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Homogeneous States in Granular Fluids Driven by
Thermostats

Moisés G. Chamorro, Francisco Vega Reyes and Vicente Garzó

Departamento de Física, Universidad de Extremadura, E-06071-Badajoz, Spain

Abstract. The dynamics of a homogeneous granular gas fluidized by a stochastic bath with friction is analyzed in the context
of the Enskog-Boltzmann equation. After a transient regime, the system evolves towards a (scaled) distribution function ϕ that
does not only depend on the dimensionless velocity c ≡ v/v0(T ) (v0(T ) being the thermal speed), but also on the (reduced)
driven parameters of the model. An approximate expression for ϕ is constructed by considering the leading order in a Sonine
polynomial expansion. The theoretical predictions of the (steady) granular temperature and the fourth cumulant of ϕ(c) are
compared with those obtained by numerically solving the Enskog-Boltzmann equation from the direct simulation Monte Carlo
(DSMC) method. An excellent agreement between theory and simulation is found, even for quite large values of dissipation.
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INTRODUCTION

Granular systems are constituted by macroscopic grains that collide inelastically so that the total energy decreases with
time. In this context, granular matter can be considered as a prototype system that inherently is in a non-equilibrium
state. This is perhaps one of the main reasons why these systems have received considerable attention in the past
few years, apart from its practical interest. Under rapid flow conditions (for instance, when the system is externally
vibrated), the motion of grains resembles a granular gas where binary collisions prevail and kinetic theory can be a
quite useful tool to study these systems. Thus, in order to maintain the granular medium in a fluidized state an external
energy input is needed to compensate for the collisional loss of energy and achieve a steady nonequilibrium state. In
most of the experiments, energy is supplied through the boundaries causing spatial gradients in the system. To avoid
the difficulties associated with inhomogeneous states, it is usual in computer simulations to homogeneously heat the
system by the action of an external driving force (thermostat). Nevertheless, in spite of its practical importance, little
is known about the influence of the external force (or thermostat) on the properties of the system [1, 2].

The goal of this contribution is to analyze the homogeneous steady state of a driven granular fluid described by the
Enskog-Boltzmann kinetic equation. In order to reach a steady state, the particles are assumed to be under the action of
an external thermostat composed by two different forces: (i) a stochastic force where the particles are randomly kicked
between collisions [3] and (ii) a viscous drag force which mimics the interaction of the particles with an effective
viscous “bath” at temperature Tb. One of the main advantages of using this kind of thermostat [4] with respect to
others present in the literature [3] is that the temperature of the thermostat Tb (different from the temperature T < Tb
of the granular fluid) is always well defined. In particular, for elastic collisions, the fluid equilibrates to the bath
temperature (T = Tb). This happens because, in addition to the random driving, the thermostat acts on the grains also
through a finite drag. Moreover, some recent results [5] suggest that this thermostat is the most appropriate to modelize
some experiments.

The present study combines two different but complementary routes. First, a scaling solution ϕ to the Enskog-
Boltzmann equation is proposed at the steady state. The new feature is that the scaling form ϕ involves two parameters
(dimensionless velocity c ≡ v/v0(T ) and the reduced noise strength ξ ∗) and not only one parameter (dimensionless
velocity) as in the free cooling case [6]. Although the exact form of this scaling solution is not known (except for
elastic collisions), it is expected that ϕ is close to a Maxwellian distribution. A reasonably strategy is to expand ϕ in a
complete set of polynomials (Sonine polynomials). Since quite accurate results are obtained in the free cooling case [6]
by truncation at first order, a similar approximation is considered here to determine the (steady) granular temperature
and the fourth cumulant of ϕ . The latter quantity measures the deviations of the distribution function on its Maxwellian
form. As a second route, we have also performed direct Monte Carlo simulations of the Enskog-Boltzmann equation in
the homogeneous state driven by the thermostat suggested in Ref. [4]. Different values of the coefficient of restitution
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α and the solid volume fraction φ have been considered. In the steady state, the comparison between theoretical and
computer simulation results for the steady temperature Ts and the fourth cumulant a2 shows in general an excellent
agreement even for very small values of α and/or moderate densities φ .

