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Summary. We report some results obtained in the framework of spin systems, using

Finite-Size Saling tehniques and Monte Carlo Simulations. We fous on the high

preision measurements of Critial Exponents in three dimensional systems of interest

in Condense Matter, and the issue of triviality in four dimensional systems relevant for

Quantum Field Theory.

1 Dediatoria

Dediamos este esrito al profesor Alberto Galindo on motivo de su septuagé-

simo umpleaños. Hemos reogido algunos resultados en el área de simulaiones

numérias en sistemas estadístios obtenidos en trabajos realizados en el Depar-

tamento de Físia Teória I a lo largo de los ultimos años, durante los uales él

fue diretor del departamento.

Aunque este tema de investigaión es, de los realizados en el departamento,

quizá de los más lejanos a las líneas seguidas por Alberto Galindo, queremos

destaar la gran in�uenia que nos ha ejerido en todos los aspetos. Empezando

por que ha sido profesor en la lieniatura de todos nosotros (y eso imprime

aráter), pasando por las estrehas relaiones que hemos tenido on él, desde las

tareas doentes y organizativas a las relaiones personales.

La trayetoria ientí�a de Alberto ha tenido dos sedes importantes, Madrid

y Zaragoza. Es notable que, aunque ninguno de los autores ha estudiado (ni

naido o vivido) en Zaragoza, mantenemos unos estrehsimos vínulos on el

Departamento de Físia Teória de la Universidad de Zaragoza (espeialmente

on los profesores José Luis Alonso, Andrés Cruz y Alfonso Taranón).

En tiempos muy reientes, los autores de este trabajo nos hemos involura-

do en la reaión y puesta en marha del Instituto de Bioomputaión y Físia

de Sistemas Complejos (BIFI) de la Universidad de Zaragoza. También en este

empeño, el apoyo de Alberto ha resultado ruial.
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2 Introdution

The sope of this paper is to review part of the ativities of the Statistial Me-

hanis group of our Department during the last deade. Spei�ally we will show

our main results on spin model systems at ritiality. In the following setion, we

desribe the �nite-size tehniques we have developed and used. Next we report

the high preision numerial values of ritial ouplings and ritial exponents,

obtained for several three dimensional spin models whih have been referene

numbers for years [1℄. In setion 5 we desribe our work on diluted Ising model.

We �rst address the three dimensional ase, whose properties were rather on-

troversial. We were able of prediting a single universality lass for this problem,

whih was on�rmed later in experiments [2℄. We end with the desription of our

results in four dimensional spin systems, at the upper ritial dimension. We have

modi�ed the standard Finite-Size Saling approah, to over this ase. The �nal

goal is to understand the issue of triviality in quantum �eld theories.

3 Finite-Size Saling

In a nutshell Finite-Size Saling [3, 4, 5, 6, 7, 8℄ (FSS) aims to solve the paradox

that real systems (whih are �nite) do show phase transitions, while statistial-

mehanis predits that all the thermodynami properties of a �nite system are

smooth (analytial!) funtions of temperature, pressure or whatsoever ontrol

parameter is of relevane for the problem at hand.

Consider any intensive quantity, O, (e.g. energy, magnetization density, mag-

neti suseptibility, et.), behaving in the thermodynami limit as

5

〈O〉∞(t) ∝ |t|−xO , when t→ 0 . (1)

In pratie we an only ompute the �nite size mean value 〈O〉L where L a

harateristi length of the �nite system. For a box geometry, L = V 1/d
, while

for a strip geometry L is the strip width. For a layer geometry, L is the thikness

of the �lm.

The basi assumption of the FSS Ansatz [4, 5℄ is that the �nite size behaviour

is governed by the ratio L/ξ∞ , where ξ∞ is the orrelation length of the in�nite

system. If this ratio is large, the system has basially reahed its thermodynami

limit. If it is small, we will be in the FSS regime.

On a �rst thought, �nite size e�ets may look like a nuisane for the data

analysis.

