
hep-lat/9406011

A Proposal of a Renormalization Group Transformation

for Lattice Field Theories

L. A. Fern�andez, A. Mu~noz Sudupe, and J.J. Ruiz-Lorenzo

�

,

Departamento de F��sica Te�orica, Universidad Complutense de Madrid, 28040 Madrid, Spain,

(e-mail: laf, sudupe, ruiz@lattice.�s.ucm.es)

A. Taranc�on,

Departamento de F��sica Te�orica, Universidad de Zaragoza, 50009 Zaragoza, Spain.

(e-mail: tarancon@sol.cie.unizar.es)

(June 15, 1994)

Abstract

We propose a new Real Space Renormalization Group transformation use-

ful for Monte Carlo calculations in theories with global or local symmetries.

From relaxation arguments we de�ne the block-spin transformation with two

tunable free parameters, adapted to the system's action. Varying them it is

possible to place the �xed point very close to the simulation point.

We show how the method works in a simple model with global symmetry:

the three dimensional XY model.
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I. INTRODUCTION

Real Space Renormalization Group (RSRG) methods have become an extremely useful

tool for understanding critical phenomena. The use of the Renormalization Group (RG)

ideas in the framework of Monte Carlo simulation has been very successful. However there

are some di�culties that restrict their use, specially in gauge theories.

The main problem is the necessity of using many couplings to describe the RG trajectory

after several scale transformations. In the case of gauge theories, the preservation of the

local symmetry adds a further di�culty in the de�nition of the Renormalization Group

Transformation (RGT).

To avoid the appearance of many new signi�cant couplings, we need to improve the RGT

in order to get the RG �xed point closer to the simulation point. In this way the generated

couplings are of relatively less importance and thus the truncation errors are strongly reduced

[1]. This idea has been applied to spin [1] and gauge [2] theories. In these works a sum over

neighbor spins or over di�erent paths is made. The mean is weighted depending on some

free parameters which can be tuned.

Consequently, the way of constructing e�ciently the Renormalized Fields (RF) is a key

problem. While the mean over neighbors gives good results in simple models, it becomes

more involved with complex actions.

The situation gets worse when considering gauge theories. In such a case the necessity

of preserving gauge invariance forces to take the mean over ordered products of �elds along

�xed{ends trajectories. This calculation is in practice carried out only for close end{points,

because, otherwise, the number of needed trajectories becomes very large. When comput-

ing in parallel machines this procedure can become very time consuming. Moreover the

chosen trajectories should not leave the considered block, in order to avoid the exchange of

information among them.

On the other hand it is well known the existence of powerful relaxation techniques in the

study of several problems like spectroscopy [3] or topological studies [4]. From the point of
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view of spectroscopy calculations, the idea is to reduce the short distance uctuations, thus

obtaining a better projection of the operators over the desired physical state.

According to the actual form of the action an ad hoc transformation of the �elds (smear-

ing) is built that damps the high frequencies. We remark that in the gauge case it has sense

only to consider the smoothing of the energy distribution or of any other gauge invariant

operator, not of the �elds themselves, as the local symmetry makes meaningless the concept

of local value of the �eld.

Our proposal for a RGT consists in a two step procedure. We �rst perform a relaxation

transformation, suitable both for spin and gauge theories, and then, a simple change of scale

(blocking) by a factor of two in order to de�ne the RF. There are free parameters in the

transformation that allow us to place the �xed point of the RGT over a wide region of the

coupling space. The best choice corresponds to place it close to the simulation point. By

iterating the RGT it is possible to reach lattice sizes as small as desired; down to side L = 2

if we start, as will be done in this article, from lattices with side L = 2

l

.

The study of the coupling ux in the parameter space is useful to compute the �xed points

and critical exponents [5]. Using the Schwinger{Dyson Equations (SDE) on the lattice [6]

it is also possible to measure the renormalized coupling at every RG step.

In this paper we use the 3{dimensional XY model, with well known phase diagram

and with critical exponents accurately measured, to simplify the discussion and adjust the

method. We will particularize the notation to this case. We remark that the main usefulness

of this proposal lies in the framework of a gauge theory. Our attention will be focused in

what can be learned in this simple model, namely: how to choose the better transformation,

how to estimate the systematic errors, which is the best way to reduce the statistical errors,

etc..

In section 2 we present the details of the method, leaving the discussion of the Schwinger{

Dyson equations for section 3. In section 4 we study the ux diagram and �xed point

location, computing the critical exponent � in section 5. A Finite Size Scaling analysis is

shown in section 6. Finally section 7 is devoted to conclusions.
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II. RGT: SMEARING AND BLOCKING

A. Smearing

Let us consider a real scalar �eld '(x; � ) where x belongs to a d-dimensional space. One

method [3] to damp the high spatial frequencies of a given con�guration is to consider the

evolution driven by the heat equation

@'(x; � )

@�

= ��'(x; � ); (1)

whose solution in terms of the Fourier transform

b

'(k; � ) is

b

'(k; � ) =

b

'(k; 0)e

���k

2

: (2)

In this way, with an appropriate selection of � and � it is possible to eliminate frequencies

higher than a desired cuto�.