ENSKOG-BOLTZMANN KINETIC THEORY FOR HOMOGENEOUS DRIVEN STATES

We consider a system of inelastic hard spheres in d dimensions with mass m and diameter σ . Collisions are character-
ized by a (constant) coefficient of normal restitution 0 < α ≤ 1, with α = 1 in the elastic limit. In the special case of a
spatially uniform state, the Enskog-Boltzmann equation for the velocity distribution function f (v, t) reads

∂t f (v, t)+F f (v, t) = J[v| f (t), f (t)], (1)

where the Boltzmann-Enskog collision operator J[ f , f ] is

J [ f , f ] = χσ d−1
∫

dv2

∫
dσ̂Θ(σ̂ ·v12)(σ̂ ·v12)

[
α−2 f (v′1) f (v′2)− f (v1) f (v2)

]
. (2)

In Eq. (1), F is an operator representing the effect of an external force, χ is the pair correlation function at contact,
d is the dimensionality of the system, σ̂ is a unit vector along the line of centers, Θ is the Heaviside step function,
and v12 = v1−v2 is the relative velocity of the colliding particles. In addition, (v′1,v

′
2) are the precollisional velocities

yielding (v1,v2) as the postcollisional ones, i.e., v′1,2 = v1,2∓ 1
2 (1+α−1)(σ̂ · v12)σ̂ . Note that for uniform states,

except for the presence of the factor χ (which accounts for the increase of the collision frequency due to excluded
volume effects), the collision operator (2) becomes identical to the Boltzmann collision operator.

As mentioned in the Introduction, in order to reach a steady state, energy injection is needed to compensate
for the energy dissipated in collisions. At a theoretical level and for homogeneous states, it is quite common to
introduce external driving forces acting locally on each particle. Borrowing a terminology often used in nonequilibrium
molecular dynamics of ordinary fluids [8], this type of external forces are usually called “thermostats.” Here, we will
consider the stochastic bath with friction used in Ref. [4] to determine static and dynamical structure factors in driven
granular systems. In general, the equation of motion for a particle i with velocity vi can be written as

mv̇i = Fth
i (t)+Fcoll

i , (3)

where Fth
i is the thermostat force and Fcoll

i is the force due to inelastic collisions. In our case, the total external force
Fth

i is given by
Fth

i (t) =−γbvi(t)+Fst
i (t), (4)

where γb is a drag coefficient that defines the characteristic interaction time with the external bath, τ−1
b = γb/m.

The viscous drag term −γbvi in the total force (4) models the interaction between each particle and the thermostat.
Moreover, the stochastic force Fst

i is assumed to have the form of a Gaussian white noise [3]:

〈Fst
i (t)〉= 0, 〈Fst

i (t)F
st
j (t
′)〉= 1m2ξ 2

b δi jδ (t− t ′), (5)

where 1 is the d× d unit matrix and ξ 2
b represents the strength of the correlation. The forcing term in the Enskog-

Boltzmann equation associated to Fst
i is represented by a Fokker-Planck operator [6] of the form − 1

2 ξ 2
b (∂/∂v)2. The

effect of this latter (random) term is to give frequent kicks to each particle between collisions [3].
Under the above conditions, the corresponding operator F for this kind of thermostat has the form [4]

F f (v) =−γb

m

∂
∂v
·v f (v)− 1

2
ξ 2

b

(
∂

∂v

)2

f (v), (6)

and the kinetic equation (1) becomes

∂t f − γb

m

∂
∂v
·v f − 1

2
ξ 2

b

(
∂
∂v

)2

f = J[ f , f ]. (7)
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The balance equation for the granular temperature T (t) can be easily derived by multiplying both sides of Eq. (7) by
1
2 mv2 and integrating over velocity. The result is

