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Figure 4: D as a function of r for T = 0:45, L = 128. The line is our best �t to the

behavior D(r) = c

1

P (r) + c

2

by using data with 3 � r � 45.

where errors have been evaluated by using the jack-knife method. The value of the residual

�

2

(per degree of freedom) is very good, close to 0:2 (but since the data points are very

correlated the number does not have necessarily a deep meaning). The agreement with

the renormalization group prediction (see equation (21)) is very good. Our best numerical

estimate for d

�

is �c

1

=24.

4 Conclusions

Our main conclusion is that the discrete Gaussian model for surfaces with a disordered

substrate in the low-T region is non-Gaussian on large length scales. Such an evidence

was needed to exclude the possibility of a short distance e�ect that could disappear in the

asymptotic long distance regime.

The picture which emerges from our analysis is therefore incompatible with the Gaus-

sian variational Ansatz, calling for the broken phase being super-rough. Finally, our data

give numerical evidence for d

�

being non-zero, the behavior of D(r) at low temperatures re-

sulting in good agreement with the logarithmic growth expected from the renormalization

group approach.
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Figure 3: D as a function of r at T = 0:40 (4) and T = 1:0 (2) for L = 64.

We show in �gure (3) D(r) as a function of r for L = 64 at the highest temperature we

have considered (T = 1:0) and at the lowest one (T = 0:4). That makes clear the di�erence

between the high-T region, where D(r) is extremely small even at short distances and when

increasing r becomes soon compatible with zero, and the broken phase where it is de�nitely

non-zero and shows an evident increasing behavior.

The fact that in the broken phase D increases with r is clear from �gure (4), where

D(r) is plotted as a function of r for T = 0:45, L = 128. That clearly shows that the

non-Gaussian behavior of the model in the broken phase is not a short-distances e�ect.

We have tried a quantitative analysis of the behavior of D(r), at a temperature well

below the critical point. Following [7, 19], we use in the �t the lattice Gaussian propagator

P (r) �

1

2L

2

L�1

X

n

1

=1

L�1

X

n

2

=0

1 � cos

�

2�rn

1

L

�

2� cos

�

2�n

1

L

�

� cos

�

2�n

2

L

�

'

L�1

1

2�

h

log r + 
 log(2

p

2)

i

; (23)

which enables us to keep �nite size e�ects under control. The data are very well �tted by

the expected behavior D = c

1

P (r)+c

2

. Unfortunately errors grow quickly with r and data

for r � 40 basically do not in
uence the �t.

In �gure (4) we show our best �t obtained by using data with 3 � r � 45 (disregarding

ten more points at short distance does not change the results):

10

4

D = (114 � 3)P (r) + (36 � 3) ; (24)
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Figure 1: The Binder parameter as a function of T at di�erent r � 4 values. L = 64. Lines

are only meant to join neighboring points. Triangles (r = 4), squares (r = 5), pentagons

(r = 6), hexagons (r = 7), etc.

Figure 2: B as a function of r for T = 0:45 and L = 128.
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B

RG

T<T

c

(r; T ) =

24d

�

log r

(

4�

�

�

log r +

�

g�

�

2

(log r)

2

)

2

'

r�1

24d

�

�

2

�

�

g

log

3

r

: (22)

So, if d

�

6= 0, D(r) grows logarithmically with r. On the other hand according to the

renormalization group picture lim

r!1

B(r) = 0 ' (log r)

�3

. These are the theoretical

predictions we use to interpret our numerical �ndings.

As a last remark we want to notice that by studying a large N version of the Random

Phase Sine Gordon model, Bernard and Bauer [12] found �

g�

to beO

�

1

N

3

�

. This means that

there is no (log r)

2

contribution to the height-height correlation function in the N ! 1

limit in which the Gaussian Ansatz of the variational approach, corresponding to the

leading order in a

1

N

expansion, is expected to be exact.

3 Numerical Results

We have obtained our numerical data from simulations done on the Ape-100 computer [23].