In practice to compute a � -evolution following equation (1) is very easy in the lattice.

Calling '

n;s

� '(na; sb), after a discretization of the Laplace operator we obtain the fol-

lowing iterative scheme

'

n;s+1

= '

n;s

+ �

X

�

('

n+�;s

+ '

n��;s

� 2'

n;s

); (3)

where � = �b=a

2

, � = 0; : : : ; d � 1 and � is the unit vector in the � direction.

For a general system those equations are substituted by any iteration that locally reduces

the energy. This process depends on the form of the action and is not univocally determined;

moreover, the variables may belong to a compact group and, in order to keep them inside

it, we may have to project them back in a speci�c way. Another possibility, that avoids the

projection over the group, is to work with variables outside it, in this case however the a

priori unknown anomalous dimension of the new �elds should be considered in order to �nd

the �xed point.

In many spin systems as well as in gauge theories, we can schematicallywrite the partition

function as
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Z =

Z

[dg] exp

8

<

:

� �

0

@

X

f�g

g

�

X

f�g

h

y

��

1

A

9

=

;

; (4)

where g

�

and h

��

belong to a compact Lie group, and � is a character function of the

considered group. In spin models h

��

= g

�+�

, and f�g extends over the nearest neighbors

in the forward direction for instance. On gauge models f� � (n; �)g stands for all links,

h

��

= g

staple

��

, and f�g extends over the staples connected to the link �.

Although the proposed methods are general for spin or gauge and abelian or non abelian

systems, in order to simplify the notation hereafter we will restrict ourselves to U(1), where

g = e

i�

with � 2 (��; �]. By the same reason we will consider the fundamental representa-

tion, i.e. the more simple action, with �(g) = Re g = cos �.

The simplest generalization of equation (3) is

g

�;s+1

= P

2

4

g

�;s

+ �

X

f�g

h

��;s

3

5

; (5)

where P means the projection over the group (division by the modulus in the present case).

This transformation is performed in all lattice sites in such a way that in the computation

of g

�;s+1

in (5) only the variables at smearing step s are used, even though some neighbor

sites could have been already modi�ed. The variation of the energy computed changing

g

�;s

! g

�;s+1

without modifying h

��;s

is always negative. However, after a whole sweep,

when all variables are changed, the reduction is expected only for the mean value of the

energy.

In disordered con�gurations g

�

h

y

��

is not near to 1 (in the XY model

D

g

�

h

y

��

E

� 0:3 near

the critical point), and there are not clear a priori arguments for selecting (5) between many

other transformations.

In fact we will use the following one

g

�;s+1

= g

�;s

2

4

P(g

y

�;s

X

f�g

h

��;s

)

�

3

5

; (6)

where for the �-power de�nition we select the argument of the basis in the (��; �] interval

(for other groups we would select suitable symmetric regions). If we write

X

f�g

h

��

= Ce

i�

�

,

5



it is easy to see that the local reduction of the energy, which always holds, does not depend

on the factor C, thus its smoothing intensity is similar for disordered (small C) or ordered

con�gurations.

We have numerically found that the transformation (6) performs better than (5) regard-

ing the stability of the observables. All the numerical results presented in this paper have

been obtained with the transformation (6). We will present in section IV some numerical re-

sults about the performance of the procedure as a function of � and the number of relaxation

iterations n

s

.

B. Blocking

The relaxation procedure considered above does only half of the work needed in a RGT.

After it, the high frequencies have been damped out and relevant (low frequency) information

has been propagated along the lattice.

After the relaxation procedure all renormalized �elds at small distances are nearly equal,

as we have uctuations only at large distances (or small momenta). This makes nearly

irrelevant the sum over paths or over di�erent points for spin systems, and therefore we

can follow a simple decimation procedure to perform the blocking transformation without a

signi�cant loss of information. For a gauge theory the decimation consists in replacing the

product U

2n;�

� U

2n+�;�

by a new link of the blocked lattice, discarding the rest.

Our complete RGT consists then of the following steps:

1. On the original lattice we perform n

s

iterations with (6).

2. We block the system by a factor 2, using decimation.

We are then left with two free parameters, n

s

and �, which permit us to control the

position of the �xed point inside the critical surface.

Beginning from a cubic (L

d

) lattice with log

2

L integer, after iterating the RGT up to a

blocked lattice side equal to L = 2 we have a sequence of sizes fN

b

= L=2

b

g and renormalized
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�elds and couplings ff�

b

g; �

b

g where b = 0; : : : ; log

2

L is the block level with b = 0 being

the original lattice.

