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Polyakov Loops and Finite-Size E�ects of
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Abstract

Polyakov type loops are responsible for the difference between

quenched and unquenched �nite size e�ects on the QCD mass spec-

trum. With a numerical simulation, using appropriate sea quark spa-

tial boundary conditions, we show that we can align the phases of

spatial Polyakov loops in a prede�ned direction. Starting from these

results, we propose a procedure to minimize uctuations due to these

e�ects in meson propagators.
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1. The �nite extension of the lattice is an important source of systematic

errors in lattice QCD calculations. Theoretical and numerical investigations

have addressed [1, 2, 3] recently the problem of �nite size e�ects in full

lattice QCD. The conclusions of these analyses are that in the range La �

0:7�2 fm (L

4

is the number of lattice points and a is the lattice spacing) in

the hadronic lattice masses there are important extra power law corrections,

besides the exponentially decaying asymptotic prefactor which is due to the

emission of virtual pions from a point like hadron [4].

In the range La � 0:7�2 fm the �rst e�ect is dominant over the second

one and we can e�ectively write for the lattice hadronic masses

m

L

=m

1

+ cL

��

; (1)

where � = 1� 2 in the quenched case and � = 2� 3 in full QCD.

The reason for this di�erence can be understood by looking, for ex-

ample, at the valence quark hopping parameter expansion of the meson

propagator that can be written in the form [2]:

G =

X

C

k

l(C)

val

hW (C)i +

X

C

k

l(C)

val

�

val

hP (C)i (2)

where the sums extend over all possible closed paths (C) of length l(C).

W (C) are standard Wilson loops completely contained into the lattice,

while P (C) are valence quark loops wrapping around the lattice in spatial

directions (Polyakov type loops) and h�i denotes gauge �eld average; the

value of the index �

val

depends on the spatial boundary conditions on the

valence quarks: �

val

= +1 for periodic and �

val

= (�1)

n

for antiperiodic

boundary conditions, with n the number of windings around the lattice

1

.

The averaged Polyakov loop hP i is di�erent from zero in full QCD,

while it is zero in the con�ned phase of quenched QCD. This means that

the second term in eq.(2) is absent in the quenched case. This may explain

the di�erences in the value of � between quenched and full QCD.

To obtain comparable L

��

�nite size e�ects in the two cases one would

like to remove or to reduce the Polyakov loop contributions in the un-

quenched case.

In this paper we want to show that this can be partially achieved by

using suitable sea quarks spatial boundary conditions so as to force the

1

In general �

val

= exp(in�) if we impose exp(i�) boundary conditions.
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phase of the Polyakov loops to be one of the three elements of the center

of the gauge group SU(3)

2

Z

3

= fz

0

; z

1

; z

2

g; z

k

= exp(i

2�k

3

); k = 0; 1; 2 (3)

Fixing the phase of the Polyakov loops reduces the statistical uctuations

on the hadron propagator and, hence, on the computed hadron masses.

Of course, another possibility to kill the contribution from the second

term in eq.(2) (also in the unquenched case) is to follow the prescription of

[5], that is to say to compute successively the valence quark propagator on

the same gauge con�guration using for the fermionic �elds the boundary

conditions dictated by the three phases of Z

3

and then taking the average.

This procedure is rather time consuming and we will not discuss it any

further.

2. On a �nite lattice with periodic boundary conditions on the gauge �elds

there is a symmetry of the pure gauge sector consisting in multiplying all

links stemming from the plane x

�

=const and orthogonal to it, by an element

z

k

of Z

3

.

Under this operation the Polyakov loops in the � direction are not in-

variant, but they transform as

P ! z

k

P (4)

In full QCD the action consists of the gauge and the fermionic part. In

the fermionic action

S

Wilson

= �k

X

x;�

 

�

 (x)(1 � 

�

)U

�

(x) (x + �)

+

�

 (x)(1 + 

�

)U

y

�

(x � �) (x � �)

!