6

Yet, those e�ets arry the same information that is ontained in the

in�nite volume divergenes. They turn out [9, 10℄ to be preious for the inves-

tigation of ritial phenomena: one onentrates on the temperature at whih

5

We de�ne the redued temperature as t ≡ βc−β

βc
≈

T−Tc

Tc
(not exatly the standard

de�nition).

6

Suh data ould be obtained from experiment or by solving a model on a �nite

sample.
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the �nite size e�ets are largest, there the FSS is studied. Most (if not all) of

the relevant information an be extrated from the lattie size evolution of the

intensive quantities at the ritial point.

We will desribe here the approah of Finite-Size Saling (FSS) that has been

developed at Madrid. The starting point is the standard saling of the free energy

with L:

f(t, h, {uj}, L−1) = g(t, h, {uj}) + b−df(bytt, byhh, {ujb
yj}, b/L). (2)

At this point one takes the blok size b = L, thus arriving to a single-site lat-

tie. By performing the appropriate derivatives, all the ritial quantities an be

omputed. The result an be ast in general form for a quantity O diverging like

t−xO
in the thermodynamial limit:

O(L, t) = LxO/ν

[
FO

(
L

ξ(∞, t)

)
+ O(L−ω, ξ−ω)

]
, (3)

where FO is a smooth saling funtion. In usual appliations one is interested in

the ξG2 L regime, thus ξ−ω
is safely negleted. Of ourse in Eq. (3), we have only

kept the leading irrelevant eigenvalue, ω, but, in fat, other saling orretions

like

{Lyj}, {Lyj+yi}, . . . (i, j ≥ 3) (4)

are to be expeted. In addition, other kind of terms are indued by the analytial

part of the free energy, g. For the suseptibility (or related quantities like the

Binder umulant or the orrelation-length, see below) one should take the seond

derivative with respet to the magneti �eld, h, in Eq. (2).

Equation (3) is still not onvenient for a numerial study, beause it ontains

not diretly measurable quantities like ξ(∞, t). Fortunately, it an be turned into

an useful expression if a reasonable de�nition of the orrelation length in a �nite

lattie, ξ(L, t) (see below), is available:

O(L, t) = LxO/ν

[
F̃O

(
ξ(L, t)

L

)
+ O(L−ω)

]
, (5)

where F̃O is a smooth funtion related with FO and Fξ.

To redue the e�et of the orretions-to-saling terms, one ould take mea-

sures only in large enough latties. Even in the simplest models, as those in this

paper, if one wants to obtain very preise results, the lattie sizes required an

be unreahable. However, this is not the most e�ient option. In the spei�

method we use, the saling funtion is eliminated by taking measures of a given

observable at the same temperature in two di�erent lattie sizes (L1, L2). At the

temperature where the orrelation lengths are in the ratio L1 : L2, from Eq. (5)

we an write the quotient of the measures of an observable, O, in both latties

as

QO|Qξ=
L1

L2

=

(
L1

L2

)xO/ν

+AQO
L−ω

2 + . . . , (6)
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where AQO
is a onstant.

The great advantage of Eq. (6) is that to obtain the temperature where

Qξ = L1/L2, only two latties are required, and a very aurate and statisti-

ally lean measure of that temperature an be taken. In addition, the statistial

orrelation between QO and Qξ redues the �utuations.

To perform an extrapolation following Eq. (6), an estimate of ω is required.

This an be obtained from the behaviour of dimensionless quantities that we

de�ne below, like the Binder umulant or the orrelation length in units of the

lattie size, ξ(L, t)/L, whih remain bounded at the ritial point although their

t-derivatives diverge. For a generi dimensionless quantity, g, we shall have a

rossing

g(L, tcross(L, s)) = g(sL, tcross(L, s)).

The distane from the ritial point, tcross(L, s), goes to zero as [10℄:

tcross(L, s) ∝ 1 − s−ω

s1/ν − 1
L−ω−1/ν . (7)

From Eq. (7), a lean estimate of ω an be obtained provided that |y4| − ω and

γ/ν − ω are large enough (say of order one).