On the original lattice the dynamics is governed by the value of the unrenormalized �

i

parameters. In the blocked lattices the distribution of the �elds comes from the original

distribution and from our RGT.

We can compute on these lattices not only the observables but also the couplings needed

in order to obtain the same values for the observables in an independent simulation: the

renormalized couplings (see next section).

Starting from a lattice of side L with couplings � = (�

1

; : : : ; �

n

; : : :) (N

0

and �

0

respec-

tively in the previous notation) we arrive to N

1

and �

1

after a RGT. The movement from

�

0

to �

1

represents the RG ux starting from �

0

after a RGT with a scale change of 2. This

discussion applies to all levels of RGT. Once on the �xed point the system does not evolve

anymore. We remark that in order to accomplish that, it is crucial that all the steps must

be identical at all the blocking levels.

III. SDE FOR THE XY MODEL

We will apply, as an example, the precedent method to the three dimensional XY model.

The conclusions that we will obtain will be hopefully of a wider generality.

The partition function for that model is

Z =

Z

[d�] exp

(

�

1

X

n;�

cos(�

n

� �

n+�

)

)

; (7)

where � is the unitary vector in the the � direction and the sum in � extends from 0 to

d� 1.

In d = 3 this model has a second order phase transition, with a global symmetry breaking

for

D

e

i�

E

, at �

1;c

= 0:45420(2) and thermal critical exponent � in the range 0:66� 0:67 [7,8].

We will use these values to compare with our computation.

In general, when we perform a RGT new couplings will be generated in the system.

Our goal will be that after iterating the RGT in the XY model only the nearest neighbors
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coupling, �

1

, will be signi�cantly non zero, after an appropriate selection of the smearing

parameters n

s

and �.

In order to check it, let us suppose that this is not the case, and compute more renor-

malized couplings to see if they are e�ectively zero. We will compute only the next to

nearest renormalized coupling, that is, an interaction between neighbors at a

p

2 distance.

The calculation of further couplings is more involved because it su�ers from more numerical

uncertainty and we will assume that this test is su�cient for our purposes.

The partition function when the two couplings are considered is

Z =

Z

[d�] exp

8

<

:

�

1

X

n;�

cos(�

n

� �

n+�

) + �

2

X

n;�<�

cos(�

n

� �

n+�+�

)

9

=

;

: (8)

As the number of neighbors in d = 3 is twice as much for the �

2

interaction as for �

1

, the

phase diagram in the region where both �

1

and �

2

are positive (where there is no frustration),

will consist of two phases: ordered and disordered, separated by a nearly straight line with

slope �

1

2

that goes trough the point (0:45420; 0) (see �gure 1).

Let us compute the SDE for this two couplings system following the procedure proposed

in [6]. Let A(�) be a function with null expectation value. This trivially implies that also

@ hA(�)i =@�

n

= 0.

At a certain blocking level b of RGT, we will have a large number of non zero couplings

and Z will take the form

Z =

Z

[d�

b

] expf�

X

i

�

b

i

S

i

(�

b

)g; (9)

where S

i

, function of the renormalized �elds, is the action corresponding to the renormalized

coupling i at level b.

We have

D

A(�

b

)

E

= Z

�1

Z

[d�

b

]A(�

b

) expf�

X

i

�

b

i

S

i

(�

b

)g = 0; (10)

and then we obtain the following identity
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0 =

@

D

A(�

b

)

E

@�

b

n

= �Z

�1

@Z

@�

b

n

D

A(�

b

)

E

+

*

@A(�

b

)

@�

b

n

+

�

X

i

�

b

i

*

A(�

b

)

@S

i

(�

b

)

@�

b

n

+

: (11)

Taking into account that

D

A(�

b

)

E

= 0 we �nd

*

@A(�

b

)

@�

b

n

+

=

X

i

�

b

i

*

A(�

b

)

@S

i

(�

b

)

@�

b

n

+

: (12)

This algebraic equation relates the value of �

b

i

with expectation values at a certain blocking

level b, and then, allows us to compute the renormalized couplings from the known expec-

tation values. These renormalized couplings, if used in Z, should give us the same values

for all observables at each value of b.

We see in (12) that we need as many independent operators as non zero couplings in

order to invert this equation and compute the renormalized couplings.

In the hypothesis that also for b > 0 only �

b

1

is di�erent from zero, let us consider the

function

A(�

b

) = sin(�

b

n

� �

b

n+�

); (13)

which, when used in equation (12), gives

�

b

1

=

D

P

��

cos(�

b

n

� �

b

n+�

)

E

D

(

P

��

sin(�

b

n

� �

b

n+�

))

2

E

: (14)

This equality is exact for b = 0.

Let us compute now �

b

1

and �

b

2

assuming that we have two couplings, see equation (8).

