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Abstract. A granular binary mixture driven by a stochastic bath with friction is studied from the inelastic Boltzmann kinetic

equation for inelastic Maxwell models. First, we focus on homogeneous steady state solutions, reached by the system due to the

presence of the thermostat that compensates for the energy lost in collisions. At a macroscopic level, the homogeneous steady state

is fully characterized by the partial granular temperatures of both species, which are determined and compared against molecular

dynamics simulations of inelastic hard spheres. The comparison between theory and simulations shows an excellent agreement.

Second, we solve the kinetic equation close to steady states by means of the Chapman–Enskog method adapted to dissipative

dynamics. We consider the first-order approximation (Navier–Stokes hydrodynamic order) and compute explicitly the diffusion

transport coefficients. The results obtained here for diffusion for inelastic Maxwell models agree with those derived for inelastic

hard spheres when non-Gaussian corrections to the zeroth-order solution are neglected.

INTRODUCTION

In the last years, the Kinetic Theory of molecular gases has been properly modified to describe granular matter

under rapid flow conditions. The main new ingredient of the theory is that collisions among grains are inelastic

[1, 2]. Usually, the modifications involve (a) the introduction of collisional dissipation through a new form of the

Boltzmann collision operator (which also takes into account the inelasticity in the scattering rules) and (b) the inclusion

of a term in the streaming part of the kinetic equation that accounts for the energy injected into the system by the

external sources. The two aspects have been modeled differently. A simple but realistic model for (a) considers smooth

hard spheres (inelastic hard spheres, IHS) where particles loose a fraction of their translational kinetic energy after

instantaneous collisions. In this model, the inelasticity is characterized by a (positive) constant coefficient of normal

restitution. However, the resulting Boltzmann equation turns out to be quite complex so that one needs to consider

sometimes uncontrolled approximations. Hence, it is useful to consider other analytically tractable models where

exact results can be offered. This is the case of inelastic Maxwell models (IMM) where the collision rate of colliding

particles is independent of their relative velocity. For (b), the simplest model assumes no influence of the grains on

the external energy sources, which act as thermostats. In particular, as in Ref. [3], a general approach is to model the

thermostat as a stochastic bath with friction. This is a simple and flexible way of keeping the system fluidized.

IMM are a simplification of IHS: they share the same collision rules, but (in a complete analogy with the elastic

case) the former is the result of replacing the collision frequency of the latter (which is proportional to the relative

velocity of the interacting particles) by an effective, velocity independent collision frequency. Thanks to this simpli-

fication the moments of the Boltzmann collision operator can be determined without the knowledge of the velocity

distribution function. This nice mathematical property opens up the possibility of obtaining exact results and this is

one of the main reasons for which IMM has been extensively employed in the past for studying both homogeneous and

non-homogeneous situations. For instance, IMM have been considered for obtaining exact properties of the velocity

distribution function of both the homogeneous cooling state [4–7] and the uniform shear flow [8–10], as well as for

deriving the Burnett transport coefficients [11], among many other interesting results.

As it is well known, an isolated granular gas has a monotonically decreasing-in-time kinetic energy. In real

conditions, however, since the dynamics stops after few collisions per particle, an external energy input is needed to

keep the grains in rapid flow conditions. Some years ago, a general way of injecting energy by means of a stochastic

bath with friction was proposed [12]. Its generality relays on the fact that this thermostat results as the limiting behavior
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of different ways of kicking the grains [13]. This kind of thermostat has been used more recently [3] to fluidize a

granular binary mixture modeled as IHS. The Navier–Stokes hydrodynamic equations along with expressions of the

relevant transport coefficients have been derived (in the so-called leading Sonine approximation) for states close to

steady homogeneous states [3, 14]. The derivation of the hydrodynamic equations needs not only the approximations

required for the free evolving case, but also other related to the time dependence of the distribution functions close

to steady states. In fact, the transport coefficients not only depend on the steady values of the hydrodynamic fields

but also on quantities characterizing the vicinity of the perturbed state with respect to the reference steady base state.