3.1 Observables

In the prototypial ase we onsider a nearest-neighbor interation. The spins live

in the nodes of a (hyper)ubi lattie in d dimensions, of size L (the volume being

V = Ld
), with periodi boundary onditions. The Hamiltonian is

−H = β
∑

〈i,j〉

σi · σj , (8)

and the partition funtion

Z =
∑

{σi}

e−H . (9)

We have been deliberately vague about the nature of the spins, beause the same

framework overs a wide range of models and physial situations. For instane,

the spins σ, ould be just ±1 (Ising model), or unit vetors of N omponents

(O(N) non-linear σ-model, the N = 1 ase will be the Ising model). The system

has a global O(N) invariane. If β (whih plays the role of an inverse tempera-

ture) is positive, the model is ferromagneti. On the other hand, if β < 0 it is

antiferromagneti.

An interesting generalization of model (8) onsists in onsidering the square

of the interation σi · σj :

−H ′ = β
∑

〈i,j〉

(σi · σj)
2 . (10)
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Due to Elitzur theorem, the loal Z2-invariane of model (10) annot be sponta-

neously broken and the model is naturally de�ned in terms of the real-projetive

spae RP

N−1
.

The quantities that we measure are basially the energy (−H) and those

related with the spin �eld. We have the momentum-dependent magnetization

M(k) =
1

V

∑

i

σie
ik·xi , (11)

From it one may de�ne the magnetization

M = 〈‖M(0)‖〉 , (12)

the suseptibility

χ = V 〈‖M(0)‖2〉 , (13)

and the �nite-lattie orrelation-length [11℄

ξ =

(
χ/F − 1

4 sin2(π/L)

)1/2

, (14)

where

F =
V

d

〈
‖M(2π/L, 0, . . . , 0)‖2 + permutations

〉
. (15)

In the RP

N−1
ase one generalizes in the obvious way the previous formulae,

onsidering the tensor �eld

ταβ
i = σα

i σ
β
j − δαβ

N
, (16)

(the squared norm for a hermitean matrix, τ , is simply tr(τ τ
†) ).

One may also onsider the probability distribution funtion of the order pa-

rameter, M(0), through its umulants. For instane, one onsiders the Binder

parameter, whih is simply the fourth derivative of the free-energy with respet

of the magneti �eld, divided by the square of the seond-derivative. Expressing

this in terms of rotationally invariant quantities, one �nds (for O(N) models)

g4 =
N + 2

2
− N

2

〈‖M(0)‖4〉
〈‖M(0)‖2〉2 , (17)

Notie that g4 is trivially related with the kurtosis of the probability distribution

funtion of M(0). Away from the ritial-point (when T > Tc, otherwise one

should take the onneted part), the Central Limit Theorem tells us that this

distribution is Gaussian, and g4 tends to zero in the thermodynamial limit. To

ontrol this, one introdues the renormalized-oupling onstant:

gR
L =

Ld

ξd
g4 . (18)

For an interating �eld theory, gR
∞ must remain �nite and non-vanishing even if

ξ tends to ∞ .
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4 Measurements of ritial exponents

A suessful determination of ritial exponents rests on two feet. One must �rst

produe high-quality Monte Carlo data, using state-of-the-art algorithms (suh

as luster methods in O(N) models) and omputers (sometimes using dediated

omputers, suh as the SUE mahine[12℄). We shall not give details here about

this tehnialities. The seond foot of the alulation is to squeeze as muh

information of the Monte Carlo data as it is possible. This is were Finite-Size

Saling enters the stage.

Typially, a study starts by onsidering the rossing point of several dimen-

sionless quantities as g4 and ξ/L. Using Eq. (7), and a tehnially demanding

joint �t of statistially orrelated data, one manages to get very aurate deter-

mination of the ritial point and, more importantly a fair estimate (10% error)

of the leading orretions-to saling exponent (see table 1). It is ruial to use

more than one dimensionless quantity, beause orretions to saling amplitudes

may have di�erent signs, whih onstraints largely the joint �t.