We have used square lattices of linear size L = 64 and L = 128, with periodic boundary

conditions. We have �xed the surface tension � to 2. We have chosen the quenched random

variables f�

i

g uniformly in the range (�

1

2

;+

1

2

].

We have simulated in parallel a total of 256 di�erent realizations of the quenched

substrate, and two uncoupled replicas for each sample. We have used a simple Monte

Carlo local dynamics, by proposing to update in turn the fd

i

g by an increment of �1. We

have used an annealing scheme, in which we have visited in turn decreasing values of the

temperature T (T = 1:0, 0:95, 0:90, : : :, 0:40 for L = 64 and T = 0:90, 0:80, 0:70, 0:65,

0:60, 0:45, 0:35 for L = 128). At each T values the thermalization sweeps were 0:5 million

for L = 64 and 0:7 million for L = 128 (for further details see [7]).

We show in �gure (1) B(r) as a function of T for di�erent r � 4 values. We plot the

data obtained on the smaller lattice, L = 64, since here we had a larger number of T values,

but the behavior at L = 128 is very similar. When comparing L = 64 and L = 128 in the

statistical precision of our runs there is no size dependence for r � 20.

Deviations of B(r) from the Gaussian behavior at small distance become evident even

for T � 0:85. The breakdown of the curves (for higher r values) in �gure (1) is on

the contrary compatible with the theoretical prediction T

c

=

2

�

. When looking at �nite

distances one �nds a crossover (that does not correspond to a true critical behavior) for

T > T

c

[19]. Only measuring on large lattices real long distance properties one recovers the

correct critical point, which turns out to coincide with good precision with the theoretical

predictions.

So, at lower T values the Binder parameter stays non-zero on larger length scales. What

is even more important is the breaking of the slope of B versus T (see �gure (1)). From

our data we can say that for T < 0:65 the system is surely in its broken phase.

In �gure (2) we plot B(r) as a function of r for T = 0:45 and L = 128. Here the fast

decay at short distance and the slow decay for large r is very clear.

The data shown in �gure (2) are qualitatively in very good agreement with the predic-

tion of (22), with a non zero value of d

�

.
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Now one has to play the usual replica trick (at this stage with exact replica symmetry

by de�nition). One writes an e�ective action for n replica's of the system, and takes the

n! 0 limit. The � functions of the model (for the running of �, g and �) turn out to be

�

�

= 2x� � 2�

2

+ : : : ;

�

g

=

�

2

2

+ : : : ;

�

�

= 0 ; (15)

where we have de�ned x �

���

c

�

, and � is not renormalized. So in the low T phase, for

� > �

c

, it exists a non trivial infrared �xed point at �

�

, with

�

�

= x+ : : : for x� 1 : (16)

At �

�

we have �

g

=

x

2

2

, i.e. g still 
ows (see Bernard [13] for the characterization of such

a run away �xed point).

We are interested in renormalization group predictions for correlation functions. At the

infrared �xed point one �nds that

G(r) � he

i�(�(r)��(0))

i

�

= r

�2


�

e

�

�

2

�

g�

2�

2

(log r)

2

; (17)

where 


�

is the anomalous dimension at the �xed point, 


�

=

�

2

�

�

�

+ O(�

4

), and �

�

=

1 + O(x). We have already noticed that �

g�

=

x

2

2

(and it gives the large distance (log r)

2

behavior of the correlation function).

By expanding G in powers of � one �nds that at all orders in perturbation theory (in

the replica symmetric renormalization group approach)

h(�(r) � �(0))

2

i =

4�

�

�

log r +

�

g�

�

2

(log r)

2

; (18)

and for small x

h(�(r)� �(0))

2

i =

4

�

log r +

x

2

2�

2

(log r)

2

: (19)

In the same way for the four point correlation function we �nd that

h(�(r)� �(0))

4

i = 3

 

4�

�

�

log r +

�

�g

�

2

(log r)

2

!

