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In the tempered heat bath scheme we simulate lattices L = 10; 16; 20 and 24 and we

have allowed �ve temperatures with �

max

= 0:223 �xed and �

min

, again, depends on the

lattice size, e.g. �

min

(L = 24) = 0:2212. We �rst select the points at the lower � value

(in order to be able to compare to the heat bath results). Again we try the �ts to the

functional forms (10), and (11). In this case the �t to an exponential slowing down is not

a good �t. The �

2

=d:o:f: is close to 15, more than 50 times larger than the best �t to a

power dependence. The power we �nd in our best �t (a

2

) is 1:76� :06, i.e.

� ' L

1:76

: (12)

6 Conclusions

Our numerical experiments have shown us that the tempering method does transform an

exponential slowing down in a power law e�ect. Even if we have discussed the tunneling in

the cold phase of the 3d Ising model, where these states are related by a Z

2

symmetry, our

conclusions do not depend on such a symmetry. The fact that tempering works remarkably

well for speeding up 3d spin glass simulations in the cold phase [6, 7] is connected to the

behavior we have discussed here.
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log � = a

1

+ a

2

L

2

; (10)

and we �nd a �

2

=d:o:f: close to one, and a

1

= 4:52 � 0:04, a

2

= 2� = 0:0041 � 0:0002.

A very good �t, and a value of the surface energy very close to the best known value of

0:0025 from ref. [17]. We also try a power law slowing down �t, for

log � = a

1

+ a

2

logL ; (11)

and we get an unreasonable �

2

=d:o:f = 8. Things do not work so well for lower values of

T . We are still seeing the correct exponential slowing down, but we number we estimate

for the surface tension does not coincide with the number estimated in the literature. We

believe the main reason for this mismatch is the poor estimation of the tunneling time due

to the little number of ip-ops between the two minima and consequently the great error

in the inverse of this number of ip-ops, i.e. the tunneling time. Also we should notice

that we are on a symmetric cubic lattice, while an elongated lattice would be needed for a

fair and accurate estimate.

We have run the tempering scheme in lattice sizes L = 10; 16; 20; 22 and 24 by allowing

values of � which do not lead the system in the warm phase. The system is con�ned in the

cold phase, and we do not expect to make the tunneling from one phase to the other one

very easier. This is indeed what happens. We simulate the tempering algorithm with �ve

temperatures with �

max

= 0:225 �xed and �

min

depends on the lattice size, for instance

�

min

(L = 24) = 0:223, and we only analyze the data correspond to the lower temperature

(� = 0:225); the best �t is by far the one to an exponential slowing down (10), with

parameters a

1

= 3:44(5), a

2

= 0:0097(2) with �

2

=d:o:f: = 0:67. In next section we will

discuss how does the e�ective implementation of the tempering method performs.

5 Tempering Among Cold and Hot Phase

As a last step we have done what has to be done. We have set up a tempered simulation

where the system is allowed to ip in and out the cold phase. We same way of reasoning we

have used before to show that tempering cannot eliminate the power law critical slowing

down at T

c

tells us now that on the contrary we can expect tempering to transform the

exponential ip-op slowing down in a power law behavior. Indeed here the number of �

steps needed to connect warm and cold phase only increases with a power law (this is a

somehow an unaivodable feature of a method which improves the sampling scheme). The

point is that after we have ipped to the hot phase we loose memory of the state we are

coming from, and when going back in the cold phase we will fall in a random state. So,

since the way in which the allowed � windows around �

c

shrinks is dictated by a power

law we expect to only �nd a residual power law slowing down.

The results for the pure heat bath algorithm are the ones we have discussed in the

previous section. We get there an exponential slowing down basically governed by the

surface tension.
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4 Below T

c

: the Relaxation Time when Tempering

in the Wrong Phase

In this section we will obtain two results. One will be based on the HB method. We will

show that by measuring directly the tunneling time by heat bath we get an estimate of

a quantity that thanks to the computation of ref. [15] is indeed connected to the surface

tension (even if the quantitative agreement is not perfect). The second result will be

negative (as expected), and useful to prepare the positive result of the following section.

We will show that when running the tempering on a set of � values which remain in the

cold phase and do not enter the warm phase (i.e. �

m

> �

c

) the tempered Heat Bath

algorithm undergoes the usual exponential slowing down (with a coe�cient very close to

the one would expect to get at the highest values of T included in the values selected for

the tempering scheme).

