
10. F. Guerra, About the Overlap Distribution in Mean Field Spin Glass Models,

Int. J. Mod. Phys.B to appear.

11. D. I~niguez, G. Parisi and J. Ruiz-Lorenzo. To be published in Journal of

Physics A. Report cond-mat/9603083.

12. C. de Dominicis, I. Kondor and T. Temesv�ari, to be published.

13. H. Rieger, in Annual Reviews of Computational Physics II (World Scienti�c,

Singapore 1995), p. 295.

14. S. Franz, G. Parisi and M. Virasoro, J. Phys. I (France) 2, 1869 (1992).

8



In the droplet theory (in this theory the spin glass is an \adapted ferromagnet")

the blocked probability distribution P

R

(q

R

) should tend to the sum of two Dirac

deltas approximately at q

R

� q

EA

in the regime 1 � R � L (in order to avoid

�nite size e�ects).

We have studied the Binder parameter

g(R; t) �

3

2

�

hq

4

R

i

2hq

2

R

i

2

(14)

measured after t Monte Carlo steps. Using the dynamical �nite size Ansatz we can

write (for large R)

g(R; t) = f

�

�

R�(t)

�1

�

�

�

: (15)

Our date follow very well this scaling Ansatz. The Binder function extrapolates

to a value that is far away from the \droplet" value 1, the Binder cumulant of the

sum of two Dirac deltas. We have checked this result for two di�erent temperatures

(T = 0:35 and 0:7).

Summarizing, we have shown di�erent behaviours of di�erent observables that

can not be explained by the droplet theory, while the broken replica approach is

able to predict qualitatively (and in a few cases even quantitatives) these behaviors.

And so we believe that the broken phase of the three dimensional spin glass has the

characteristics predicted by Mean Field.
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5 A Simple Equality

Using the properties of the Gaussian integrals is very easy to relate the link energy

with the q � q correlation function at distance 1

E

link

= ��(1 � C(1)) ; (10)

where E

link

is the energy per link and C(x) is the q � q correlation function of the

fully equilibrated system (i.e. taking into account all the possible ergodic compo-

nents).

The value of the energy per link is very well �tted (as a function of the Monte

Carlo time), and so we have a accurate value for C(1), by the form

E

1

link

+ At

��(T )

: (11)

The exponent �(T ) is large, i.e. we �nd �(T ) ' 0:44T , so that it is easy to

extrapolate the value of the energy to in�nite time. Using the results of reference

14

(by computing the interface energy using SRSB theory) we expect that �(T ) =

2:5�(T ), in a very good agree with our data.

If the replica symmetry is broken then our q � q correlation function G musts

di�er from the \equilibrium" correlation function C(x) because G(x) only contains

two ergodic components. The equality

C(1) = G(1) (12)

should be violated if the replica symmetry is broken. This happens in the Sherring-

ton-Kirkpatrick model in the spin glass phase where the equality E = �

�

2

(1� q

2

EA

)

does not hold.

While we �nd that the equality (12) is good satis�ed (with less that a relative

1% error) in the paramagnetic region and at the critical temperature, it is violated

below T

c

; at T = 0:35 we �nd C(1) = 0:802 � 0:001 and G(1) = 0:67 � 0:01, at

T = 0:7 we obtain C(1) = 0:612 � :001 and G(1) = 0:56 � 0:01. The broken of

the equality (12) shows the existence of di�erent ergodic components, and then the

overlap correlation function depends on the choice of the component, in agreement

with one of the prediction of the SRSB theory.

6 Box Overlaps

In this last section we will analyze the local overlap in a box of side R,

q

R

(x) � R

�D

X

y

�

x+y

�

x+y

; (13)

where y is an integer vector which takes all the R

D

values compatible with the

conditions 0 � y

�

< R. We calculate the probability distribution P

R

(q

R

) of the

local box overlap.

In the mean �eld SRSB limit the function P

R

(q

R

) is Gaussian, but in �nite (not

too large) dimensions it is reasonable to expect strong deviations from the previous

Gaussian behaviour.
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let L ! 1 �rst we can use this approach to study the equilibrium value of the

correlation function with the constraint of having zero overlap.