With an estimate of ω in our hands, we an proeed to extrapolate the �nite-

lattie estimate of the ritial exponents to in�nite volume, using Eq. (6). In this

way, the �nal estimate should be free of systemati errors.

This approah has been used in a large variety of models produing the results

shown in table 1. Sometimes, detailed (and favorable) omparison with experi-

mental measurements is possible.

Table 1. Summary of ritial ouplings and ritial exponents for di�erent spin systems

in three dimensions obtained with Monte Carlo alulations [13, 14, 15, 16, 17℄.

Model βc ν η ω

Ising 0.22165456(20) 0.6294(10) 0.0374(12) 0.87(9)

O(2) 0.454165(5) 0.670(10) 0.0424(25) 0.81(13)

O(3) 0.693002(12) 0.711(10) 0.0414(19) 0.71(16)

O(4) 0.935861(8) 0.758(4) 0.0359(9) 1.85(23)

AF RP

2
�2.4087(4) 0.783(11) 0.038(3) 0.85(4)

Perolation 0.3116081(11) 0.8765(18) �0.0460(3) 1.62(13)

Diluted Ising � 0.684(5) 0.037(4) 0.37(6)

Diluted Potts � 0.690(5) 0.078(4) ∼ 0.4

5 Diluted Models

The generalization of regular spin models to the more realisti ase of systems

where some kind of disorder is added, is of evident interest: in real samples one

expets some extent of lattie defets that ould hange the properties of the

system.
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There is an important result by Harris [18℄ whih states that the disorder only

hanges the Universality Class if the α exponent for the pure model is positive.

Limiting ourselves to O(N) models, only for the Ising model in three dimensions,

a positive ritial exponent is found.

The model we onsider is a diluted Ising model de�ned as a standard Ising

model but with vaants (we make below some omments for the diluted Potts

model). In every node of a (hyper)ubi lattie, we plae a spin with probability

p. We study quenhed disorder, namely the position (and number) of vaants

does not hange with time. The value of p ranges from p = 1 (Ising model) to

the perolation threshold, where the ritial temperature is exatly zero (in three

dimensions pc = 0.3116081(11) [14℄).
As we onsider quenhed disorder, in addition of the thermal average over

spin on�gurations, one must afterward mediate over disorder realizations. This

averaging over disorder realizations will be indiated by an overline. Tehnially,

we have to arry out an independent simulation for eah vaants on�guration and

then grand-average the results. Fortunately, luster methods are also appliable

for diluted systems and the thermalization time is negligible.

In addition to the previously de�ned quantities, the disorder average allows to

de�ne further dimensionless quantities suh as

g2 =
〈M2〉2 − 〈M2〉2

〈M2〉2
. (19)

Away from the ritial point (when T > Tc), the Central Limit Theorem implies

that g2 vanishes for large volume as L−d
. However, at the ritial point g2 remains

bounded (see below) when L → ∞. This means that the ritial diluted model

is not self-averaging. Consequently, a large number of disorder realizations must

be onsidered. We typially generate 20000 disorder realizations at every p value

and lattie size.

The �eld-theory for the diluted Ising model is a φ4
theory with a random mass

term:

S[φ] =

∫
d4x

(
1

2
(∂µφ)2 +

1

2
m2(x)φ2 +

1

4!
vφ4

)
. (20)

The mass term is a quenhed, spatially-unorrelated, stohasti variable with

mean r, and variane ∆
2
, so we will assume for simpliity that the distribution of

m2(x) is Gaussian.

As we said above, one needs �rst to obtain the free-energy for a disorder

realization then average over the randommass. The replia-trik [19℄ was invented

to manage this kind of problems [19℄: we introdue n replias of the initial system,

φi, with i = 1, . . . , n. The average of the repliated partition funtion over the

Gaussian disorder will be denoted by overlines.