In the low temperature phase the equilibrium distribution between coexistent phases is

� exp(�cL

d�1

), since the coexistent phases are separated by free energy barriers of order

L

d�1

(surface free energy). In this case the conventional local algorithms (e.g. Heat-Bath

or Metropolis) undergo an extremely severe slowing down

3

. The autocorrelation time,

tunneling or ergodic time in this context, behaves as

� � exp(cL

d�1

) : (8)

So while at T

c

the system undergoes a critical \power" slowing down, for T < T

c

an

\exponential" slowing down exists, induced by the slow motion from one pure state to the

other one.

The previous formula (8), for the d-dimensional Ising model, can be deduced through

the calculus of the mass gap i.e. the inverse of the tunneling time) using semiclassical

methods and considering only the contribution of one instanton [15]. One gets in this way

an estimate for the constant c of (8). The results is:

� � exp(2�(T )L

d�1

) : (9)

One can identify �(T ) with the surface free energy. The two in the argument of the

exponential comes from the use of periodic boundary conditions in the semiclassical calculus

(when using periodic boundary conditions one has to create two interfaces). This formula

(9) is also relevant when discussing the Ising model in a cylindrical geometry [16].

Our results obtained by using the Heat Bath dynamics show that indeed the result (9)

can be substantiated numerically. For example at � = 0:223 and lattice sizes L = 10; 16; 20

and 24 we �t our results for �

T

by

3

In this context we will not discuss about cluster algorithms, since they use the a priori knowledge of

the Z

2

symmetry relating the two broken states to allow a (trivial) ip from the plus to the minus state. In

the context of the disordered systems, where there exist many equilibrium states non related by symmetry

operations, this feature is not interesting.
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L Sweeps �

E

�

jM j

�

M

2

Swendsen-Wang

16 4.7 5.40(9) 4.87(8) 5.27(9)

32 4.7 7.94(16) 6.9(1) 7.6(1)

64 4.8 11.3(3) 9.6(2) 10.7(2)

Swendsen-Wang with Tempering

16 13.9 5.7(1) 5.04(8) 5.47(9)

32 14.7 7.91(18) 6.91(14) 7.50(16)

64 8.9 10.8(3) 9.1(3) 10.0(3)

Table 1: The number of full lattice sweeps (in unit of 10

6

), and our best estimates for

the autocorrelation times. All runs have been started at equilibrium, after a number of

thermalization sweeps.

Method z

E

z

jM j

z

M

2

SW(Wol�) 0.50(3) 0.50(3)

SW 0.54(2) 0.49(2) 0.51(2)

SW & T 0.46(2) 0.43(2) 0.44(2)

Table 2: Our results for the critical dynamical exponents for SW and SWT. We also report

the data obtained by Wol� with the Swendsen Wang algorithm (SW(Wol�)).

Our results for SW are compatible with the Wol� results (our statistical sample is 4

times larger than the former one). The results we obtain for SWT are lower than the

SW ones, but of a very small amount, already quite compatible if we only consider the

statistical error. If we also consider the large (unknown) systematic error (we are asking an

asymptotic, correction free value from three not so huge lattice sizes) we can safely state

that the two sets of results are fully compatible.

The HB and HBT data are also completely compatible with what we expected. In

the local dynamics z ' 2 in all cases, and the tempering only changes the non-universal

constant factor.

So, tempering does not change the divergence rate of the correlation times at the

critical point. This was to be expected, since the tempering is not really changing the

critical dynamics of the system, but is favoring the jumps from one sector of the broken

phase to an other one. Next we will study the correlation time in the broken phase, and

will see that here the tempering can be a crucial help.
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(obtaining HBT and SWT, with a quite obvious notation). We will show numerically that

in both cases tempering does not change the critical exponent z.

It is easy to develop an intuitive argument

2

suggesting that tempering cannot eliminate

the critical divergence of the correlation time which is proper of the underlying algorithm

(for example Heat Bath dynamics). It is clear indeed that if we want the critical slowing

down to be defeated we have to let � variate in the range [�

m

(L); �

M

(L)] such that the

correlation length at the two extremes is �xed in lattice units. But in order to do that in

the in�nite volume limit we will need a divergent number of �

�

values around �

c

(since the

�� allowed to keep �xed acceptance of the � change will be asymptotically in�nitesimal).

In slightly more quantitative terms one can start from the fact that the optimal ��

(which guarantees, let us say, an acceptance factor of the order of 50%) is [1, 4, 8]

��

2

'

1

hH

2

i � hHi

2

=

1

V C

V

; (6)

i.e. is connected to the uctuations of the internal energy of the system, and to the speci�c

heat of the system. Using the fact that at the critical point the speci�c heat scales as

C

V

' L

�

�

(7)

we get that the optimal value of �� scales as L

�

1

2

(d+

�

�

)

(or using the scaling relation as

L

�

1

�

), and goes to zero in the in�nite volume limit. Notice that at �

c

� �� the correlation

length scales as L and consequently with a �xed number of � values the z exponent should

not change. If we try to keep the system at a �xed correlation length for some � the

number of � values needed diverges.