This latter point is far from being a trivial point since it is an important aspect to take into account for obtaining the

transport properties of the system.

In this work we aim at reconsidering the studies of Refs. [3, 13], namely, we consider a granular binary mixture

driven by means of a stochastic bath with friction but modeled as IMM. As said before, the use of IMM allows us to

get the exact forms of the transport coefficients and compare them with those previously obtained for IHS [3]. This

comparison can be seen as a way of assessing the reliability of IMM as a model for describing granular flows in

mixtures.

The paper is organized as follows. First, we consider steady homogeneous states and determine the partial tem-

peratures in terms of the parameter space of the problem. Then, the model is solved by means of the Chapman–Enskog

method up to first order in spatial gradients and the transport coefficients associated with the mass flux are explicitly

computed. Finally, we end the paper with a brief description of the results and conclusions.

KINETIC DESCRIPTION AND HOMOGENEOUS STEADY STATES

Boltzmann kinetic equation for driven granular mixtures

We consider a granular binary mixture driven by a stochastic bath with friction. As for the case of IHS [3, 13, 14],

the nonlinear Boltzmann equation for the one-particle distribution function fi(r, v, t) of species i (i = 1, 2) having a

position r and a velocity v at time t reads

∂t fi + v · ∇ fi −
γb

m
β

i

∆U · ∂ fi

∂v
− γb

m
β

i

∂

∂v
· V fi −

1

2

ξ2
b

mλ
i

∂2 fi

∂v2
=

2∑

j=1

Ji j[v| fi, f j], (1)

where mi is the mass of the species i, γb is the drag or friction constant, ξ2
b

is related to the strength of the stochastic

part of the bath, and β and λ are constants of the model. In addition, ∆U = U − Ug is the mean flow velocity of the

solid particles U with respect to the mean flow velocity of the interstitial gas Ug, and V = v−U is the peculiar velocity.

The difference between IMM and IHS lies on the form of the Boltzmann collision operator Ji j[ fi, f j]. In the case of

IMM, this operator is given by [9]

Ji j

[
v1| fi, f j

]
=
ωi j

n jΩd

∫
dv2

∫
dσ̂

[
α−1

i j fi(v
′
1) f j(v

′
2) − fi(v1) f j(v2)

]
. (2)

Here, ni is the number density of species i, ωi j , ω ji is an effective collision frequency (to be chosen later) for

collisions of type i- j, Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions, and αi j = α ji ≤ 1 refers to the

(positive) constant coefficient of restitution for collisions between particles of species i with j. Moreover, the primes

on the velocities denote the initial values {v′
1
, v′

2
} that lead to {v1, v2} following a binary collision:

v′1 = v1 − µ ji

(
1 + α−1

i j

)
(σ̂ · g12)σ̂, v′2 = v2 + µi j

(
1 + α−1

i j

)
(σ̂ · g12)σ̂ , (3)

where g12 = v1 − v2 is the relative velocity of the colliding pair, σ̂ is a unit vector directed along the centers of the

two colliding spheres, and µi j = mi/(mi + m j). The collision frequencies ωi j can be seen as free parameters in the

model. Its dependence on the coefficients of restitution αi j can be chosen to optimize the agreement with the results

obtained from the Boltzmann equation for IHS. Of course, the choice is not unique and may depend on the property

of interest. In particular, if ωi j is taken to get the same cooling rates ζi as that for IHS (evaluated by using the Gaussian

approximation) for diameters σi, ωi j is defined as

ωi j =
Ωd√
π

x j

(
σi j

σ12

)d−1 (
θi + θ j

θiθ j

)1/2

ν0. (4)
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Here,σi j = (σi+σ j)/2, θi = Mi/χi, and χi = Ti/T where Ti is the partial temperature of species i and T = x1T1+x2T2,

T is the global granular temperature. In addition, Mi = mi/m, m = m1m2/(m1 + m2), and ν0 is an effective collision

frequency given by

ν0 = nσd−1
12

√
2T

m
, (5)

n = n1 + n2 being the total number density of particles in the system.