+

X

x

�

 (x) (x)

(5)

the kinetic part is not invariant under the previous transformation. Thus

the symmetry, that in the quenched con�ned case guarantees hP i = 0, is

2

In the following for short we will refer to these Polyakov loops as polarized (or aligned)

Polyakov loops.
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explicitly broken by the kinetic part of the fermionic action. Since the

non-invariant term is proportional to k, this violation is more important

for light sea quarks.

It is possible to understand what happens on the plane x

�

=const with

a simple model. If we make a double expansion of full QCD, both in

� = 6=g

2

and in the hopping parameter, we obtain the 3{d Potts Model in

an external magnetic �eld. The presence of the fermionic part of the QCD

action is analogous to the existence of a magnetic �eld h which breaks the

Z

3

symmetry. In the model the spin, �, can take the three possible values:

�

0

= 1; �

1

= e

i2�=3

; �

2

= e

�i2�=3

(6)

and it is coupled to the external magnetic �eld via the Hamiltonian

H

h

= h�+ h

y

�

y

(7)

which is not Z

3

invariant. The possible values taken by � are in correspon-

dence with the expected phases of Polyakov loops, while the values of h

with the chosen sea quarks boundary conditions.

We summarize the relevant features of the lowest part of the energy

spectrum for the interesting choices of h in �gs. 1a-1e. We see that with

h = +jhj (periodic boundary conditions on sea quarks) the two states with

� = �

1

and � = �

2

have the lowest energy and are degenerate, while

with h = �jhj (antiperiodic boundary conditions on sea quarks) the lowest

energy state is the state � = �

0

. Moreover (�gs 1.d and 1.e) with the

choices h = �e

�i2�=3

and h = �e

i2�=3

, the states �

1

and �

2

respectively

turn out to be the lowest lying energy states.

With an eye to the patterns of �g. 1, we thus expect that with periodic

boundary conditions on sea quarks the e

i2�=3

and the e

�i2�=3

phases of

the Polyakov loops will be present with equal probability and that with

antiperiodic boundary conditions Polyakov loops are likely to be polarized

in the �

0

direction. Similarly we expect to be able to align the Polyakov

loops along the e

i2�=3

(or e

�i2�=3

) in the Z

3

space, if we choose �e

�i2�=3

(or

�e

i2�=3

respectively) boundary conditions on the sea quarks.

To check the foregoing suggestions we performed on APE100 a full sim-

ulation of 2 avors lattice QCD with Wilson fermions at � = 5:3 on a

8

3

� 32 lattice with k

sea

= 0:1670. We carried out two di�erent runs, one

with fully periodic boundary conditions on the sea quarks and the other
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< P

x

> < P

y

> < P

z

>

P -0.0011(2)+i0.0003(2) -0.0010(2)-i0.0001(4) -0.0011(2)-i0.0007(2)

AP 0.0017(1)-i0.00006(11) 0.0019(2)+i 0.0001(2) 0.0015(3)-i0.000004(200)

Table 1: The three spatial components of the Polyakov loop (smearing zero)

for the simulation at � = 5:3 on a 8

3

� 32 lattice with k

sea

= 0:1670. Data

are from trajectory 440 to trajectory 1790. In the �rst row there are the

results for the simulation with periodic (P) spatial boundary conditions on

the sea quarks and in the second row the results with antiperiodic (AP)

conditions.

one with antiperiodic boundary conditions in the spatial directions and pe-

riodic in the temporal one. Gauge con�gurations have been produced with

APE100 with the Hybrid Monte Carlo Algorithm (HMCA) described in

reference [6]. After a thermalization of 440 trajectories of HMCA we have

created a set of 1350 thermalized trajectories. On these we have performed

the measurement of the spatial loops, P

x

; P

y

and P

z

, taking only one every

5 consecutive trajectories. To reduce the uctuations on the expectation

value of the Polyakov loops, we used the smearing procedure of ref. [7].

The results for the phases of the spatial Polyakov loops P

x

are reported

in �gs. 2 and 3. With antiperiodic spatial boundary condition, �g. 2,

the values of the phase are close to zero, while with periodic boundary

conditions, �g. 3, the phases are concentrated in two regions near e

i2�=3

and e

�i2�=3

.