In order to check this scenario we have simulated the 3D Ising model by using the

Heat Bath and the Swendsen Wang algorithm. To both of them we eventually added a

tempering part (and as we already said we denote the two modi�ed algorithms by HBT

and SWT respectively). In all cases we have allowed 5 � values to the tempering procedure.

The central � value has been kept �xed to �

c

' 0:22165, and the �� has been changed

when changing the lattice size. We have used �� = 0:005158 for L = 16, �� = 0:001642 for

L = 32 and �� = 0:000527 for L = 64. So �

m

(L) = �

c

�2��(L), and �

M

(L) = �

c

+2��(L).

To estimate the autocorrelation times and its error bars we have used a self-consistent

truncation window algorithm with width 6 �

int;A

as described in the references [12, 11].

We give the number of full lattice sweeps and our estimates for the integrated correlation

time for SW and SWT in Table 1. We have estimated the integrated correlation time for

di�erent observable quantities (the energy, the absolute value of the magnetization and the

magnetization squared).

We have analyzed the data of table 1 using the form (5). Our best estimates for the z

values are given in table 2. For completeness we add the Wol� results obtained for the 3D

Ising model with the Swendsen-Wang algorithm [13, 14].

2

We thank Sergio Caracciolo for a discussion of this point.
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that would be the true error over A if the con�gurations collected during the dynamics were

uncorrelated. On the contrary we call �

(TRUE)

A

the true statistical error over A. �

(TRUE)

A

can be estimated for example by binning the measured quantities A

t

in bins large enough

to make the � estimated independent from the bin size. One �nds that

�

(int)

A

=

0

@

�

(TRUE)

A

�

(NAIVE)

A

1

A

2

: (4)

One can roughly estimate that, as far as the value of the observable A is concerned, the

number of independent con�gurations produced by the algorithm is

T

2�

(int)

A

.

At a critical point, where a correlation length � is diverging when T ! T

c

, the correla-

tion times do typically diverge. One gets that the integrated correlation time

�

(int)

A

' �

z

(int)

A

: (5)

The usual argument tells that a local dynamics has z � 2, since the system is undergoing

a random walk in con�guration space. Transmitting information from site x to site y at

distance � with a pure random walk takes a time of order �

2

. Since we need to carry

information at a distance of order �, 2 turns out to be a lower bound for z (additional

slowing down phenomena can make z larger).

In order to study the tunneling relaxational dynamics we de�ne a tunneling time �

T

by counting the number of steps needed to the system to go from the (let us say) plus

ground state to the minus ground state and back. On a �nite lattice this de�nition can be

plagued from ambiguities, since it is not completely clear when the system has completed

a transition. That de�nes a � window in which for a given lattice size things go smoothly.

We are in the broken phase. � cannot be too close to �

c

since in this case the transition

signature becomes murky. But � cannot be too high or we never get transitions (which we

call ip-op), at least when using the normal local Monte Carlo dynamics. In this paper

we have tried to work with � values which satisfy this constraint. We did not seem to have

problems in de�ning in a non-ambiguous way the transition from a ground state to the

other one.

When using the tempering all correlation times are de�ned by �rst selecting the con-

�gurations which were characterized by the relevant � value. That means that the real

computer time taken for a given tempered measurement is N

�

times larger than the one we

quote here. The scaling of N

�

has always to be accounted for when analyzing the scaling

properties of the correlation times.

3 The Autocorrelation Time at T = T

c

In this section we will discuss the behavior of the correlation time at T = T

c

. We will

compare the usual local heat bath dynamics (HB) with the Swendsen-Wang (SW) algorithm

(which severely reduces critical slowing down). We will apply tempering to both approaches
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main result of this note, and we shortly describe its main implications is Section (6).

2 A Few De�nitions

In the following we will give a few de�nitions concerning typical time scales of the random

dynamics underlying our evaluation of the Ising model partition function. So doing we will

be mainly following Alan Sokal very comprehensive book-like lecture notes [11].