From (12) we need two operators to compute the couplings. One of them will be the

previously used A and the other could be

B(�

b

) = sin(�

b

n

� �

b

n+�+�

); (15)

with � 6= �, that is, an operator with the same �elds combination as S

b

2

, that we hope will

be the best one coupled to �

b

2

giving the best signal-noise relation. Now the equations for

obtaining the RG couplings are
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0

B

B

@

D

E

b

1

E

D

E

b

2

E

1

C

C

A

=

0

B

B

@

D

(A

b

1

)

2

E D

A

b

1

A

b

2

E

D

A

b

1

A

b

2

E D

(A

b

2

)

2

E

1

C

C

A

0

B

B

@

�

b

1

�

b

2

1

C

C

A

; (16)

where

D

E

b

1

E

=

*

X

��

cos(�

b

n

� �

b

n+�

)

+

;

D

E

b

2

E

=

*

X

��;��;�<�

cos(�

b

n

� �

b

n+�+�

)

+

;

A

b

1

=

X

��

sin(�

b

n

� �

b

n+�

) ;

A

b

2

=

X

��;��;�<�

sin(�

b

n

� �

b

n+�+�

) :

(17)

From this expression, it is possible to compute �

b

1

; �

b

2

, by inverting the 2 � 2 matrix in

(16). With these values we can draw the ux diagram of the model on the (�

1

; �

2

) plane,

which permits us to determine the �xed point in this plane for a concrete RGT prescription.

The use of these techniques allows the determination of the whole ux diagram of the

model, the number of couplings being limited by the numerical precision not by the method

itself.

IV. FLUX DIAGRAM: FIXED POINT LOCATION

Let us consider a point in the parameter space �

b

� (�

b

1

; �

b

2

; : : :) corresponding to the

RG block level b. If this point is near to the �xed point �

?

� (�

?

1

; �

?

2

; : : :) the equations for

the RG transformation �

b+1

� �

?

= T (�

b

� �

?

) can be linearized.

To �x the notation let us call e

�

and �

�

= s

y

�

respectively to the eigenvectors and

eigenvalues of the matrix T , s being the change of scale. So that we can write

�

b

� �

?

=

X

�

t

b

�

e

�

; (18)

where t

b

�

are the scaling �elds at blocking level b that after a RGT transform as t

b+1

�

= s

y

�

t

b

�

.

If all but the �rst one are irrelevant �elds (that is: y

�

< 0; 8� > 1) it is useful to write the

�rst coupling as
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�

b

1

� �

?

1

= s

by

1

t

1

e

1

1

+

X

�>1

s

by

�

t

�

e

�

1

: (19)

For � > 1, y

1

� y

�

is typically near 2 (in the 3D XY model y

1

� 1:5, y

�

<

�

�1) so that the

second term in the RHS of (19) is negligible after some blocking steps.

If we restrict ourselves to a two parameter space (�

1

; �

2

), the critical surface is approxi-

mately shown in �gure 1. Starting on any point of the S

1

line, at each RG step the couplings

move along it towards the �xed point corresponding to the particular RGT.

0 0.1 0.2 0.3 0.4
0

0.05

0.10

0.15

0.20

β
1

β 2

S∞

β*

FIG. 1. Approximate representation of the critical surface of the d = 3 XY model in a two

dimensional coupling parameter space. The �xed point lies in some point on the surface.

Close to S

1

but out of it, the relevant �eld is small and in the �rst RG steps its position

will have small modi�cations, but as the �eld grows the point will rapidly move away from

the critical line. The irrelevant �eld, in turn, will decrease. In this way we will follow

asymptotically a line in the direction of the relevant eigenvector of the matrix T , with

eigenvalue related with the critical exponent �. Drawing this ux it is readily seen where

are located the �xed points of the transformation. In �gure 2 we represent the ux obtained
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in four RG steps starting from di�erent places close to the critical point. The points at

�

2

= 0 represent the starting points, that is: points on the original lattice, including the

simulation point itself as well as some neighbor points computed using the Spectral Density

Method (SDM) [9]. After a RGT we obtain a lattice of side L=2 where applying the SDE

we compute �

1

1

and �

1

2

. These points are linearly joined to the previous ones in �gure 2

and the process is repeated for the following RGT.

In the �rst two steps we see, in �gure 2, that the ux follows, with small corrections,

the critical line towards the �xed point. It is clearly seen to be located between the second

and third step, where the trajectories slightly start to separate from the critical line. In

the fourth step they are rapidly moving away. A similar behavior for other RGT will be

represented in �gure 4.

0.42 0.43 0.44 0.45 0.46

β
1

0

0.005

0.010

0.015

0.020

β 2

FIG. 2. Flux in the (�

1

; �

2

) plane for starting points in a neighborhood of the critical (single

coupling) point, in a 64

3

lattice. For clarity we only plot the data until the next-to-last blocking

level.

