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Abstract

We will study the critical behavior of the discrete bilaplacian model. This model
describes the growth of tensionless surfaces. Tensionless surfaces are very impor-
tant, for example, in molecular beam epitaxial and in biological membranes. We
will describe previous analytical and numerical results. Finally we will show recent
numerical simulations which can be described by a single Kosterlitz-Thouless (KT)
phase transition between a continuum massless bilaplacian behavior and a massive
one.

1 Introduction

Tensionless surfaces appear in different and important fields in Science. For
instance, in Biology the lipid membranes are practically tensionless membranes
and in process of growth of surfaces as the Molecular beam Epitaxy, the surface
behaves without surface tension.

This paper is devoted to study the critical behavior of a model which describes
tensionless surfaces. In the next two sections we will deduce the main equa-
tions and describe with a bit of detail some examples. Nextly we will set up
some notation and in the following section we will report analytical results. In
the last two sections we will summarize previous numerical simulations, our
numerical results and the conclusions.
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1.1 Tensionless surfaces [1]

The free energy of a surface (F = µN − pV + σA) can be written on a more
general way:

F = (
µ

v
− p)

∫ ∫

dx dy h(x, y) +
∫ ∫

dx dy φ(hx, hy) .

µ is the chemical potential, v = V/N , h(x, y) is the height of the surface at the

point of coordinates (x, y), p is the pressure, φ(hx, hy) = σ(hx, hy)
√

1 + h2
x + h2

y,

σ being the surface tension and A is the area.

Working a constant pressure, we can study the influence of a) the chemical
potential and b) the surface tension in the growth of a surface.

The main effect of the chemical potential is to induce diffusion on the surface
from regions with higher chemical potential to regions with lower chemical
potential. The current (only on the surface) is then

j = −Ds∇µ

and the continuity equation (the number of particles is constant)

∂h

∂t
= −∇j .

Hence
∂h

∂t
= Ds∇

2µ = −κ(∇2)2h

with κ > 0.

Now, we will study the surface tension. Supposing that the chemical potential
of the vapor is uniform µ0, there will be evaporation in places where µ > µ0.
We can assume that the variation of the height with time is linear with the
chemical potential difference:

∂h

∂t
∝ −(µ − µ0)

and so
∂h

∂t
= ν∇2h

with ν > 0.

Taking into account evaporation, surface diffusion and thermal fluctuations
we can write the following Langevin equation

∂h

∂t
= ν∇2h − κ(∇2)2h + η(r , t)
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where η(r , t) is a Gaussian noise, which is the generalized continuum bilapla-
cian model. 1 By putting ν = 0 we obtain a model for continuum tensionless
surfaces.

1.2 Examples

One example of tensionless surface is the lipid membrane [2]. The fluid of lipids
which conform the membrane is above its melting point and so the lipids can
move inside the membrane. Recently Gov and Safran [3] have introduced the
following equation to modelize the action of the elastic cytoskeleton on the
fluid membrane:

κ(∇2)2χ(r) + V (r)χ(r) = 0 ,

where χ(r) = 〈h(r)〉 (Mean Field approximation), and V introduces into the
model the pinning of the surface by the cytoskeleton.

The second example of tensionless surfaces is the molecular beam epitaxy
(MBE) which is a process of a high interest in technology. In most MBE process
there are not evaporation, e.g in Nickel, but in GaAs, arsenic evaporates.

Finally, the third example is the two dimensional melting. Nelson [6] proposed
the discrete bilaplacian as a model for this melting.

2 The model and some observables

The Hamiltonian of the generalized discrete Laplacian model is

H =
∑

r

(

ν[∇dh(r)]2 + κ[∇2

dh(r)]2
)

,

where ∇d is the discrete gradient and h ∈ Z. The discrete bilaplacian model
is obtained by putting ν = 0.

It is interesting to define two different correlation functions (or propagators).
The first one, the normal correlation function is defined as

C(r) ≡ 〈(h(r) − h(0))2〉 ,

and the slope-slope correlation function is

Cd(s) ≡ 〈(∇dh(r + s) −∇dh(r))2〉 .

1 We can take into account an external flux of particles, F , by performing the
transformation h→ h + Ft.
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In the continuum model (i.e. continuum heights) the previous two propagators
behave in momentum space as C(q) ∝ 1/q4 and Cd(q) ∝ 1/q2 respectively.

Finally we define the specific heat, C, as

C =
1

V

(

〈H2〉 − 〈H〉2
)

.

where V = L2 is the volume of the lattice.

3 The Discrete Bilaplacian Model: Analytical Results

In this section we will describe, briefly, results obtained using three different
analytical methods: mapping to a two dimensional vector Coulomb gas, Mean
Field and Renormalization group (dynamics). Unfortunately the predictions
of these three analytical approaches do not provide with the same results.