Homogeneous steady states

Before considering inhomogeneous states, it is worthwhile to study first the homogeneous steady state. In this situ-

ation, the partial densities ni are constant, the granular temperature T is spatially uniform, and, with an appropriate

selection of the frame of reference, the mean flow velocities vanish (U = Ug = 0). Thus, after a transient regime, the

system is expected to reach a steady state and hence, Eq. (1) becomes

− γb

m
β

i

∂

∂v
· v fi −

1

2

ξ2
b

mλ
i

∂2 fi

∂v2
=

2∑

j=1

Ji j[v| fi, f j]. (6)

For elastic collisions (α = 1), as expected, a solution to Eq. (6) is given by Maxwellian distributions characterized by

a common temperature Tb given by

Tb =
ξ2

b

2γb(2m)λ−β−1
. (7)

Equation (7) defines a “bath temperature” Tb. Its name may be justified since it is determined by the two thermostat

parameters and, additionally, it can be considered as a remnant of the temperature of the interstitial molecular fluid. For

inelastic collisions (α , 1), the total kinetic energy is not conserved and to date an exact solution to (6) is not known.

However, an indirect information on the velocity distributions fi are provided by their kurtosis or fourth cumulant a
(i)

2
.

These quantities measure the deviation of fi from its Maxwellian form

fi,M(v) = ni

(
mi

2Ti

)d/2

exp

(
−miv

2

2Ti

)
. (8)

A careful study on the fourth cumulants a
(i)

2
have been carried out in Ref. [13] for IHS. The results show that in

general the magnitude of those cumulants is very small and hence, a good estimate for the velocity moments (such as

the partial temperatures Ti) of the distributions fi can be obtained by considering the Maxwellian distributions (8) at

different temperatures.

In the steady state, one of the most relevant quantities are the partial temperatures

Ti =
mi

dn

∫
dv V2 fi(v). (9)

The equations defining the (reduced) partial temperatures T ∗
i
= Ti/Tb can be obtained by multiplying both sides of

Eqs. (6) by miv
2 and integrating over velocity. After some algebra, one gets [3]

T ∗
[
1 − (Mi/2)λ−1−βT ∗i

]
ξ∗ = Mλ−1

i ζ
∗
i T ∗i , i = 1, 2 (10)

where T ∗ = T/Tb = x1T ∗
1
+ x2T ∗

2
, ξ∗ = ξ2

b
/(ν0Tm

λ−1), and ζ∗
i
= ζi/ν0. Here,

ζi = −
mi

dniTi

2∑

j=1

∫
dvV2 Ji j[v| fi, f j] (11)

is the cooling rate associated with the partial temperature Ti. Equation (10) still applies for IHS. However, in contrast

to IHS, the exact form of the partial cooling rates ζ∗
i

can be determined for IMM without the knowledge of the

distributions fi. They are given by [9]

ζ∗i =
4π(d−1)/2

dΓ
(

d
2

)
2∑

j=1

x jµ ji

(
σi j

σ12

)d−1 (
θi + θ j

θiθ j

)1/2

(1 + αi j)

[
1 −
µ ji

2
(1 + αi j)

θi + θ j

θ j

]
. (12)
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The partial temperatures T ∗
i

can be determined by substituting Eq. (12) into the coupled equations (10). It must

be noted that the exact results obtained for IMM in the homogeneous state for the partial temperatures are completely

equivalent to those previously derived for IHS when fi is replaced by its Maxwellian form (8). Figure 1 shows a

comparison between the numerical solution of Eq. (12) and molecular dynamics (MD) simulations of a mixture of

inelastic hard spheres [13] for a dilute system. It is quite apparent that the theoretical results derived for IMM shows