In order to do that we consider the time dependent equal time correlation

function at time t

G(x; t) = V

�1

X

i

h�

i+x

�

i+x

�

i

�

i

i

t

; (7)

where the average is done at time t, i.e. after tMonte Carlo cycles after the random

start. We �nd that for large times t the correlation function G(x; t) is essentially

di�erent from zero for distances not too larger than a dynamic correlation lengthy

�(t) which increases (and maybe diverges) with time. Our numerical data are well

represented with the functional form

G(x; t) =

A(T )

x

�

exp

n

�

�

x

�(T; t)

�

�

o

; (8)

where we have de�ned �(T; t) � B(T ) t

�(T )

. In the whole range of distances 1 �

x � 8 for Monte Carlo times which range from 10

2

to 10

6

full lattice sweeps and

a large range of temperatures T < T

c

(we have done measurements at di�erent

temperatures, down to T

min

' :3T

c

) we get good �ts. The exponents � and �

are weakly dependent on T . For example at T = 0:70 we get the best values

� = 0:50 � 0:02 and � = 1:48 � 0:02. The correlation length exponent �(T ) is

approximately given by 0:16T . Such power law growth of the correlation length

was already observed by Rieger

13

. In order to study the limit t!1 in a safe way

it is even better to avoid global �ts and to �t the data at �xed distance x as

G(x; t) = G(x;1) exp

n

�A(x) t

��(T )

o

: (9)

In this way the extrapolation to in�nite time (with the self-implemented constraint

of q = 0 always satis�ed) is performed in a very safe way. We have checked that

the extrapolated correlators G(x;1) (computed at T = 0:7) as a function of the

distance follow a very good straight line in double logarithmic scale for x up to 5

(where the statistical error becomes large).

We have also computed the same quantities by using a di�erent temperature

schedule. In this second numerical experiment we slowly cool down the system

from T = 1:5 > T

c

to the �nal temperature. To perform the cooling we use a

number of steps proportional to t, the waiting time we want to look the correlation

function at. After that the system evolves at the �xed temperature of interest T

for t more time steps before measurement. In this way one can obtain a much

better equilibration. As matter of principle in this case one does not expect a pure

power law but a combination of di�erent powers generated by di�erent temperature

contributions. However a �t similar to the previous one (9) works very well with a

slightly large value of of �. The data obtained with the two techniques behave in

a very similar way. The t =1 data are well described by a power decay x

��

with

� = 0:50� :03, as predicted by the replica theory and in variance with the droplet

model predictions.
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we have that in mean �eld

hq

k

i

J

hq

m

i

J

=

2

3

hq

k

i

J

hq

m

i

J

+

1

3

hq

k+m

i

J

; (4)

where by the overline we indicate the average over the quenched noise. We have

veri�ed that in the low T region this equality is very well satis�ed. For example

for k = 2 and m = 2 at T = 0:7 and L ranging from 4 to 10 the ratio of the

l.h.s. to the r.h.s. of (4) is equal to 1:0 with an error never larger than 0:1. It

is remarkable that Francesco Guerra has been able to prove

10

that (4) has to be

exactly satis�ed in mean �eld models with quenched disorder, and that the proof

can also be generalized to systems de�ned in a �nite number of dimensions: it will

be important to understand in better detail how signi�cant these relations are, and

how far they can lead it on the route of detecting ultrametric like behaviors

11

.

Strictly speaking the non-triviality of the function P (q) is not in violent con-

tradiction with the droplet model. In the framework of the droplet approach it

is always possible to suppose that states where domains that take a �nite part of

the whole system are reversed have a �nite probability. This hypothesis is however

rather unnatural and it is de�nitely wrong in the Migdal-Kadano� approximation.

Moreover we have already seen that the ability of the SRSB theory to predict quan-

titatively the 
uctuations of the function P (q) is remarkable.