2

� 48d

�

log r ; (20)

where we have de�ned d

�

the unknown coe�cient of the �

4

contribution to the anomalous

dimension 


�

, which we expect to depend from the temperature and that could even be

zero. That means that in the renormalization group approach we �nd that

D

RG

T<T

c

(r; T ) = 48d

�

log r ; (21)

where D

RG

T<T

c

does not depend on �

�

g

, and
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the investigation of [7, 19]. Here we will try to use the knowledge of the full probability

distribution (8) in order to gather more information about the system.

To characterize the probability distribution we measure

D(r; T ) � 3

�

h�

2

(r)i

�

2

� h�

4

(r)i ; (9)

that together with C(r) allows us to de�ne the Binder cumulant of P:

B(r; T ) �

1

2

 

3 �

h�

4

(r)i

(h�

2

(r)i)

2

!

: (10)

In the thermodynamic limit a value B = 0 characterizes a Gaussian behavior.

The work of [7] was based on the analysis of the Binder parameter for r = 1, that was

providing evidence for a non Gaussian behavior in the low-T region. We will try here to

answer some questions that are still open after [7], looking at the long distance behavior of

correlation functions: that will allow us to exhibit more evidence for a clear non-gaussian

behavior. A purely Gaussian behavior could indeed be hidden for small r by short distance

e�ects, and manifest itself only in the large r region. Analyzing B(r) in the large r region

would make this e�ect clear.

In order to understand what to expect for B we will use renormalization group (replica

symmetric, to start with). We will mainly follow the approach described by Bernard in his

Les Houches lecture notes [13]. In the �eld theoretical renormalization group approach we

start from the continuum version of (2) by writing

S =

Z

d

2

x

4�

�

�

2

(@

�

�(x))

2

� � cos (�(x)� d(x))

�

; (11)

where the �(x) are the basic �elds of the theory, and the d(x) are the quenched random

�eld which make the system disordered. Universality is used to argue that these di�erent

systems exhibit the same critical behavior. Following Bernard renormalization calls for a

generalization of this model: one introduces, in addition to the random phases, a random

potential. If one would not do that at the start the random potential would in any case

be generated by renormalization. So one writes

S =

Z

d

2

x

4�

�

�

2

(@

�

�(x))

2

�A

�

(x)@

�

�(x)� �(x)e

i�(x)

� �

�

(x)e

�i�(x)

�

; (12)

where the quenched �elds � are distributed according to

P [�] = e

�

1

2�

R

d

2

x

4�

��

�

; (13)

and the �eld A

�

can be written, by noticing that the rotational part decouples, as A

�

(x) �

@

�

�(x), and it is distributed as

P [A

�

] = e

�

1

2g

R

d

2

x

4�

(@

�

�)

2

: (14)

A U(1) symmetry guarantees to the model some remarkable properties. For example the

g-dependence of the correlation functions of the vertex operator e

i��

can be factorized.
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A relevant observable quantity is the correlation function de�ned by

C(r; T ) � h(�(r

0

)� �(r

0

+ r))

2

i : (4)

In the high-T phase thermal 
uctuations make the quenched disorder irrelevant. Both

renormalization group and the variational theory predict a Gaussian behavior with a log-

arithmic growth of the height-height correlation function

C

T>T

c

(r; T ) '

T

k�

log r : (5)

The critical temperature is expected in both approaches to be T

c

=

�

�

.

The renormalization group approach �nd that for T < T

c

one has a super-rough broken

phase characterized by

C

RG

T<T

c

(r; T ) ' a log r + b log

2

r ; b =

2

�

2

�

T

c

� T

T

c

�

2

; (6)

where a is a non-universal coe�cient.

On the other hand the Gaussian Ansatz of the variational approximation hints for no

log

2

r contribution, and the broken phase turns out to be described by a one-step replica

symmetry broken solution with

C

VAR

T<T

c

(r; T ) '

T

c

k�

log r ; (7)

i.e. where the slope of the logarithmic term freezes at the critical point T

c

.