F = logZ = lim
n→0

1

n

(
Zn − 1

)
. (21)

This is the starting point of the onsiderations in setion 5.2.
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Let us reall what happens on a disordered system whose pure ounterpart

su�ers a �rst order transition. The answer is highly dependent on the spatial

dimension. In d = 2 an in�nitesimal dilution renders the phase transition seond-

order [20℄. In d = 3 general arguments [21℄ suggest that the latent-heat dereases

with inreasing dilution, until a ritial value is reahed. The phase transition is

seond order from that dilution on. Our results for this Universality Class in the

d = 3 three-state Potts model [17℄ ase an be found in table 1.

5.1 Universality in diluted three dimensional Ising model

In this subsetion we will onsider only the three dimensional ase. Results in two

dimensions an be found in Ref. [22℄. The four dimensional ase is onsidered in

the following subsetion.

Fig. 1. Phase diagram (β, p) for the 3-d diluted Ising Model. The points are obtained

from Monte Carlo simulations (the error bars are muh smaller than the point size. The

ontinuous line is just a smooth interpolation.

In �gure 1 we sketh the phase diagram of the system, that inludes the

Ising universality lass (p = 1) and the perolation one (β = ∞). What about

the universality lass of the rest of the line? When we study the problem, the

situation was rather ontroversial. Previous estimates of the ritial exponents

showed a ontinuous variation along the line. However, we have found that this

dependeny is only due to orretions to saling.
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Fig. 2. In�nite volume extrapolation for the 3-d diluted Ising model for several values

of the spin onentration p. Considering the leading orretions to saling, we observe

a single extrapolation for the ν exponent and g2 umulant for p in the range [0.4,0.8℄.

To make short a long story, we show in �gure 2 our results for the ν exponent

and g2 umulant, as a funtion of the lattie size for every p value, versus L−ω
,

as obtained using Eq. (6). We observe a lear size dependene but one that an

be parametrized using the onept of orretions to saling with a (very small)

exponent ω ∼ 0.4. Performing a joint �t of both set of data (notie the statistial

orrelation) with a single limit for eah quantity, we obtain a fair result just

exluding the p = 0.9 data whih is too lose to the pure Ising limit. The satter

of previous results for the ritial exponents along the ritial line an be easily

aounted for. Although the ritial exponents are universal, the amplitudes for

saling orretions are not. In partiular, note that the p = 0.8 data is quite lose

to be a perfet ation: The saling-orretions amplitude is ompatible with zero,

within our statistial auray.

The ritial exponent ν estimate is in perfet agreement with reent experi-

mental determinations (ν = 0.69(1)[2℄), that followed this theoretial omputa-

tion.

5.2 Triviality in Salar Quantum Field Theories: the four-dimensional

diluted Ising model

Eulidean Quantum Field Theories (EQFT) are partiular examples of general

Statistial Mehanis Systems (SM). EQFT's live in the unstable manifolds of the
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ritial points of these Statistial Mehanis Systems (this an be shown using

the Wilson �triangle of renormalization� onstrution) [23℄. Therefore, we an use

the Statistial Mehanis framework to study problems whih arise in EQFT, in

partiular the triviality issue: is non zero the renormalized oupling onstant when

the ut-o� of the theory is sent to in�nite? [24℄ The problem may be addressed in

perturbation theory (PT), but SM provides us with a powerful non-perturbative

tehnique. For instane, �xed points (where to de�ne the EQFT) not aessible

in PT [23℄ may be studied.

We fous in the renormalized oupling-onstant (18) at the ritial point.

Obviously the Binder parameter should be omputed in a �nite geometry. The

main idea is to expand the �eld φ(x) in Fourier modes. In a �nite geometry

the biggest ontribution omes from the zero mode. It an be shown that it has

to be treated non perturbatively while this is not neessary for the rest of the

modes [25℄.