∂tT =−2T

m
γb +mξ 2

b −ζ T, (8)

where
ζ =− m

dnT

∫
dv v2J[ f , f ] (9)

is the cooling rate. We are looking for a normal solution [2] to Eq. (7). This means that all the time dependence of
f (v) only occurs through its functional dependence on T (t):

∂t f =
∂ f

∂T
∂tT =−

(
2γb

m
− m

T
ξ 2

b +ζ
)

T
∂ f

∂T
. (10)

Substitution of Eq. (10) into Eq. (7) yields

−
(

2
m

γb− m

T
ξb +ζ

)
T

∂ f

∂T
− γb

m

∂
∂v
·v f − 1

2
ξ 2

b

(
∂
∂v

)2

f = J[ f , f ]. (11)

After a transient regime, the system is expected to reach a steady state characterized by a constant temperature.
Thus, according to Eq. (8), the (asymptotic) steady granular temperature Ts is given by the relation

ζ Ts +
2γb

m
Ts = mξ 2

b . (12)

This equation establishes a relation between the model parameters γb and ξ 2
b so that only one of the above parameters

is independent in the steady state. Here, we will take the noise strength ξ 2
b as the relevant external parameter. By using

(12), Eq. (11) becomes
1
2

ζ
∂

∂v
·v fs− mξ 2

b
2Ts

∂
∂v
·v fs− 1

2
ξ 2

b

(
∂
∂v

)2

fs = J[ fs, fs], (13)

where fs denotes the stationary distribution function. According to the left hand side of Eq. (13), it is expected that fs
depends on the model parameter ξ 2

b .
To get a closed equation for Ts, one needs to evaluate the cooling rate ζ which is defined in terms of fs through Eq.

(9). Although the explicit form of fs is not known so far, dimensional analysis requires that fs has the scaled form

fs(v,ξ 2
b ) = nv−d

0 ϕ (c,ξ ∗) , (14)

where c≡ v/v0 and v0 =
√

2Ts/m is the thermal speed. In addition, we have introduced the reduced model parameter

ξ ∗ =
m�

Tsv0
ξ 2

b , (15)

where �= 1/(nσd−1) is the mean free path of a dilute gas of hard spheres. It must be noted that the scaled distribution
function ϕ involves two parameters: the dimensionless velocity c and the (reduced) noise strength ξ ∗. This scaling
differs from the one assumed in the case of the homogeneous cooling state [6] where only the dimensionless velocity
c is required to characterize the steady state. Equivalent expressions can be of course chosen, such as ϕ(c,γ∗) if one
takes γ∗ ≡ γ�/(mv0) instead of ξ ∗ as the independent model parameter. A similar scaling solution to the form (14) has
been recently proposed [7] for a driven homogeneous granular gas before reaching the stationary regime. In terms of
the (reduced) distribution function ϕ , Eq. (13) can be finally rewritten as

1
2

ζ ∗
∂
∂c
· cϕ− 1

2
ξ ∗

∂
∂c
· cϕ− 1

4
ξ ∗

(
∂
∂c

)2

ϕ = J∗[ϕ ,ϕ ], (16)

where

ζ ∗ =
�ζ
v0

, J∗ =
�

n
vd−1

0 J. (17)
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STEADY GRANULAR TEMPERATURE AND FOURTH-CUMULANT. THEORETICAL
PREDICTIONS

In the case of elastic collisions (α = 1), ζ ∗ = 0 and the solution to Eq. (16) is a Maxwellian distribution

ϕM(c) = π−d/2e−c2
. (18)

However, if the particles collide inelastically (α < 1), the exact form of ϕ is not known. An indirect information on
the scaled distribution ϕ is given through its velocity moments. In particular, the deviation of ϕ with respect to its
Maxwellian form ϕM can be characterized by the kurtosis or the fourth-cumulant

a2 =
4

d(d +2)
〈c4〉−1, (19)

where
〈ck〉=

∫
dc ckϕ(c). (20)