4 Time Dependent Correlation Functions

We will now falsify the possibility discussed in the last paragraph by considering

the q�q correlation functions restricted to those pairs of con�guration which have a

small value of q. The analysis of such correlation functions, together with the non-

triviality of the P (q), will constitute an ultimate test of the failure of the droplet

model.

More precisely we consider a system of side L and we de�ne the relevant corre-

lation function as

C(x; L) = V

�1

h

X

i

�

i+x

�

i+x

�

i

�

i

i ; (5)

where the brackets indicate the thermal average. The droplet model predicts that

C(x;1) goes to the constant value q

2

EA

for large x. In the SRSB approach

C(x;1) / jxj

��

; (6)

where � in an appropriate exponent which has been computed in less than 6 dimen-

sions for the q = 0 correlation functions

12

.

We have studied this problem by considering large systems, with L = 64. We

have run numerical simulations starting from two random con�gurations selected

independently (for 4 realizations of the quenched couplings). We have veri�ed that

q

2

stays small in the whole run so that the di�erence in the initial con�gurations,

for not too large times, enforces the condition q � 0. Eventually in a �nite system

global equilibrium will be reached and q will become of order 1. However if we

4



Mainly thanks to the use of large computer resources (we have mainly used the APE

parallel computer

8

, which turns out to be very e�ective for this kind of problems

6

:

we 
ip about 2 � 10

8

spins per second on the tower version of the machine ) and of

the tempering (an annealing-like improved Monte Carlo technique introduced in

9

)

we have been able to study systems of larger sizes than before (up to 14

3

). We were

able to bring the samples to thermal equilibrium quite deep in the cold phase. We

will see that this information is complemented by our dynamical study, where we

work on time scales on which we can equilibrate the system on distances up to order

6. This gives a good control over the fractal geometry of the typical excitations and

of their boundaries. This is what we need in order to distinguish between SRSB

theory and Migdal-Kadano� droplets.

3 P (q) and its Momenta

The �rst crucial comment is that some features of the shape of the function P (q) are

(within our statistical precision) size independent. For instance, the non-zero value

of the plateau at low q values, down to q = 0, turns out to be size-independent. Also

at T = 0:7 the Binder cumulant of q is practically independent of the lattice size

and it is equal to 0:85� :01. This means that the system has a non-trivial structure

of equilibrium states with a continuous distribution of the allowed overlap values.

By using our measurements of equal time correlation functions we will argue in the

following that such states cannot be described by the droplet approach, while they

have all the features predicted by the SRSB approach.

In this note we do not answer a very important question, i.e. if in the in�nite

volume limit a low-temperature phase characterized by the existence of a non zero

order parameter q

EA

exists. On the lattice volumes we are able to investigate the

high q peak of the P (q) is very slowly shifting toward lower q values, even if, as

we already said, the shape of the P (q) does not change. The extrapolation to the

in�nite volume limit looks in this case a very delicate issue, and many potential

systematic errors (even in the de�nition of the �nite volume q

EA

) are involved.

Here we will not address in detail this point, and assume that we are working in

conditions where the system is e�ectively frozen to a phase with a non-zero value of

q

EA

. A possible scenario

4

of a correlation length diverging exponentially for T ! 0

or of a Kosterlitz-Thouless like transition would be compatible with this approach,

since on our �nite lattice we would be measuring properties of a frozen system. It

is also important to note that this ambiguity only concerns the behavior of the high

q peak of the P (q) (which could tend to q = 0 on very large lattices), while on

the contrary the P (q) for small q values is non-trivial and does not depend on the

lattice size.

The agreement with mean �eld theory becomes quantitative if we study sample

to sample 
uctuations. Mean �eld theory tells us how much the function P

J

(q) for

a given realization of the quenched disorder di�ers from the average. For example

if we consider

hq

k

i

J

�

Z

dq P

J

(q) q

k

; (3)
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ref.