an excellent agreement with MD simulations of IHS.
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FIGURE 1. Plot of the temperature ratio T1/T2 for a three dimensional (d = 3) system with volume fraction φ = 0.00785 and two

different values of the (common) coefficient of restitution [α11 = α22 = α12 ≡ α = 0.8 (solid lines and circles) and 0.9 (dashed lines

and squares)] as a function of: (a) the mass ratio m1/m2 for σ1/σ2 = φ1/φ2 = 1, (b) the size ratio σ1/σ2 for m1/m2 = φ1/φ2 = 1,

and (c) the composition ratio φ1/φ2 for m1/m2 = 8 and σ1/σ2 = 2. The volume fraction φ = φ1 + φ2 where φi = niπσ
3
i /6 for hard

spheres. The lines are the theoretical predictions and the symbols refer to the MD simulation results. The parameters for theory and

simulations are γb = 0.1, ξ2
b
= 0.2, β = 1, and λ = 2.

CHAPMAN–ENSKOG SOLUTION: FIRST ORDER DISTRIBUTION FUNCTION

Let us assume now that we slightly perturb the homogeneous steady state by weak spatial gradients. The perturbation

will give nonzero contributions to the mass, momentum, and heat fluxes. The objective here is to obtain the transport

coefficients associated with the mass flux. In this situation, we solve the Boltzmann equation (1) by means of the

Chapman–Enskog method [15] adapted to dissipative dynamics. As usual, the Chapman–Enskog method assumes the

existence of a normal or hydrodynamic solution where the space and time dependence of fi only occurs through a

functional dependence on the hydrodynamic fields. This functional dependence can be made local in space through

an expansion of fi in powers of the gradients of the hydrodynamic fields, i.e., fi = f
(0)

i
+ f

(1)

i
+ · · ·. Here, only terms

up to the first order in gradients will be considered.

In ordering the different level of approximations in the Boltzmann kinetic equation (1), one has to characterize

the magnitude of the thermostat parameters γb and ξ2
b

relative to the gradients as well as the term ∆U. Regarding the

thermostat parameters, since both quantities do not create any flux in the system, they must be considered to be of

zeroth-order in gradients. With respect to the term ∆U, since for homogeneous systems U relaxes towards Ug after a

transient period, then the difference ∆U must be considered to be at least of first order in gradients.

Zeroth-order solution

To zeroth-order, the Boltzmann equation (1) reads

∂
(0)
t f

(0)

i
− γb

m
β

i

∂

∂v
· V f

(0)

i
− 1

2

ξ2
b

mλ
i

∂2 f
(0)

i

∂v2
=

2∑

j=1

Ji j[v| f (0)

i
, f

(0)

i
]. (13)

The balance equations to this order are ∂
(0)
t x1 = ∂

(0)
t Ui = 0 and T−1∂

(0)
t T = p−1∂

(0)
t p = −Λ(0) where

Λ(0) ≡ 2γb

2∑

i=1

xiχi

m
β

i

−
ξ2

b

p

2∑

i=1

ρi

mλ
i

+ ζ(0). (14)
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Here, p = (n1 + n2)T is the hydrostatic pressure and ζ(0) is the total cooling rate to zeroth-order; in reduced form it is

given by ζ∗
0
= ζ(0)/ν0 = x1χ1ζ

∗
1
+ x2χ2ζ

∗
2
, where ζ∗

i
is defined by Eq. (12). Equation (13) can be rewritten in a more

convenient way when one takes into account the balance equations:

−Λ(0)
(
T∂T + p∂p

)
f

(0)

i
− γb

m
β

i

∂

∂v
· V f

(0)

i
− 1

2

ξ2
b

mλ
i

∂2 f
(0)

i

∂v2
=

2∑

j=1

Ji j[v| f (0)

i
, f

(0)

i
]. (15)