In order to determine a2, we multiply both sides of Eq. (16) by c4 and integrate over velocity. The result is

d(d +2)
2

[ζ ∗(1+a2)−ξ ∗a2] = μ4, (21)

where
μk =−

∫
dc ck J∗[ϕ,ϕ]. (22)

Upon writing Eq. (21) use has been made of the relation (12) (in its dimensionless form, i.e., ζ ∗+2γ∗ = ξ ∗) and the
result ∫

dc cp

(
∂
∂c

)2

ϕ(c) = p(p+d−2)〈cp−2〉 (23)

with p = 4 and 〈c2〉= d
2 . Equation (21) is still exact. To get an approximate expression for a2 one first assumes that ϕ

can be well described by the leading Sonine approximation:

ϕ(c,ξ ∗)	 ϕM(c)
{

1+a2(ξ ∗)
[

1
2

c4− d +2
2

c2 +
d(d +2)

8

]}
. (24)

The approximation (24) is justified because the coefficient a2 is expected to be small [6]. Then, approximate forms for
the quantities ζ ∗ = (2/d)μ2 and μ4 can be obtained when one substitutes Eq. (24) into Eq. (22) and neglects nonlinear
terms in a2. For μ2 and μ4 the results are [6]

μ2 → μ(0)
2 +μ(1)

2 a2, μ4 → μ(0)
4 +μ(1)

4 a2, (25)

where

μ(0)
2 =

π(d−1)/2
√

2Γ
(

d
2

)χ(1−α2), μ(1)
2 =

3
16

μ(0)
2 , (26)

μ(0)
4 =

(
d +

3
2
+α2

)
μ(0)

2 , μ(1)
4 =

[
3
32

(10d +39+10α2)+
d−1
1−α

]
μ(0)

2 . (27)

With the use of the approximations (25)–(27) and retaining only linear terms in a2, the solution to Eq. (21) is

a2 =− μ(0)
4 − (d +2)μ(0)

2

μ(1)
4 − (d +2)

(
19
16 μ(0)

2 − d
2 ξ ∗

) . (28)

In the case γb = 0 (absence of friction), ξ ∗ = (2/d)μ(0)
2 and Eq. (28) agrees with the results obtained in the presence

of the stochastic thermostat (see Eq. (31) of Ref. [9]).
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Once the fourth cumulant is known, the steady temperature can be obtained. First, in terms of a2, the cooling rate ζ
is given by

ζ =
2
d

π(d−1)/2

Γ
(

d
2

) (1−α2)χ
(

1+
3
16

a2

)
nσd−1

√
Ts

m
. (29)

With this result, Eq. (12) for the reduced temperature T ∗ ≡ Ts/Tb can be finally written as

2d

√
π
(1−α2)φ χ

(
1+

3
16

a2

)
T ∗3/2 +2γbT ∗ = ξ b, (30)

where

γb ≡ (mTb)
−1/2 σγb, ξ b ≡

(
m

Tb

)3/2

σξ 2
b , (31)

and

φ =
πd/2

2d−1dΓ
(

d
2

)nσd (32)

is the solid volume fraction. In the case of elastic collisions (α = 1), Eq. (30) yields T ∗ = 1 if 2γb = ξ b.