Our aim is to reduce the distance from the simulation point �

c

= (�

c

; 0; : : :), to the �xed
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point �

�

= (�

�

1

; �

�

2

; �

�

3

; : : :). As we have only two parameters to tune, we cannot vanish

completely all �

�

, with � > 1. It is a necessary condition for the proposed method to work

that the �xed point may approach (�

c

; 0; 0; : : :) with an appropriate selection of n

s

and �.

Numerically the complexity grows very fast with the number of couplings involved. First

we will suppose that for all � > 1 the couplings �

b

�

are equal to zero, the stability of �

b

1

as a

function of b computed with the S-D equation (14) will give us an a posteriori con�rmation

of the reliability of that hypothesis. Second, we will consider that after the �rst RGT

iteration only two non vanishing couplings (�

b

1

; �

b

2

) exist. The absolute value of �

2

will be

an estimation of the distance from the critical point to the simulation point.

We will present numerical results in the d = 3 XY model with lattice sizes ranging from

L = 8 up to L = 64. We have mainly used the Wol�'s Single Cluster algorithm [10]. We

have measured in 100, 50, 40 and 10 thousands of con�gurations in L=8, 16, 32 and 64

respectively. Successive con�gurations are separated by a mean of 200 single cluster spin

updates. We store every measure in order to compute the derivatives and to use the SDM.

We have used jack-knife for error estimations.

A. One coupling calculation

Let us make the hypothesis that �

�

= (�

c

; 0; 0; : : :), and therefore let us use expression

(14) to compute �

b

1

. In the original lattice this expression also makes sense, and therefore

we must obtain the same value for �

0

1

, that is to say we should have �

c

= �

0

1

. If we use

the SDM to move in the �

1

direction in a neighborhood of �

c

, and plot �

b

1

(�

1

), the point of

matching of all couplings corresponds to the �xed point at this level of approximation. If

we do not �nd the matching in a single point for all levels of b, this means that the �xed

point has not been reached for this value of (n

s

; �). In this case, the �xed point is far from

the simulation point and higher order couplings are not negligible.

In �gure 3 we show the evolution of the blocked coupling as a function of the simulation

coupling, obtained with the SDM, for several choices of (n

s

; �). The data have been taken
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in a 16

3

lattice. We remark that the function �

0

1

obtained as a function of �

1

is e�ectively

the identity function. The di�erent parameters choices give di�erent �xed points, but only

if they are not far from the simulation point the truncated SDE will be accurate. For n

s

= 1

we cannot obtain a good behavior for any value of � (we plot in �gure 3 the results with

the best value). The results with a standard majority rule (summing the �elds over 2

3

cubes

and normalizing the results) are of similar quality than for n

s

= 1 (see �gure 4 below). For

n

s

= 2 we plot the data obtained with two close values of � to show the dependence. On the

other hand, it may be also seen in �gure 3 that increasing the number of smearing steps (see

the results with n

s

= 4) does not improve signi�cantly the quality of the crossing, making

useless the computational overload.

n
s

   =2, ε=0.275

0.40

0.45

0.50

0.55

β 1b

n
s

   =2, ε=0.285

0.4500 0.4525 0.4550 0.4575 0.4600

β
1

0.40

0.45

0.50

0.55

β 1b

n
s

   =1, ε=0.35

0.4500 0.4525 0.4550 0.4575 0.4600

β
1

n
s

   =4, ε=0.15

FIG. 3. �

b

1

computed with the Schwinger-Dyson equation (14) as a function of the simulation

parameter �

1

. The di�erent lines correspond to di�erent blocking level b. The slope grows with b.

We show the results for several values of the RG parameters (n

s

; �). All the numerical data have

been obtained from 6000 con�gurations of a 16

3

lattice at the critical point.
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B. Two couplings calculation

After the renormalization transformation, we expect that there will be a set of renor-

malized couplings with non negligible values. To learn about the behavior of �

i

with i > 1

we will consider now just two nonzero couplings: �

b

1

; �

b

2

corresponding respectively to the

�rst and the second neighbors, that usually give the more important contributions. Now it

is possible to draw the ux in a two dimensional parameter space.

0.3 0.4 0.5 0.6 0.7 0.8

β
1

-0.10

-0.05

0

0.05

β 2

FIG. 4. Two dimensional ux for several RG transformations in a 32

3

lattice. The solid lines

correspond to the usual (n

s

= 2; � = 0:285) selection, the dashed lines to (n

s

= 2; � = 0:2) and the

dotted line to a majority rule transformation without smearing.