Let us recall in a few lines some of the main numerical results relevant for the problem.

The authors of [15] studied the continuous model without being able to detect any signature

of the transition when measuring static quantities, probably [16] because of the small �

value they used. Indeed for such small values of the coupling the di�erence from the pure

case becomes sizable only on very large length scales. In [17] numerical estimates for

the correlation function C(r) of the discrete model were found to be compatible with the

picture expected from the variational theory. Finally, evidence for the (log r)

2

contribution

to C(r) in the broken phase has been obtained in the case of the discrete model [7] and in

that of the continuous model for di�erent � values [19].

2 The Binder Parameter

In this note we will mainly discuss about the distribution function of the height-height

correlation functions at distance r. We de�ne the probability distribution

P[�(r); T ] � h� [�(r)� (�(r

0

)� �(r

0

+ r))]i ; (8)

where by h� � �i we denote the thermal average (and here also an average over di�erent

values of r

0

), and by � � � we denote the average over disorder. For sake of computational

simplicity in the following we will only consider displacements r of the form (r; 0) or (0; r).

The second moment of P is the usual height-height correlation function C(r), the focus of
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1 Introduction

The disordered discrete Gaussian model (that we will denote hereafter as discrete model)

is related to the 2D random phase Sine-Gordon model (that we will denote the continuum

model). The two models belong to the same universality class, which includes di�erent

physical systems: for example it is supposed to describe crystalline surfaces growing upon

a disordered substrate [1], as well as 2D randomly pinned arrays of 
ux lines with the

magnetic �eld parallel to the superconducting plane [2].

The standard approach used to investigate this model is renormalization group (RG)

[1]-[4]. The application of the Mezard-Parisi variational approximation [5] (originally de-

veloped for models with continuous replica symmetry breaking) leads to a one-step replica

broken solution [6], and because of that it is problematic [7]: still the main features found

in the variational approach are very di�erent from the ones found by using the standard

renormalization group. The most evident di�erence is maybe in the behavior one expects

in the broken phase for the height-height correlation function.

A considerable amount of work (see, for instance, [6]-[19]) has been devoted to the

subject. Contrary to some former claims the situation has been shown to be in agreement

with the existence of a broken super-rough phase, as implied by the renormalization group

approach, by the numerical simulations of [7, 19].

Recently very convincing further evidence for the system being super-rough down to

T = 0 has been established in references [20]-[22], by exact computations of the ground

state of �nite volume samples of the discrete model.

In this letter we focus on the non-Gaussian behavior of the discrete model in the broken

phase. We show that it persists on large length scales. This is de�nitely not compatible with

the predictions of the variational theory

1

. On the contrary our data are well compatible

with the behavior suggested by the renormalization group computations.

Labeling with fd

i

g the integer valued dynamical variables and by f�

i

g the quenched

disorder, the Hamiltonian of the discrete model is

H[�] �

�

2

X

<ij>

(�

i

� �

j

)

2

; �

i

� d

i

+ �

i

; (1)

where the sum runs over �rst neighboring sites of a bidimensional lattice. The model is

related to the limit of coupling constant �!1 of the continous model

H[�] �

�

2

X

<ij>

(�

i

� �

j

)

2

� �

X

i

cos (2�(�

i

� �

i

)) ; (2)

where now �

i

are the continuous dynamical variables.

The partition function is de�ned as

Z

�

�

X

e

��H

; (3)

where � =

1

T

is the inverse temperature of the problem.

1

We remind again the reader that we are here in the framework of a one step replica broken solution,

and that this kind of criticisms [7] does not apply to the variational theory when describing a continuum

breaking [5].
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Abstract

We study the behavior of the Binder cumulant related to long distance correlation

functions of the discrete Gaussian model of disordered substrate crystalline surfaces.

We exhibit numerical evidence that the non-Gaussian behavior in the low-T region

persists on large length scales, in agreement with the broken phase being super-rough.