COMPARISON WITH MONTE CARLO SIMULATIONS

The DSMC method devised by Bird [10] has proven to be a very efficient tool to numerically solve the Boltzmann
equation. The method has been extended to the Enskog equation [11] and its application to granular gases in spatially
uniform states is very straightforward. In the DSMC method the velocities of the particles are updated from time
t to time t + δ t by following two successive stages: free streaming and collisions. Here, the time step δ t is much
smaller than the mean free time. In the first step, the velocity vi of every particle is changed to vi +wi according to the
external force under consideration. As we pointed out in Section , our thermostat is composed by two different terms:
a deterministic external force proportional to the velocity of the particle plus a stochastic force. Thus, wi = wdrag

i +wst
i ,

where wdrag
i and wst

i denote the velocity increments due to the drag and stochastic forces, respectively. In the case of
the (deterministic) drag force,

wdrag
i =

(
1− eγbδ t

)
vi, (33)

while wst
i is randomly drawn from the Gaussian probability distribution [9]

P(w) =
(
2πξ 2

b δ t
)−d/2

e−w2/2ξ 2
b δ t . (34)

The second step accounts for the collisions among particles. In this stage, a sample of pairs is chosen at random with
equiprobability. For each pair i j, the probability of collisions between particles i and j is proportional to the relative
velocity between both colliding particles. More details on this stage can be found in Ref. [9]. In our simulations we
have typically taken N = 2×106 simulated particles and a time step δ t = 0.005ν−1, where ν = (

√
2πχnσ2)−1/v0 for

hard spheres.
In the following we present a comparison between the DSMC and theoretical results. Here, for the sake of

convenience, we introduce the dimensionless quantities (γ∗sim and β ∗sim) which are related with the theoretical ones
(γb and ξ b) as

γ∗sim =
γb

m
ν−1(Tb) =

1√
2πχ(φ)

�

v0(Tb)

γb

m
=

γb
2πχ(φ)

, (35)

β ∗sim = ξ 2
b

[
2Tb

m
ν(Ts)

]−1

=
ξ b

4πχ(φ)T ∗1/2 . (36)

Following Ref. [4], the fixed parameters of the simulations are m = 1, σ = 0.01, Tb = 1, γb = 1, and ξ b = 2γb, and so,
γ∗sim = σ/(12φ χ) and β ∗sim = γ∗simT ∗−1/2. A good approximation for the pair correlation function for spheres is [12]

χ(φ) =
1− 1

2 φ
1−φ)3 , (37)
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FIGURE 1. Panel (a): Plot of the reduced granular temperature Ts/Tb versus the solid volume fraction φ for two values of the
coefficient of restitution α: α = 0.8 (solid line) and α = 0.6 (dashed line). The symbols are Monte Carlo simulations for α = 0.8
(circles) and α = 0.6 (triangles). Panel (b): Plot of the fourth cumulant a2 versus the coefficient of restitution α for φ = 0.25. The
line is the theoretical result and the symbols are the computer simulation results .

where φ = nπσ 3/6 for d = 3. The panel (a) of Fig. 1 shows the (reduced) granular temperature Ts/Tb versus the
volume fraction φ , respectively, for two different values of the coefficient of restitution (α = 0.8 and α = 0.6). We
observe an excellent agreement between theory and simulation. As expected, at a given value of density, the steady
granular temperature decreases as the gas becomes more inelastic. The dependence of the fourth cumulant a2 on α is
shown in the panel (b) of Fig. 1 for φ = 0.25. The theoretical prediction (28) compares very well with simulation data,
even for quite extreme values of dissipation (say for instance, α = 0.1). This agreement justifies the approximations
(25)–(27) and indicates that the scaled distribution ϕ is well represented by Eq. (24) in the region of thermal velocities.
Moreover, the values of a2 in the driven case are generally smaller than in the free cooling case [6, 9].

In summary, we have studied the dynamics of a granular fluid driven homogeneously by a stochastic bath with
friction. The results have been obtained from the Enskog-Boltzmann equation in the stationary regime. In this regime,
the system evolves into a scaling solution ϕ characterized by two dimensionless parameters: the dimensionless velocity
and the reduced noise strength. The distribution function ϕ has been calculated in the first Sonine approximation and
the results derived from it show an excellent agreement with the Monte Carlo simulations. The results derived in this
contribution can be used as the starting point to derive the Navier-Stokes transport coefficients of a granular fluid
driven by a stochastic bath with friction. They will be further studied in future works.
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