we show that the deviation

from MF can indeed be accounted for by logarithmic corrections. We have

found similar results in two dimensions [21]. While �nishing these papers, the

same conclusion has been independently drawn in a transfer-matrix study of
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Figure 3: Exponent � for di�erent lattice pairs of type (L; 2L). The lines

correspond to linear �ts.

the bond-diluted two dimensional model [22].

As we have seen, hyperscaling does not seem to hold. Indeed, the PRG

predict logarithmic violations. In this section, we try to identify them by

starting from a naive point of view. That is, we shall �rst locate the critical

point as if the usual FSSA were correct, and then we shall study there the

scaling of physical quantities, looking for deviations from the pure-power law.

A very accurate way of computing �

c

(or p

c

) is to �x a value of g

4

,

measuring in what � the function g

4

(L; �) is equal to the �xed previous

value [24]. In absence of logarithmic corrections one expects that the shift in

� behaves as 1=L

2

. In �gure 6 we plot these quantities for three values of g

4

at each p, while the results of a quadratic �t, for the in�nite volume critical

couplings are found in table 3. We point out that a logarithmic correction

as the one computed in ref. [14] (as eq. (49) shows) for the pure model or

eq. (47) for the diluted one, does not change the �t results.
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Figure 4: The � exponent obtained from (L; 2L) pairs. The solid lines are

linear �ts constrained to be � = 0:5 in the L!1 limit.

In order to minimize the systematic errors, those values have been ob-

tained choosing a g

4

such that the linear coe�cient in 1=L

2

vanishes. We

have also computed the extrapolations for a wide range of g

4

values to check

the amplitude of the change. We observe that, within one standard deviation

in the extrapolated value, g

4

can be changed in the interval [0:3; 0:8] in the

best case (p = 0:8) and in the interval [0:4; 0:6] in the worst one (p = 0:5).

Although we think that systematic errors from this source are negligible, a

more conservative attitude could be to duplicate the statistical error bars in

table 3.

Now, we can check hyperscaling violations of the form:

�(L; �

c

) / L (log L)

�

�

: (65)

In �gure 7, we plot log(�=L) as a function of log(logL), the slope being

directly �

�

. We can see that a good linear behavior is obtained. The �tted �

�

-
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Figure 5: The � exponent for di�erent lattice sizes. The �t is enforced to

yield � = 0 for L!1.

values are reasonably close to the theoretical prediction, but a growing trend

with the dilution is self-evident. A naive (wrong) explanation is that this is

an e�ect coming from the vicinity of the percolation critical point. Indeed, we

can repeat the previous �t in the pure percolation for similarly-sized lattices.

Fitting from L = 8 we obtain �

�

= 0:0927(9) with �

2

=d:o:f: = 97:9 and from

L = 16, the �t parameters are �

�

= 0:066(2) with �

2

=d:o:f: = 6:90. So a

linear behavior is ruled out for this model. However, this is not surprising,

as hyperscaling is known to hold for percolation in four dimensions.

Another interesting observable is the speci�c heat, which for the pure

model is expected to diverge as C / (logL)

1=3

, while in the diluted case it

is expected to remain bounded. Both predictions can be tested. The �tted
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Figure 6: Computation of �

c

or p

c

looking at �xed values of g

4

for the di�erent

values of the dilution. The lines are quadratic �ts.

values for the logarithmic divergence exponent, �

C

, are

p = 1:0 : �

C

= 0:399(4 + 22) ;

p = 0:8 : �

C

= 0:304(7 + 13) ;

p = 0:65 : �

C

= 0:184(8 + 15) ;

p = 0:5 : �

C

= 0:095(6 + 9) ;

p = 0:4 : �

C

= 0:084(5 + 6) ;

p = 0:3 : �

C

= 0:073(8 + 7) :

(66)

On the values of the Binder cumulants at the in�nite volume critical

temperature we can see directly the (logarithmic) corrections to the scaling

1

.

In the pure case we have obtained g

4

' 0:51 for the largest lattice at the

critical point: we remark that the asymptotic value for the pure model is

1

Do not confuse with the multiplicative logarithmic corrections to the critical law that

we have studied above.
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p

c

�

c

1.0 0.149695(1)

0.8 0.188864(3)

0.65 0.235049(8)

0.50 0.317368(19)

0.398806(18) 0.42

0.30110(4) 0.633

Table 3: Critical couplings as obtained from a quadratic �t of �

c

(L; g

4

). The

error bars are purely statistical.

g

4

' 0:406. It is possible to show using [25] that the leading correction to

scaling term for g

4

goes as 1= log L in both the pure model and the diluted

one. Our pure g

4

-data are compatible with a limiting value of 0:406 modi�ed

by 1= log L corrections.

In the diluted model, we have obtained data for the g

4

cumulant around

0:5 (see �g. 6) which is quite larger than the predicted value g

4

' 0:32 (see

eq. (29)). Again, this numerical discrepancy can be understood taking into

account corrections like 1= log L. The same comments hold for g

2

.

In �gure 8 we have shown g

2

against g

4

for some values of the dilution. We

have also plotted the theoretical value for the pair (g

2

; g

4

). This �gure must

be interpreted having in mind the previously cited logarithmic corrections to

the scaling. It is clear that the complete numerical characterization of these

cumulants needs further numerical work.

Finally we have studied the probability distribution of the observable

M

2

(i.e. we collect the histogram of the values of M

2

at every measure

independently of the sample). We have found that for large values of M

2

the data follow a law P (M

2

) / exp(�c(L)(M

2

)

2

). Using the results of

section (3.1) it is possible to show that the theoretical prediction for the

probability distribution is a Gaussian with c(L) / u(L)L

4

. The coe�cient,

c(L), computed numerically follows very well a law L

4

=

p

logL in perfect

agreement with the theoretical prediction.
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Figure 7: log(�=L) in the in�nite volume critical point, as a function of

log(logL), for several dilutions. The �tted �

�

values are also displayed. The

�rst term in the error is statistical, while the second corresponds to the error

in the critical coupling. The three lines correspond to data at the critical

point and one standard deviation apart at each side.

6 Conclusions

We have performed a Monte Carlo simulation of the site-diluted Ising model

in four dimensions, for several values of the dilution, and in a wide range of

lattice sizes. The use of a �nite-size scaling analysis allows us to consider

big lattices just at the critical point. To gain accuracy we have repeated the

simulations for many di�erent hole con�gurations.

As a �rst stage, we have measured with great precision the critical expo-

nents under the hypothesis of hyperscaling. The value we obtain for the �

exponent changes along the critical line, ruling out the possibility of a single

non-Gaussian �xed point.
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Figure 8: g

4

versus g

2

for three values of the dilution. The symbol sizes

increase with the lattice size (L = 8; 12; 16; 24; 32). The PRG prediction is

also plotted.

Using Perturbative Renormalization Group techniques, we have com-

puted the scaling formulas for the diluted model, obtaining speci�c loga-

rithmic corrections to the Gaussian behavior.

We have re-analyzed our numerical data �nding that they agree with

a Gaussian scenario with logarithmic corrections to hyperscaling. The pure

model has also been considered and its corresponding scaling formulas, checked.

Although the nature of the logarithmic corrections hardly allows to per-

form precise �ts to the predicted functional forms, we have found a reasonable

agreement.
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