
Chapter 42
First-Order Contributions to the Partial
Temperatures in Dilute Binary Granular
Suspensions

Rubén Gómez González and Vicente Garzó

Abstract The Boltzmann kinetic equation is considered to evaluate the first-order
contributions T (1)

i to the partial temperatures in binary granular suspensions at low
density. The influence of the surrounding gas on the solid particles is modeled via a
drag force proportional to the particle velocity plus a stochastic Langevin-like term.
The Boltzmann equation is solved by means of the Chapman–Enskog expansion
around the local version of the reference homogeneous base state. To first-order
in spatial gradients, the coefficients T (1)

i are computed by considering the leading
terms in a Sonine polynomial expansion. In addition, the influence of T (1)

i on the
first-order contribution ζ(1) to the cooling rate is also assessed. Our results show that
the magnitude of both T (1)

i and ζ(1) can be relevant for some values of the parameter
space of the system.

42.1 Introduction

In the last years, the understanding of granular matter under rapid flow conditions
has raised the interest of many researchers due not only to its practical applications
but also due to the fact that the understanding of its properties is really an exciting
challenge. At a more fundamental level, the description of polydisperse granular
mixtures (namely, the gaseous state of a mixture of smooth hard spheres with inelas-
tic collisions) has been focused on themodification of the kinetic theory of molecular
gases to properly adapt it to the dissipative character of collisions among particles.
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Although the influence of inelasticity is reflected in all the transport coefficients, the
main new feature (as compared with ordinary or molecular fluids) in the hydrody-
namic equations is the presence of the so-called cooling rate ζ in the energy balance
equation. The cooling rate (which vanishes for elastic collisions) measures the rate
of energy dissipation due to inelastic collisions [1, 2].

One of the most intriguing and surprising effects of inelasticity in granular mix-
tures is the failure of energy equipartition in the homogeneous cooling state [2].
This means that the partial temperatures Ti of each component are different from the
global granular temperature. The energy nonequipartition (which is only due to the
inelastic character of collisions) has important effects in problems such thermal dif-
fusion segregation. On the other hand, a new contribution to the breakdown of energy
equipartition (additional to the one caused by the inelasticity in collisions) has been
reported very recently [3]. Although considered in previous works of ordinary gases
[4], this new contribution (which is associated with a nonzero first-order term T (1)

i
in the expansion of the partial temperatures in powers of the gradients) had not been
accounted in previous works of granular mixtures. Since T (1)

i is proportional to the
divergence of the flow velocity U (i.e., T (1)

i = �i∇ · U), the coefficient �i is also
involved in the evaluation of the first-order contribution ζ(1) to the cooling rate ζ.

Although the coefficients �i have been computed in the case of dry granular
mixtures (namely, a granular mixture where the influence of the interstitial fluid on
the dynamics of grains is neglected), we are not aware of a similar calculation for
binary granular suspensions at low density. The objective of this paper is to evaluate
the coefficients �i in granular suspensions where the effect of the surrounding gas
is modeled by means of an effective external force [5] composed by two terms: (i) a
viscous drag term that mimics the friction of grains with the surrounding fluid and
(ii) a stochastic term representing random and uncorrelated collisions between grains
and fluidmolecules. Once the first-order T (1)

i contributions to the partial temperatures
are evaluated, as a complementary goal, wewill also assess the impact of T (1)

i on ζ(1).

42.2 Boltzmann Kinetic Equation for Binary Granular
Suspensions

We consider a granular binary mixture of spheres of masses mi and diameters σi

(i = 1, 2). Spheres are assumed to be completely smooth so that, the inelasticity
of collisions is characterized by the constant (positive) coefficients of restitution
αi j ≤ 1. The solid particles are immersed in a viscous gas of viscosity ηg. In the
low-density regime, the set of Boltzmann equations for the one-particle velocity
distribution functions fi (r, v, t) of the component i reads [2]
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∂ fi

∂t
+ v · ∇ fi − γiΔU · ∂ fi

∂v
− γi

∂

∂v
· V fi − γi Tex

mi

∂2 fi

∂v2
=

2∑

j=1

Ji j [ fi , f j ].
(42.1)

Here, ΔU = U − Ug , U and Ug being the mean flow velocities of the solid parti-
cles and the interstitial gas, respectively, V = v − U is the peculiar velocity, and
Ji j [ fi , f j ] is the Boltzmann collision operator [2].