6

). We will start by showing that the probability distribution of the overlap

among two systems at equilibrium, P (q), has a non-trivial structure. P (q ' 0)

is di�erent from zero, and its shape does not depend on the volume size. We

will analyze (following a suggestion contained in the third reference of

7

) sample

to sample 
uctuations of the spin-glass susceptibility, and �nd out that they are

incompatible with the droplet model, while their size is very well explained (even

in a quantitative manner) by SRSB theory. In order to show that the structure of

the di�erent equilibrium states is not compatible with a droplet structure we will

compute and analyze equal time correlation functions. From this analysis we deduce

the existence of many equilibrium states that cannot be described by a droplet like

structure. We will also show that even at a quantitative level SRSB theory explains

very well the numerical data.

Further evidence about the inadequacy of the droplet model to describe the 3d

spin glasses and support to a SRSB mechanism will be provided by analyzing the

distribution of overlaps of boxes of side R, and by discussing the behavior of the

box overlap Binder parameter.

2 The Numerical Simulation

The model we mainly consider is de�ned by the simple Edwards-Anderson Hamil-

tonian on a 3d simple cubic lattice

H � �

X

fi;kg

�

i

J

i;k

�

j

; (1)

where the sum runs over nearest neighbor couples of sites. The quenched disor-

dered couplings J are distributed according to a Gaussian law. A study of the

overlap susceptibility and of the Binder cumulants shows that (under the a-priori

assumption about the existence of a phase transition at a non-zero temperature

with a power law divergence of the correlation length) the transition is located at

T � 1. In order to check universality of our results we have also studied a model

6

with integer J = �1 variables, where each spin is coupled with equal strength to

26 neighboring sites (all the ones contained in a cube of 3

3

sites). The results we

discuss here are con�rmed by our �ndings about this second model.

We have used an isotropic lattice of linear size L, and we have computed the

probability distribution P

J

(q) of the overlap

q � V

�1

X

i

�

i

�

i

(2)

among two thermalized con�gurations � and � in a box of volume V = L

3

. We

have studied the behavior of the function P (q) averaged over a large number of

realizations of the quenched disordered couplings J (i.e. the average over the J

random variables of P

J

(q)). We have used a maximum of 2560 samples for the

smallest lattice sizes and a minimum of 512 samples for the largest sizes. It was

already known (see for example

4

and references therein) that this quantity is non-

trivial and it has a shape quite similar to the one predicted in the mean-�eld model.
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We establish evidence that spontaneous replica symmetry breaking theory and not the

droplet model describes with good accuracy the equilibriumbehavior of the 3d Ising spin

glass. We analyze numerical simulations of the static and the dynamical behavior of the

system.

1 Introduction

Mean �eld spin models with quenched disorder are at this point well understood

1;2

.

The solution of mean �eld is non trivial, and new ideas play a very relevant role.

The mean �eld approach predicts the existence of a low temperature glassy phase,

characterized by the existence of many di�erent equilibrium states (spontaneous

replica symmetry breaking, SRSB). Many new features emerge: states have an

ultrametric structure, a small magnetic �eld does not destroy the spin-glass phase

and some observable quantities can have sample-to-sample 
uctuations. On the

other hand it is possible to de�ne a di�erent consistent theory

3

by starting from

the Migdal-Kadano� approach. By using a common terminology we will refer in the

following to this approach as to the droplet model. Here one expects the equilibrium

state to be unique (apart from global inversions in zero magnetic �eld) and that

the most relevant excitations are obtained by reversing large domains of spins (the

droplets).

There are two di�erent starting points. One is the in�nite range approximation

which leads to the replica symmetry breaking picture and the other is the Migdal-

Kadano� approximation which leads to the droplet model. Although each of the

two pictures is correct in its range of validity we have to establish which of the two

qualitatively describes the physics of the real three dimensional spin glasses.

The main result of this work (which continues the investigation started in

4

, and

follows a long series of Monte Carlo simulations of spin glass systems

5

) has been to

gather new and strong evidence that in three dimensions the SRSB picture (and not

the droplet model) describes correctly what is observed in numerical simulations.

Let us start by summarizing the evidence we will present in this note and the

scheme of our reasoning (for a more detailed exposition of these and more data see

a

Talk presented by E.M.
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