In �gure 4 we plot the two dimensional ux for some smearing transformations in a 32

3

lattice. The solid lines correspond to the values (n

s

= 2; � = 0:285). We have plotted the

trajectories corresponding to starting points (0.4522,0), (0.4542,0) (central line for each set

of trajectories) and (0.4562,0). To show the importance of the tuning of the � parameter (in

moving the �xed point), we also plot (dashed line) the trajectory with (n

s

= 2; � = 0:2). The

15



�xed point is one order of magnitude further. The situation is even worse when applying a

simple majority rule, without smearing, (dotted lines), with a change in the direction of the

ux. The numerical results for (n

s

= 1; � = 0:35), not presented in �gure 4, are again very

similar to those from the majority rule.

The RGT performed in the following paragraph and sections will always correspond to

the choice (n

s

= 2; � = 0:285).

0 1 2 3 4 5

b

0

0.2

0.4

β ib

FIG. 5. �

1

(circles) and �

2

(diamonds) parameters as a function of the blocking level b in a

64

3

lattice. The solid line corresponds to the single coupling computation (equation (14)) and the

dashed ones to the two coupling calculation (equation (16)). The error bars are smaller than the

symbol sizes.

In �gure 5 we show the evolution of the values of the couplings �

b

1

; �

b

2

using the SDE

in a 64

3

lattice in the approximations of a single coupling (�

1

6= 0, �

i

= 0; 8i > 1) and

two couplings (�

1;2

6= 0, �

i

= 0; 8i > 2). In both cases we obtain a stable value after 2

transformations. The matching of the couplings for the second approximation is found at
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the second level of blocking, that is, we have reached the �xed point. On the other hand,

the small variation of �

b

1

when including a second coupling in the SDE (about a 5%) shows

the consistence of the single coupling approximation.

Due to �nite size e�ects (see below) the latter transformation su�ers from a large de-

viation. The result shows that with our selection of the smearing parameters we have

(�

?

1

; �

?

2

) � (0:43; 0:02). As we have started from the point (�

?

1

; �

?

2

) = (0:4542; 0) the motion

has been very small (the distance moved is similar to that schematically depicted in �gure 1).

One may be tempted to tune � in order to obtain �

?

2

= 0. But there, the SDE with

�

i

= 0; 8i > 1 are also valid and will produce a deviation between �

1

and �

?

1

= 0:4542 that

will be larger than the one obtained with � = 0:285. Remember that this value was selected

to minimize the distance from the �xed point �

?

1

in the one coupling calculation. We expect

that the chosen value of � will make small the higher order couplings at the �xed point.

C. Systematic Errors

A �rst source of errors are the truncation e�ects that occur when the calculation is

restricted to a single coupling space. Computations with more couplings may be useful

to obtain higher precision results, and in particular may be e�cient in a model as simple

as the one we are considering here. However we are no strictly interested in reducing the

truncation e�ects but in monitorizing them, for that reason we introduced the two coupling

calculation. Notice that our main scope is to check the quality of the results when neglecting

higher order contributions in order to know what can be expected when applying the method

to more complex models. In particular those with interacting scalar and gauge �elds, where

the starting point is an action with several couplings, so that computing new renormalized

higher order couplings may become a very complex task.

Another source of systematic errors is the possible nonlinearity of the RGT in the �rst

RG steps if the starting point is not close to the �xed point. This e�ect can be reduced by

discarding the measures at the �rst iterations.

17



Unfortunately the last RG steps may be also useless due to �nite size e�ects. Let us

consider for example the mean value of the energy operator. When the correlation length �

is near L, if we assume a correlation function of the type G(r) = Ae

(�r=�)

=r, the contribution

of a path that wraps around the lattice is of the order of Ae

�1

=L, which is not negligible

compared with the direct G(1) � A. This produces a growing of the value of energy-like

observables (O) at the critical point that makes the crossing between O

b

(�) functions to

shift to lower values of �. In other cases, the lattice size puts harder constraints on the

observables, as for example happens for the mean value hcos(�

n+�

� �

n��

)i that becomes

exactly 1 when N

b

= 2.

However, when using equations (14) and (16) to compute the blocked couplings, the

�nite size e�ects are happily reduced giving reasonable values even at N

b

= 2 when some

operators involved in the computation of the couplings are completely saturated.

A quantitative estimation of �nite size e�ects must be done comparing several lattices

and blocking levels.

In the next two sections we will give some results regarding the computation of the

exponent �, showing that all the systematic errors can be kept under the 3% level.

V. THERMAL EXPONENT FROM THE RG FLUX

After the determination of the system ux diagram, one usually is interested in obtaining

the critical exponents. We will now consider several methods to obtain the exponent �

studying the ux.