At low Reynolds numbers, it has been assumed in Eq. (42.1) that the effect of
the surrounding molecular gas on the solid particles is modeled by a drag force
proportional to v − Ug plus a stochastic Langevin force representing Gaussian white
noise. While the drag force mimics the friction of grains with the interstitial gas,
the stochastic force models the kinetic energy gain of solid particles due to the
interaction with the background gas. In addition, γi is the drag or friction coefficient
associated with the component i and Tex is the temperature of the external gas. Note
that the viscosity of the solvent ηg ∝ √

Tex.More details of this kind of Langevin-like
models can be found in Refs. [6, 7]. Here, for the sake of simplicity, we consider the
coefficients γi to be scalars proportional to the viscosity ηg [5]. In this case, according
to the results obtained in lattice-Boltzmann simulations [8], γi is a function of the
partial volume fractionsφi = πd/2/

(
2d−1dΓ

(
d
2

))
niσ

d
i , ni being the number density

of the component i . Based on the restriction that in the dilute limit every particle is
only subjected to its respective Stokes drag [8], γi = γ0Ri where γ0 = (

18ηg/ρσ2
12

)

and the dimensionless function Ri = (ρσ2
12/ρiσ

2
i )φi . Here, σ12 = (σ1 + σ2)/2, ρ =∑

i ρi is the total mass density, and ρi = mi ni is the mass density of the component
i . Upon deriving the form of γi we have considered hard spheres (d = 3) and binary
mixtures (i = 1, 2).

42.3 Homogeneous Steady States

Before analyzing inhomogeneous states, it is desirable to study first the homogeneous
case. In this situation, the partial densities ni are constant, the granular temperature
T = x1T1 + x2T2 is spatially uniform, and with an appropriate selection of the ref-
erence frame, the mean flow velocities vanish (U = Ug = 0). Here, xi = ni/n and
n = n1 + n2 is the total number density. After a transient regime, the system is
expected to reach a steady state and so, Eq. (42.1) becomes

− γi
∂

∂v
· v fi − γi Tex

mi

∂2 fi

∂v2
=

2∑

j=1

Ji j [ fi , f j ]. (42.2)

For elastic collisions (αi j = 1), the cooling rate vanishes and in the case that
γ1 = γ2 = γ, Eq. (42.2) admits theMaxwellian solution with a common temperature
T1 = T2 = T . For inelastic collisions (αi j �= 1), ζ �= 0 and to date the solution of
Eq. (42.2) is not known. Thus, one has to consider approximate forms for fi . Here,



344 R. Gómez González and V. Garzó

Fig. 42.1 Plot of the
temperature ratio T1,s/T2,s
as a function of the common
coefficient of restitution α
for an equimolar mixture
(x1 = 0.5) of hard spheres
(d = 3) with σ1/σ2 = 1, and
T ∗
ex = 0.1. Three different

values of the mass ratio are
considered: m1/m2 = 0.5
(a), m1/m2 = 4 (b), and
m1/m2 = 10 (c)

for the sake of simplicity and to compute the first velocity moments of fi , we will
replace fi by the Maxwellian distribution at the temperature Ti :

fi (v) → fi,M(v) = ni

(
mi

2πTi

)d/2

exp

(
−miv

2

2Ti

)
, (42.3)

where the partial temperatures Ti are defined as

Ti = mi

dni

∫
dv V 2 fi (v). (42.4)

The (reduced) partial temperatures τi,s = Ti,s/Ts can be obtained by multiplying
both sides of Eq. (42.2) bymiv

2 and integrating over velocity. The result is 2γ∗
i,s(τi,s −

θ−1
s ) + ζ∗

i,sτi,s = 0, where the subscript s means that all the quantities are evaluated in
the steady state. Here, γ∗

i,s = �γi,s/v0s, θs = Ts/Tex, ζ∗
i,s = �ζi,s/v0s, v0s = √

2Ts/m

is the thermal speed,m = ∑
i mi/2, and � = 1/nσd−1

12 is the mean free path of elastic
hard spheres. In the Maxwellian approximation (42.3), the (reduced) partial cooling
rates ζ∗

i,s for the partial temperatures Ti,s can be easily evaluated. Its explicit form
can be found for instance in Eq. (5.51) of Ref. [2]. The temperature ratio T1,s/T2,s

is plotted in Fig. 42.1 versus the (common) coefficient of restitution α ≡ αi j . As
expected, failure of equipartition in the homogeneous steady state is presented when
the collisions are inelastic (α �= 1). In addition, it is quite apparent that the extent of
the energy violation is greater when the mass disparity is large.