• Nelson Scenario [6]
Nelson proposed the discrete bilaplacian as a model for the two dimen-

sional melting. By using the Poisson summation formula the discrete bi-
laplacian can be written as a vector Coulomb gas. Taking into account the
most relevant terms in the modified Coulomb gas a sequence of two KT
transitions were found:

(1) T > Tc1: C(r) ∝ r2 log r, Cd(r) ∝ log r. (Solid phase)
(2) Tc1 > T > Tc2: C(r) ∝ log r, Cd(r) ∝ 1. (Hexatic phase)
(3) T < Tc2: C(r) ∝ 1, Cd(r) ∝ 1. (Isotropic liquid phase)
• Mean Field Scenario [7]

The starting point is the Bogoliubov-Feynman inequality:

F ≤F0 + 〈H −H0〉0 ≡ FMF

H0 ≡
T

2

∑

q

S−1(q) hq hq

And the propagator, S(q), itself is the variational parameter. When partic-
ularizing the Mean Field free energy, FMF, to two dimensions, a first order
phase transition is found.

• Renormalization Group Scenario [8]
The starting point is the Langevin equation and the model is renormalized

using the scheme of Nozières-Gallet [9].

Let us define Lc(l) =
√

κ(l)/ν(l), l = log b, b being the scale factor in

RG. The main results of this approach is that if L < Lc(l) the surface is
tensionless, otherwise the surface has tension surface. In addition, for large
lattices (l → ∞) the surface has always tension surface. So, there is no
phase transition in the thermodynamic limit.
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Fig. 1. Propagators. T = 1.8

4 The Discrete Bilaplacian Model: Numerical Results

Numerical simulations performed by Bruce [4] confirms the Nelson scenario
with Tc1 = 2.2 and Tc2 = 1.64. However numerical simulations done by Janke
and Kleinert [5] in a modified model would imply a first order phase transition
in the discrete bilaplacian model at Tc = 2.454.

In the following we will check these two scenarios by computing the normal
and slope propagators at T = 1.8. In figure (1) can be seen that both prop-
agators follow the continuum bilaplacian prediction (1/q4 and 1/q2 behaviors
respectively), hence the Bruce and the Janke and Kleinert scenarios cannot
be valid with the critical temperatures reported.

We have repeated the computation in the low temperature region T = 1.5.
In figure (2) a dramatic change of behavior can be observed. The slope-slope
propagator shows a bell shape and the normal propagator shows a plateau in
the low momentum regime indicating a massive phase. We can explain these
two behaviors assuming a massive continuum bilaplacian model, which has
1/(q4 + m4) as the normal propagator, where the mass m is the inverse of
the correlation length of this phase. This behavior for the normal propagator
implies a behavior q2/(q4 +m4) for the slope-slope propagator, which presents
the bell shape.

Notice that in figures (1) and (2) there are no finite size effects in the numerical
precision: the L = 64 data and the L = 128 ones are compatibles in the
statistical error.

We have studied the behavior of the specific heat. This observable shows a
clear maximum as a function of the temperature for a given lattice size. We
have plotted the value of that maximum as a function of the lattice size in
figure (3). In the low L region a linear behavior has been found, but for large
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Fig. 2. Propagators. T = 1.5

Fig. 3. Peak of specific heat as a function of L.

lattices a plateau has been achieved. This behavior resembles the behavior of
the peak of the specific heat in a KT phase transition. With this behavior we
can assume α ≤ 0: i.e. there is no divergence of the specific heat (α is the
critical exponent which governs the divergence of the specific heat).

We can do a further analysis monitoring the dependence of the apparent crit-
ical temperature, Tc(L) (defined as the temperature in which the specific heat
shows the maximum for a given lattice size). This apparent critical tempera-
ture scales, in an ordinary second order phase transition, as [10]

Tc(L) = Tc + aL−1/ν .

In figure (4) we reported Tc(L) against L and the fit to equation (4). We obtain
ν = 0.70(7). However, this value of ν, assuming α ≤ 0; implies violation of
hyperscaling. Hence, we try a fit motivated by the KT scenario [10]:

Tc(L) = Tc +
a

(log L + b)2
,

where a and b are constants, and Tc is the bulk critical temperature. We show
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Fig. 4. Tc(L) as a function of L. Fit to equation (4).

Fig. 5. Tc(L) as a function of L. KT scenario: fit to equation (4).

in figure (5) this fit and the agreement is good.

However, the analysis of the order of the transition deserves further researches [11].

5 Conclusions

We summarize our main conclusions.

The system behaves in a continuum massless bilaplacian way at T = 1.8 so
the Bruce and Janke and Kleinert results cannot be right.

The system undergoes a continuous phase transition near T = 1.64 (where the
system develops a not diverging specific heat peak) between a hight tempera-
ture phase well describe by the bilaplacian and a low temperature one which
can be described by a massive quartic propagator. Recently, we have obtained
evidence that the propagators at T = 1.64 behave as at T = 1.5. In addition
at T = 1.7 the propagators are still as at T = 1.8. Hence, a detailed study of
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the region near T ∈ (1.64, 1.7) is needed in order to discard completely the
intermediate phase proposed by Nelson, the hexatic one (a detailed study will
be reported elsewhere [11]).

A choice for the critical exponents α ≤ 0 and ν ≃ 0.7 violates hyperscaling
(α = 2 − νd) in two dimensions, so we conjecture that the phase transition is
in the KT universality class.
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