As widely discussed before in driven granular systems [3, 16, 17], although we want to compute the transport

coefficients of the driven granular mixture in steady state conditions, for small perturbations around the homogeneous

steady state, the density and temperature are specified separately in the local reference state f
(0)

i
. As a consequence,

the temperature T and the pressure p are not expected in general to be stationary at any point of the system. This

means that the zeroth-order time derivatives ∂
(0)
t T and ∂

(0)
t p are different from zero in the reference base state. This

contrasts with the usual application of the Chapman–Enskog method to ordinary mixtures (αi j = 1) where the terms

∂
(0)
t T and ∂

(0)
t p are of first order in the spatial gradients. In the steady state (Λ(0) = 0), Eq. (15) reduces to Eq. (6)

whose solution is not exactly known. However, as Fig. 1 clearly shows, a good estimate for the partial temperatures

can be obtained by considering the Maxwellian distribution fi,M for the zeroth-order solution f
(0)

i
.

First-order solution

To first-order in spatial gradients, the distribution f
(1)

1
obeys the kinetic equation [3]

∂
(0)
t f

(1)

1
− γb

m
β

1

∂

∂v
· V f

(1)

1
− 1

2

ξ2
b

mλ
1

∂2

∂v2
f

(1)

1
+L1 f

(1)

1
+M1 f

(1)

2
= A1 · ∇x1 + B1 · ∇p + C1 · ∇T

+D1,kℓ

1

2

(
∇kUℓ + ∇ℓUk −

2

d
δkℓ∇ · U

)
+ E1∇ · U +G1 · ∆U. (16)

The linear Boltzmann collision operatorsL1 andM1 are defined as

L1X = −
(
J11[ f

(0)

1
, X] + J11[X, f

(0)

1
] + J12[X, f

(0)

2
]

)
, M1X = −J12[ f

(0)

2
, X]. (17)

The coefficients of the field gradients on the right side of Eq. (16) are functions of V and the hydrodynamic fields.

They are given by

A1(V) = −V
∂ f

(0)

1

∂x1

+
γb(m

β

2
− m

β

1
)

ρ2(m1m2)β−1

p

T
D
∂ f

(0)

1

∂V
, (18)

B1(V) = −V
∂ f

(0)

1

∂p
− ρ−1

∂ f
(0)

1

∂V
+
γb(m

β

2
− m

β

1
)

p(m1m2)β
Dp

∂ f
(0)

1

∂V
, (19)

C1(V) = −V
∂ f

(0)

1

∂T
+
γb(m

β

2
− m

β

1
)

T (m1m2)β
DT

∂ f
(0)

1

∂V
, (20)

D1,kℓ(V) = Vk

∂ f
(0)

1

∂Vℓ
, (21)

E1(V) =
d + 2

d
p
∂ f

(0)

1

∂p
+

2

d
T
∂ f

(0)

1

∂T
+

1

d
V ·
∂ f

(0)

1

∂V
, (22)

G1(V) =
γb

ρ

m
β

2
− m

β

1

(m1m2)β
(ρ2 + DU)

∂ f
(0)

1

∂V
. (23)

The corresponding equation for f
(1)

2
is obtained from Eq. (16) by the change 1↔ 2 (not for the mole fraction x1 since

x2 = 1− x1). Equation (16) has the same structure as for IHS except for the form of the linearized Boltzmann collision

operators L1 andM1 and the fact that the first-order contribution to the cooling rate vanishes for IMM.
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Mass flux

We compute here the first-order contribution j
(1)

1
to the mass flux. It is defined as

j
(1)

1
=

∫
dv m1V f

(1)

1
(V). (24)

To get it, we multiply both sides of Eq. (16) by m1V and integrate over velocity. After some algebra, one achieves the

result

∂
(0)
t j

(1)

1
+
γb

m
β

1

j
(1)

1
+ νDj

(1)

1
= −

p
∂

∂x1

(x1χ1) +
γbρ1(m

β

2
− m

β

1
)