We have also veri�ed in a quick simulation on a 4

3

�6 lattice with � = 3:0

and k

sea

= 0:1670 that, if we impose on sea quarks the spatial boundary

conditions �e

i2�=3

(or �e

�i2�=3

), Polyakov loops have, as expected, phases

near e

�i2�=3

(or e

i2�=3

respectively), see �gs. 4c-4d.

3. A study similar to the one presented above, concerning valence quarks,

has been performed in ref. [5] in the case of quenched QCD. There, the

authors had insu�cient statistics and, hence, found that the mean value of

the Polyakov loop was nonzero with the three possible values of the phases

all present with non zero but di�erent probabilities. As a consequence their

estimate of the meson masses had a large dispersion, greater than 50%.

Also in the unquenched case with periodic boundary conditions on sea

quarks we expect similar uctuations because Polyakov loops are not van-
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ishing and \unpolarized". However by choosing antiperiodic (or �e

i2�=3

or

�e

�i2�=3

) spatial boundary conditions, we may at least �x corresponding-

ly the phases of the Polyakov loops and reduce statistical uctuations on

masses.

For instance in the simulation at � = 5:3 on a 8

3

� 32 lattice with

k

sea

= 0:1670 we obtain the results reported in Table 1 for the x, y and z

components of the Polyakov loop, < P

i

>; i = x; y; z, for both periodic and

antiperiodic sea quarks spatial boundary conditions.

Statistical errors have been computed, separately for each spatial direc-

tion, by grouping the 270 measures in 10 bins of 27 numbers each. In the

antiperiodic case the imaginary parts of P

x

; P

y

and P

z

are compatible with

zero, as expected, and the real parts are equal within errors. Also in the

periodic case the real parts are equal within errors but the relative errors

are about twice as large as before. Furthermore the imaginary parts are

not compatible with zero. This fact is due to the ip-op's of the Polyakov

loop phases between the two values e

i2�=3

, e

�i2�=3

.

In simulations using periodic boundary conditions on sea quarks, this

kind of uctuation could always be reduced by selecting a posteriori only

the con�gurations in which the phases of P

x

; P

y

and P

z

all lie close to a given

Z

3

element. One should observe that this procedure, besides reducing the

statistics by a factor of 8, may introduce unnecessary biases. In our opinion

the best way is to start ab initio with one well specify spatial boundary

condition that aligns the Polyakov loops in a given Z

3

direction.

The numerical simulations of this work have been performed using 2

months of CPU time on a 128 nodes APE100 machine.

Acknowledgement

We thank G. Parisi for useful suggestions concerning this work and for

many discussions and G.C. Rossi for a careful reading of the manuscript.

We acknowledge interesting discussions with E. Marinari.

We would like to thank F. Marzano, J. Pech, F. Rapuano for encour-

agements and support.

L.A.F.,A.M.S.,J.J.R.L. and A.T. acknowledge CICyT (Spain) for partial

�nantial support. J.J.R.L. is also supported by a grant of MEC (Spain).

6



FIGURE CAPTIONS

Figure 1. The lowest lying energy levels of the model of eq.(7) for di�erent

values of h. The notation for the states is that of eq.(6).

Figure 2. Histogram of the phase of the x component of the Polyakov

loop for antiperiodic spatial boundary condition on sea quarks. Data are

from trajectory 440 to trajectory 1790. The lattice volume is 8

3

� 32.

Figure 3. Same of �g. 2 but for periodic boundary conditions on sea

quarks.

Figure 4. Behavior of the phase of the average of the three spatial Polyakov

loops as a function of the HMCA trajectory. Data are from trajectory 205

to trajectory 600. The lattice is 4

3

� 6. In �g. 4a we report the results for

sea quarks periodic boundary conditions; in �g. 4b for antiperiodic spatial

boundary conditions; in �g. 4c for spatial boundary conditions �e

�i2�=3

and in �g. 4d for spatial boundary conditions �e

i2�=3

.
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