A. Derivatives of the Renormalized Couplings

We can compute � using the equation (19). However a direct use of (19) performing

simulations near (but not on the critical surface (t

1

= 0)) is not convenient since the �rst

term in the RHS of (19) grows very fast putting the renormalized coupling far from the

critical region after a few iterations, and consequently loosing sense the linear approximation.
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Alternatively, we can measure with a simple simulation at the single coupling critical

point (�

c

1

; 0; 0; : : :), the derivative of �

b

1

(14) with respect to �

1

, just by computing the

derivatives of the observables as the connected correlations with the intensive energy,

@

D

O

b

E

@�

1

= L

d

�D

O

b

E

1

E

�

D

O

b

E D

E

1

E�

; (20)

and with the SDM move in a region around this point.

From (19) we obtain

@�

b

1

@�

1

= s

by

1

e

1

1

(D

�1

)

1;1

+

X

�>1

s

by

�

e

�

1

(D

�1

)

1;�

; (21)

where D

ij

= e

i

j

. Notice that equation (21) is independent of the values of t

�

, with the

restriction that they must be small enough to make valid the linear approximation.

If the second term in the RHS of eq. (21) is negligible (namely for b large enough) we

can write

log

@�

b

1

@�

1

� by

1

log(s) + log e

1

1

(D

�1

)

1;1

: (22)

Technically it is not possible to compute the �

b

1

just by measuring a reduced set of

observables. In fact, the value obtained from equation (14) corresponds to the hypothesis of

vanishing of the rest of the couplings. Let us now consider the possible bias introduced with

this approximation in the computation of �. For a system at �, using the SDE, we compute

an approximation to the �rst coupling from the mean value of some simple observables that

we will call �

SD

1

. So we can write for any blocking step

�

SD

1

= f(�

1

; �

2

; : : :): (23)

If �

i

are small 8i > 1, we can linearly expand f obtaining

�

SD

1

� �

1

+

X

i>1

C

i

�

i

(24)

where we have used the identity �

1

= f(�

1

; 0; 0; : : :). In our results for the XY model the

di�erence between �

b;SD

1

and �

b

1

, b > 1 may be estimated as the di�erence between the one
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and two couplings calculation, that is about a 5%. Anyway, if we use (24) we obtain for

the logarithm of the derivative of �

SD

1

an expression equivalent to (22) minus a variation

of the independent term. The exponentially decreasing behavior of the rest of the terms in

equation (21) remains with the only modi�cation of multiplicative factors. In conclusion,

the lack of a simple method for computing the couplings �

b

1

is not expected to be a source

of bias.

Another e�ect that we could consider is the nonlinearity of the RGT. We expect to �nd

this problem if the �xed point is far from the simulated critical point. We have con�dence

that the systematic error from this source is small since our transformation has the �xed

point very near to the simulation one. However as we will see, an error in the 3% level

cannot be excluded.

There is a simple method to learn about the importance of this e�ect, that is to compute

the derivative of �

b

1

with respect to �

b

0

1

, with b

0

< b, from the derivatives

@

D

O

b

E

@�

b

0

1

= (L=2

b

0

)

d

�D

O

b

E

b

0

1

E

�

D

O

b

E D

E

b

0

1

E�

: (25)

Notice that if b

0

> 0 in equation (25) the computations are never done in the original

variables, so that all measures are done nearer to the �xed point. On the other hand the

derivative respect to �

b

0

1

is computed directly from E

b

0

1

(it depends on �

b

1

but not on �

b

0

1

).

B. Numerical results

In �gure 6 we show the evolution of log

@�

b

1

@�

1

as a function of the block number b for the

XY model. At b = 0 there is a deviation from the straight line (with slope y

1

= 1=�) due

to the contribution of irrelevant �elds. In the last blocking level the �nite size e�ects are

responsible of a new deviation.
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FIG. 6. log

@�

b

1

@�

1

computed from (20) as a function of the block level for the 64

3

lattice.

In �gure 7 we plot the results computing the ratio between derivatives of �

b

0

and �

b

(b

0

> b) for all lattices (that is the slope joining any pair of points in �gure 6 and equivalents).

For b = 1 there are strong deviations for b

0

small. For b = 1; 2 the statistical error is about

a 2% while the systematic one is under the 3% level.

From linear �ts to log

@�

b

1

@�

1

discarding the �rst and last points in the L = 64 and L = 32

lattices we obtain

� = 0:638(10) L = 64;

� = 0:646(8) L = 32;

(26)

With a 1:5% of statistical error and about a 3% of systematic one (assuming � 2 [0:66; 0:67]).

Using (25) to compute the derivatives with b

0

= 1 we obtain from the linear �tting of

the points b = 2; 3; 4 in the L = 64 lattice,

� = 0:649(20) (27)
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with a 3% of statistical error and an unmeasurable systematic one, since it is compatible

with the expected value.

1 2 3 4 5

b+b’

0.60

0.65

0.70

0.75

0.80

ν b
,b

’
    L

    L

    L

    L

     =8

     =16

     =32

     =64

FIG. 7. Estimations of � from the derivatives

@�

b

1

@�

1

and

@�

b

0

1

@�

1

for all lattices. We only plot the

points with b = 0 (larger symbols joined with solid lines), b = 1 (intermediate symbols and dashed

lines) and b = 2 (small symbols and dotted lines).