ρ2(m1m2)β−1

p

T
D

∇x1

−
x1

(
χ1 + p

∂χ1

∂p

)
− ρ1

ρ
+
γbρ1(m

β

2
− m

β

1
)

p(m1m2)β
Dp

∇p

−
px1

∂χ1

∂T
+
γbρ1(m

β

2
− m

β

1
)

T (m1m2)β
DT

∇T

−γbρ1

ρ

m
β

2
− m

β

1

(m1m2)β
(ρ2 + DU)∆U. (25)

Upon obtaining Eq. (25), use has been made of the result

∫
dv m1V

(
L1 f

(1)

1
+M1 f

(1)

2

)
= νDj

(1)

1
, (26)

where

νD = ρ
ω12

dn2

1 + α12

m1 + m2

=
2π(d−1)/2

dΓ
(

d
2

) (1 + α12)

(
M1χ2 + M2χ1

M1 M2

)1/2 (
x2M−1

1 + x1M−1
2

)
ν0. (27)

The constitutive equation of the mass flux is

j1 = −
(
m1m2n

ρ

)
D∇x1 −

ρ

p
Dp∇p − ρ

T
DT∇T − DU∆U, j2 = −j1. (28)

We want to determine the diffusion transport coefficients in the steady state, namely, when Λ(0) = 0. Dimensional

analysis shows that D ∝ T 1/2, Dp ∝ DT ∝ T 3/2/p, and DU ∝ p/T . Hence, in dimensionless form, the diffusion

transport coefficients D, Dp and DT can be written as

D =
ρT

m1m2ν0
D∗, Dp =

nT

ρν0
D∗p, DT =

nT

ρν0
D∗T , (29)

In addition, to evaluate the time derivative of j
(1)

1
, one has to take into account the intermediate results

∂
(0)
t ∇p = ∇(∂

(0)
t p) = −∇(pΛ(0)) = −Λ(0)∇p + Px1

∇x1 + Pp∇p + PT∇T, (30)

∂
(0)
t ∇T = ∇(∂

(0)
t T ) = −∇(TΛ(0)) = −Λ(0)∇T + Tx1

∇x1 + Tp∇p + TT∇T, (31)

where

Px1
=

p

T
ξ2b

mλ−1
2
− mλ−1

1

(m1m2)λ−1
− p
∂ζ(0)

∂x1

− 2γb p
m
β

2
− m

β

1

(m1m2)β

(
χ1 + x1

∂χ1

∂x1

)
, (32)

Pp = −
2γb

2∑

i=1

xiχi

m
β

i

+ 2γb p
m
β

2
− m

β

1

(m1m2)β
x1

∂χ1

∂p
− ξ2b

1

T

2∑

i=1

xi

mλ−1
i

+ ζ(0) + p
∂ζ(0)

∂p

 , (33)

PT = −
ξ

2
b

p

T 2

2∑

i=1

xi

mλ−1
i

+ p
∂ζ(0)

∂T
+ 2γb p

m
β

2
− m

β

1

(m1m2)β
x1

∂χ1

∂T

 , (34)
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Tx1
= ξ2b

mλ−1
2
− mλ−1

1

(m1m2)λ−1
− T
∂ζ(0)

∂x1

− 2γbT
m
β

2
− m

β

1

(m1m2)β

(
χ1 + x1

∂χ1

∂x1

)
, (35)

Tp = −
2γbT

m
β

2
− m

β

1

(m1m2)β
x1

∂χ1

∂p
+ T
∂ζ(0)

∂p

 , (36)

TT = −
2γb

2∑

i=1

xiχi

m
β

i

+ 2γbT
m
β

2
− m

β

1

(m1m2)β
x1

∂χ1

∂T
+ ζ(0) + T

∂ζ(0)

∂T

 . (37)

Therefore, in the steady state (Λ(0) = 0), the zeroth-order time derivative ∂
(0)
t j

(1)

1
gives the contributions

∂
(0)
t j

(1)