We will illustrate the above onsiderations in the example of the four dimen-

sional diluted Ising model. The e�etive ation follows from (20) and (21):

Zn = Zeff =

∫
d[φi] exp(−Seff [φi]) , (22)

with

Seff [φi] =

∫
ddx



1

2

n∑

i=1

(∂µφi)
2
+
r

2

n∑

i=1

φ2
i +

u

4!

[
n∑

i=1

φ2
i

]2

+
v

4!

n∑

i=1

φ4
i



, (23)

where u = −3∆2
. This gives us a starting point for the analytial alulation.

The n → 0 limit should only be taken at the end. For v = 0 the ation is O(n)-
invariant. When u = 0 the ation desribes n deoupled Ising models. We remark

that u is negative and proportional to the dilution. In our numerial simulation a

site is oupied with probability p, so ∆
2 = p(1 − p).

We an ompute the Binder umulant isolating the ontribution of the zero

mode, ψi, to the ation [26℄. The e�etive ation for the zero mode, in a L4

volume and at the MF ritial point (i.e. r = 0), is

Seff [ψi] = L4



 u
4!

(
n∑

i=1

ψ2
i

)2

+
v

4!

n∑

i=1

ψ4
i



 , (24)

and the partition funtion is

Zeff(n) =

∫ ( n∏

i=1

dψi

)
exp(−Seff [ψi]) . (25)

In the asymptoti regime (large L) the renormalization group implies that the

relation 4u+ 3v ≃ 0 is satis�ed with good preision [27℄. Therefore:
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Zeff(n) =
1√
3π

∫ ( n∏

i=1

dψi

)
dλ exp

[
−1

3
λ2 + λ

∑

i

ψ2
i −

∑

i

ψ4
i

]
. (26)

A trivial omputation tells that dimensionless ratios, like the Binder umulant, do

not depend on the spei� value of v, thereby we have also �xed v = 4!/Ld
in

the previous formula and in the rest of the setion.

We an perform the integrals on the ψ variables

Zeff(n) =
1√
3π

∫
dλ e−λ2/3I0(λ)

n , (27)

where

Im(λ) ≡
∫
dψ exp

[
λψ2 − ψ4

]
ψm . (28)

Now, we identify the moments of the magnetization in terms of the moments of

the repliated variables (ψa)

〈M2m〉 → 〈ψ2m
a 〉 . (29)

with

〈ψ2m
a 〉 =

1√
3π

∫
dλ

I2m(λ)

I0(λ)
e−λ2/3 . (30)

Evaluating numerially the previous integrals we obtain [26℄

Bdisordered = 0.32455 . . . . (31)

The only soure for triviality in (18) is the fator L/ξ. A perturbative RG alu-

lation indiates [26℄

ξ(L) ≃ L

v(L)1/4
≃ L(logL)1/8 , (32)

where v(L) is the oupling v renormalized at the sale L. The logarithm, whih

appears at the upper ritial dimension, drives the renormalized oupling onstant

to zero in the thermodynami limit. For the sake of ompleteness,

gdisordered
R ≃ 1√

logL
. (33)

Hene, the theory is trivial.

We remark that this result relies in PT (we have omputed [26℄ the behavior

of the running oupling v(L) starting from PT results) [27℄. However, we have

found a reasonable agreement between numerial simulations and PT [26℄.
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6 Conlusions

We hope that this small note will be illustrative of the power of Finite-Size Saling

for the non perturbative study of Field Theory.

The questions that an be addressed are of a large variety, and the results

are of remarkable auray. Universal quantities, freed of systemati errors, an

be obtained by means of an in�nite-volume extrapolation. One an even ahieve

tasks usually onsidered as impossible, as areful determinations of non-universal

ritial parameters. This is illustrated in the loation of the perfet ation (where

the amplitude for the leading saling-orretions vanishes) for the diluted Ising

model).

The approah an be extended to the upper ritial dimension as well. We

have found agreement between analytial results and omputer simulations in the

4d Ising model.
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