Finally let us comment that another source of systematic error is the �nite size e�ect over

the critical point. Until now we have presented the results for � obtained in the simulation

point (�

c

= 0:4542). In addition to a shift of the apparent critical point, the latter point

itself is not well de�ned. From di�erent de�nitions (namely the maximum of the derivative,

the crossing point between couplings at di�erent levels, etc.) we observe variations of the

value of � on the 1-2% level. For example, computing the derivative at the point where �

b

1

and �

1

match we obtain for the L = 64 lattice:

� = 0:654(11) (28)

with a 2% of statistical error and a systematic one under the 2% level.
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VI. FINITE SIZE RENORMALIZATION GROUP

Another method to compute the exponent � is to combine our RGT with a Finite Size

Scaling (FSS) analysis [11]. Up to now, in order to compute �xed points, critical exponents,

etc. we have been looking for matching, renormalized couplings..., always starting in a �xed

lattice L, and blocking to L=2; : : : ; 2.

It is possible to carry out a very di�erent study: taking data from two di�erent lattices

L

1

; L

2

where RGT transformations are performed. After some steps, all irrelevant �elds will

be negligible. Comparing the results obtained from two lattices of original sizes L

1

and L

2

,

when di�erent RG steps are taken, in order to end with the same �nal lattice, we can use

the FSS techniques to obtain the critical exponent �. Applications of this method appeared

in references [12{14].

In those works however, a single RG transformation reduces a L

d

lattice to (usually) a

2

d

one. In principle, our method may be generalized to �nite size blocks (L=2 length for

instance) just by taking n

s

large enough, in order to let the system propagate the relevant

information to all the block, avoiding a relevant lost of it after decimation. However, this

would make this procedure too much time consuming.

The FSS ansatz a�rms that in a �nite system of length L near the critical point, any

dimensionless observable is a smooth function of �=L. In terms of the coupling we can write

hOi

L;�

= f(L

1=�

(� � �

c

)) (29)

this means that the derivative at � = �

c

is just proportional to a power of the lattice size.

Using data from lattice of sizes L

1

and L

2

we obtain (taking for simplicity equal �nal sizes)

1

�

=

log

�

d

d�

hOi

L

1

;�

=

d

d�

hOi

L

2

;�

�

�

�

�

�=�

c

log

L

1

L

2

: (30)

The procedure is then the following: we consider a L

1

lattice, and we block it up to a

L

f

size. Now we start with a L

2

lattice and block it up to the same L

f

value. By using the

observables computed in the L

f

lattices on the previous expression we obtain �.
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The great advantage of the FSS method is that the �nite size e�ects are no longer a

source of systematic error that we need to �ght against but the quantity we want to look at.

For this reason we expect to obtain the more accurate values of � in the maximum blocking

level (2

d

lattice).

The FSS applies for all operators in the lattice. We can consider the previous renormal-

ized couplings that are functions of the neighbor correlators, but also the latter operators

themselves.
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FIG. 8. Values for the critical exponent � obtained from a Finite Size Scaling analysis of the

couplings at the last (L

f

= 2) level of blocking for the pairs L

1

� L

2

displayed. The white points

have been obtained from �rst neighbor energy operator and the �lled ones from the corresponding

coupling. We have also included data of a very small lattice (L = 4) as a control.

In �gure 8 we plot the results obtained using the energy (next neighbor correlation), as

well as the value of the coupling obtained from (14). We observe a clear systematic error for

the small lattices with opposite sign for the energy and the coupling. At sizes larger than

16

3

the systematic error is under the statistical one with a total error under the 3% level.
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VII. CONCLUSIONS

We have proposed a Real Space Monte Carlo Renormalization Group transformation

whose main features are

� It is easy to implement for many systems, even complex ones, since we only need to

de�ne a relaxation procedure.

� With a 3% of precision level we can neglect the truncation e�ects, at least in the 3-d

XY model.

� The code for the transformation is very easy to implement, since the more time-

consuming part can be done with a slight modi�cation of what one usually does in a

local Monte Carlo iteration.

� The adaptation to parallel computers is straightforward since most of the needed

operations are local.

As a next step we want to test the method in a gauge theory. Unfortunately the more

simple gauge theories, with continuous groups, have no critical (second order) points at

�nite values of the coupling. We project to study gauge �elds coupled to matter (namely

the U(1)-Higgs model).

However, we have performed some calculation in the four dimensional U(1) model at

the (�rst order) Con�nement-Coulomb transition. The results show a good behavior, re-

garding the stability of the coupling, after an appropriate tune of the parameters of the

transformation.
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