1
→ −

(
ρ

p
Px1

Dp +
ρ

T
Tx1

DT

)
∇x1 −

(
ρ

p
PpDp +

ρ

T
TpDT

)
∇p −

(
ρ

p
PT Dp +

ρ

T
TT DT

)
∇T. (38)

When m1 = m2 or γb = 0, then DU = 0 as expected from the previous result obtained for IHS. The diffusion

coefficients D, Dp, DT , and DU can be easily identified after inserting Eq. (38) into Eq. (25). As expected, while the

coefficients D, Dp, and DT are coupled, the coefficient DU obeys an autonomous equation whose solution is

DU =


γb

m
β

1

1 −
ρ1

ρ

m
β

2
− m

β

1

m
β

2

 + νD


−1

γbρ1ρ2

ρ

m
β

2
− m

β

1

(m1m2)β
. (39)

The coefficients D, Dp, and DT verify the following set of linear algebraic equations:

ρ

p
Px1

Dp +
ρ

T
Tx1

DT +
m1m2n

ρ


γb

m
β

1

+ νD

 D = p
∂

∂x1

(x1χ1) +
γbρ1(m

β

2
− m

β

1
)

ρ2(m1m2)β−1

p

T
D, (40)

ρ

p
PpDp +

ρ

T
TpDT +

ρ

p


γb

m
β

1

+ νD

 Dp = x1χ1

(
1 − ρ1

ρx1χ1

)
+ x1 p

∂χ1

∂p
+
γbρ1(m

β

2
− m

β

1
)

p(m1m2)β−1
Dp, (41)

ρ

p
PT Dp +

ρ

T
TT DT +

ρ

T


γb

m
β

1

+ νD

 DT = x1 p
∂χ1

∂T
+
γbρ1(m

β

2
− m

β

1
)

T (m1m2)β−1
DT . (42)

In dimensionless form, the explicit solutions to Eqs. (40)–(42) are

D∗p =
a23a30 − a33a20

a23a32 − a22a33

, D∗T =
a32a20 − a22a30

a23a32 − a22a33

, D∗ =
a10 − a12(D∗p + D∗

T
)

a11

, (43)

where we have introduced the quantities

a11 = νD + m
β
ω∗ξ∗1/3

ρ1m
β

1
+ ρ2m

β

2

ρ(m1m2)β
, (44)

a12 = −2ω∗ξ∗1/3 M
−β
1

m
β

2
− m

β

1

m
β

2

∂

∂x1

(x1χ1) + ξ∗M1−λ
1

mλ−1
2
− mλ−1

1

mλ−1
2

−
∂ζ∗

0

∂x1

, (45)

a10 =
∂

∂x1

(x1χ1), a22 = a11 + a23, a20 = x1χ1 −
ρ1

ρ
+ x1 p

∂χ1

∂p
, (46)

a23 = −2ω∗ξ∗1/3 M
−β
1

m
β

2
− m

β

1

m
β

2

x1 p
∂χ1

∂p
− p

ν0

∂ζ(0)

∂p
, (47)

a20 = x1χ1 −
ρ1

ρ
+ x1 p

∂χ1

∂p
, (48)
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a32 = −2ω∗ξ∗1/3 M
−β
1

m
β

2
− m

β

1

m
β

2

x1T
∂χ1

∂T
− ξ∗

∑

i

xiM
1−λ
i − T

ν0

∂ζ(0)

∂T
, (49)

a33 = a11 + a32, a30 = x1T
∂χ1

∂T
. (50)

Here, we have introduced the dimensionless quantity

ω∗ =
γb

m
β


m
λ

2ξ2
b


1/3 (

nσd−1
12

)−2/3
. (51)

As for homogeneous states, the expressions of the diffusion transport coefficients coincide with those approximately

derived for IHS in the first Sonine approximation. The explicit expressions for the derivatives appearing in Eqs. (43)

can be found in Ref. [3].