Let us start by stressing that correlation times can be de�ned for the di�erent observ-

ables (A, let us say) of the theory, and generically they will not need to be equal. We

de�ne the exponential correlation time by the large time decay of the connected correlation

function

�

A

(t) � hA(0)A(t)i

c

' C expf�

t

�

(exp)

A

g ; (1)

for t ! 1, where A(t) is the value that the observable quantity A takes at the time t,

and we take the connected part (indicated by the subscript c) by subtracting

1

hAi

2

. As

we have explained we are explicitly remarking the A dependence of this time scale, and

by the su�x (exp) the fact that it has been de�ned from the exponential decay of the

correlation function. This asymptotic behavior of the correlation function is corrected, at

�nite time, by sub-leading contributions. We can have, for example, logarithmic corrections

in the exponent, and a sum of a series of time dependent contributions to the correlation

function.

Integrating �(t) over all times t we can de�ne the integrated correlation time

�

(int)

A

�

1

2�(0)

1

X

t=�1

�(t) ; (2)

where we have assumed a discrete time dynamics (the extension to a continuum time

dynamics is straightforward), and the factor 2 makes the integrated time equal to the

exponential time in the case of a pure exponential decay (at all times) of the correlation

function.

The integrated correlation time has a special relevance, since it is strictly connected to

the statistical error which a�ects the numerical data. Indeed, again following [11], one can

relate directly �

(int)

A

to the true statistical error over A. Let us de�ne �

(NAIVE)

A

as the naive

uctuations of A. For a dynamics of T steps (starting after thermalization, i.e. already at

thermal equilibrium) if hAi is the expectation value of A we de�ne

�

(NAIVE)

A

�

v

u

u

t

P

t

(A

t

� hAi)

2

T (T � 1)

; (3)

1

We are assuming we have reached thermal equilibrium, and our time series is invariant under time

translations.
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1 Introduction

The tempering updating method [1] has been introduced recently in order to speed up

simulations of statistical systems. Methods very similar in nature were already in use in

the framework of molecular dynamics simulation [2]. Multicanonical methods [3] also have

deep similarities with the tempering approach.

The main idea of tempering (see also [4, 5, 6, 7, 8, 9]) is to let the temperature to

become a dynamical variable, and to let it vary in the course of the dynamics. Tempering

is in some sense a sophisticated kind of annealing, where the system is always at thermal

equilibrium. Already in its �rst proposal and implementation of ref. [1] the tempering

method turned out to be very e�ective when employed to study the low T phase of the 3d

Random Field Ising Model.

There are some important advantages in the tempering approach (and in this note we

will try to establish a new positive evidence). The �rst one is maybe that tempering is

very simple, and that the spin con�gurations one generates by the tempering dynamics are

distributed according to the Boltzmann distribution. There is no need for any weighting

or reanalysis (improved estimation schemes can obviously be employed). We want also to

stress that tempering parallelization is trivial. The algorithm is local, but for the use of a

rare global communication, in the form of an add-reduce function.

Apart from the technical advantages we have just recalled there are important physical

reasons for which methods like tempering are becoming important. Indeed an improved

Monte Carlo approach seems crucial, for example, for an e�ective numerical study of �nite

dimensional spin glasses [4, 8, 10, 6, 7]. The problem of the behavior of three dimensional

system is still quite open, and improved numerical methods look here crucial. The main

issue is the transition among di�erent local minima of the free energies. In the course of

the dynamics the system gets trapped in local minima, and the warming up allowed by the

tempering favors the exploration of di�erent local minima.

Here we study the normal, non disordered, 3d Ising model. Here in the cold phase

there are two states, and we will look at the transition rate among these two states as

prototype for a general transition among local minima. The Ising model is interesting

since it is the simplest possible model, and since in this case it is very clear what going

from a given state to another one means (one uses the magnetization to monitor the state

to state transition). We will show that tempering allows to reduce the exponential slowing

down that local methods like heat bath updating encounter to a power law slowing down.

In Section (2) we de�ne the quantities that we will discuss in the following. In Section

(3) we discuss the autocorrelation time at the critical point T = T

c

. We show that, as

we would have expected, in this case tempering cannot change the critical exponent z. In

Section (4) we discuss two main issues. In �rst we show that by counting ip-ops of a

local dynamics we can get hints about the surface tension. In second we show that if we

let the tempering wander (in � space) only in the cold phase the exponential slowing down

survives. In Section (5) we show that if we let the tempering pass the border of T

c

and

change T among the two phases the slowing down becomes power law like. This is the
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Abstract

We discuss the tempering Monte Carlo method, and its critical slowing down in

the 3d Ising model. We show that at T

c

the tempering does not change the critical

slowing down exponent z. We also discuss the exponential slowing down for the

transition from the plus to the minus state in the cold phase, and we show that

tempering reduces it to a power law slowing down. We discuss the relation of the

ip-op rate to the surface tension for the local dynamical schemes.
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