42.4 First-Order Contributions to the Partial Temperatures

We now slightly perturb the homogeneous steady state by small spatial gradients.
These gradients give rise to nonzero contributions to the mass, momentum, and heat
fluxes. Here, we want to compute the first-order contributions to the partial temper-
atures. In order to achieve them, we have to solve the Boltzmann equation (42.1)
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by means of the Chapman–Enskog method [9] adapted to dissipative dynamics. As
usual, the Chapman–Enskog method assumes the existence of a normal or hydrody-
namic solution where all the space and time dependence of the velocity distribution
functions fi (v, r, t) occurs via a functional dependence on the hydrodynamic fields.
For small spatial gradients, this functional dependence can be made local in space
through an expansion of the distribution functions in powers of the spatial gradi-
ents: fi → f (0)

i + f (1)
i + · · · . Here, only terms up to first order in gradients will be

retained (Navier–Stokes hydrodynamic order).
The first-order contributions T (1)

i to the partial temperatures are defined as

T (1)
i = mi

dni

∫
dv V 2 f (1)

i (V). (42.5)

Given that the procedure to determine T (1)
i is relatively large, we display here only

the final results. More technical details can be found in Ref. [10]. As said in the Intro-
duction, T (1)

i can bewritten as T (1)
i = �i∇ · U. In the leading Sonine approximation,

the coefficients �i obey the set of algebraic equations

2∑

j=1

[
ωi j + 2γ j x j

(
τi + θΔθ,i

) − 2γiδi j +
(

T (0)
i + T θΔθ,i

)
ξ j

]
� j =

− 2

d
T θΔθ,i − T

2∑

j=1

n j
∂λ1

∂n j
Δλ1,i , (42.6)

where the coefficients ξi are defined by Eq. (25) of Ref. [10] while the collision
frequencies ωi i and ωi j are given by Eqs. (26) and (27), respectively, of Ref. [10].
Moreover, the expressions of the derivatives Δθ,i , ∂λ1/∂n j , and Δλ1,i are displayed
in Ref. [10]. Upon deriving Eq. (42.6), use has been made of the identity ζ(1) =∑

i ξi�i∇ · U ≡ ζU ∇ · U. The solution to the set of equations (42.6) provides the
explicit forms of �1 and �2. It is seen that �2 = −(x1/x2)�1, as the solubility
conditions of the Chapman–Enskog method requires.

Figure42.2 shows theα-dependence of�∗
1 ≡ (nσ2

12v0/T )�1 and ζU for different
systems. We observe that the influence of the inelasticity on both �∗

1 and ζU is
important, specially for strong inelasticity. Thus, both quantities should be taken
into account in the kinetic description of binary granular suspensions.

In summary, we have determined the first-order contributions T (1)
i to the partial

temperatures in binary granular suspensions. The fact that T (1)
i �= 0 yields a new con-

tribution (additional to the one caused by inelasticity in collisions) to the breakdown
of energy equipartition. Since this contribution is proportional to the divergence of
the flow velocity, it is involved then in the evaluation of the first-order contribution
ζU to the cooling rate. Our results show that the magnitude of both coefficients T (1)

i
and ζU can be significant in some regions of the parameter space of the system. This
conclusion contrasts with the results obtained for dry granular mixtures [11, 12]
where it was shown that both coefficients vanish in the low density limit.
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Fig. 42.2 Plot of the (reduced) coefficients �∗
1 and ζU as a function of the common coefficient

of restitution α for an equimolar mixture (x1 = 0.5) of hard spheres (d = 3) with σ1/σ2 = 1, and
T ∗
ex = 0.1. Three different values of the mass ratio are considered: m1/m2 = 0.5 (a), m1/m2 = 4

(b), and m1/m2 = 10 (c)
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