To illustrate the influence of inelasticity of collisions on mass transport, Fig. 2 shows the dimensionless coeffi-

cients D∗, D∗p, and D∗
T

as a function of the common coefficient of normal restitution (αi j ≡ α) for a two dimensional

system and several values of the mass ratio. It is quite apparent that the influence of collisional dissipation on mass

transport is in general important.
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D
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FIGURE 2. Reduced diffusion coefficients D∗, D∗p, and D∗T as a function of the (common) coefficient of restitution α for an

equimolar binary mixture (x1 =
1
2
) of hard disks (d = 2) with φ = 0.00758, σ1/σ2 = 1, and three different values of the mass

ratio: m1/m2 = 0.5 (black), m1/m2 = 2 (red), and m1/m2 = 4 (blue). The volume fraction for hard disks is φ =
∑

i niπσ
2
i
/4. The

parameters of the driven model are γb = 0.1, ξ2
b
= 0.2, β = 1, and λ = 2.

CONCLUSIONS

In this paper, we have studied some dynamic properties of granular mixtures driven by a stochastic bath with friction.

In addition, to obtain the exact forms of these properties, IMM have been considered instead of the more realistic

model of IHS. As for elastic collisions, in IMM the collision rate of two colliding particles is independent of their

relative velocity so that the collisional moments of the Boltzmann operator can be exactly computed without the

knowledge of the distribution functions. Our study has been carried out in two steps. First, we have analyzed the

homogeneous steady state where the partial temperatures (measuring the mean kinetic energy of each species) have

been determined in terms of the parameter space of the system. Our exact results show that the equations for the partial

temperatures are the same as those obtained for IHS when non-Gaussian corrections to the distribution functions are

neglected. Then, the diffusion transport coefficients have been also obtained from the application of the Chapman–

Enskog method to the Boltzmann equation. A surprising result is that the expressions found for IMM agree with those

obtained for IHS [3] in the first Sonine approximation.

As an application of the general calculation, we have evaluated the temperature ratio T1/T2 and the diffusion

coefficients D, Dp, and DT for several systems. Figure 1 shows that T1/T2 is a decreasing function of the mass

ratio m1/m2 if the remaining quantities are kept equal for both species. It is worthwhile to note that this is not an

obvious result since the thermostat differentiates between particles of different masses. Similar results are found if the

temperature ratio is plotted versus both the diameter ratio σ1/σ2 and the composition ratio φ1/φ2. The comparison of

these theoretical results against MD simulations of IHS [13] shows an excellent agreement, even for quite disparate

130004-8



values of the mass and/or diameter ratios. The effect of the mass ratio on the diffusion coefficients has been also

explored in Fig. 2. We observe that the (scaled) diffusion coefficient D∗ is a decreasing function of the common

coefficient of normal restitution with a slight dependence on the mass ratio. A different behavior is observed with the

(scaled) pressure diffusion coefficient D∗p and the (scaled) thermal diffusion coefficient D∗
T

, since in both cases there

is a significant dependence on the mass ratio. Thus, while D∗p decreases (increases) with increasing inelasticity when

m1 > m2 (m1 < m2), the opposite happens for D∗
T

.

In summary, we can conclude that the exact results obtained here for IMM give support again to the use of this

interaction model as a reliable model for describing transport properties of driven granular mixtures of IHS.
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[17] V. Garzó, M. G. Chamorro, and F. Vega Reyes, Phys. Rev. E 87, 032201 (2013).

130004-9

https://doi.org/10.1103/PhysRevE.88.052201
https://doi.org/10.1023/A:1018627625800
https://doi.org/10.1103/PhysRevE.61.R5
https://doi.org/10.1023/A:1020437925931
https://doi.org/10.1023/A:1004804815471
https://doi.org/10.1023/A:1023828109434
https://doi.org/10.1103/PhysRevE.89.052201
https://doi.org/10.1063/1.4871628
https://doi.org/10.1103/PhysRevE.97.022902
https://doi.org/10.1103/PhysRevE.87.022201
https://doi.org/10.1103/PhysRevE.87.032201

