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Summary. We report some results obtained in the framework of spin systems, using

Finite-Size S
aling te
hniques and Monte Carlo Simulations. We fo
us on the high

pre
ision measurements of Criti
al Exponents in three dimensional systems of interest

in Condense Matter, and the issue of triviality in four dimensional systems relevant for

Quantum Field Theory.

1 Dedi
atoria

Dedi
amos este es
rito al profesor Alberto Galindo 
on motivo de su septuagé-

simo 
umpleaños. Hemos re
ogido algunos resultados en el área de simula
iones

numéri
as en sistemas estadísti
os obtenidos en trabajos realizados en el Depar-

tamento de Físi
a Teóri
a I a lo largo de los ultimos años, durante los 
uales él

fue dire
tor del departamento.

Aunque este tema de investiga
ión es, de los realizados en el departamento,

quizá de los más lejanos a las líneas seguidas por Alberto Galindo, queremos

desta
ar la gran in�uen
ia que nos ha ejer
ido en todos los aspe
tos. Empezando

por que ha sido profesor en la li
en
iatura de todos nosotros (y eso imprime


ará
ter), pasando por las estre
has rela
iones que hemos tenido 
on él, desde las

tareas do
entes y organizativas a las rela
iones personales.

La traye
toria 
ientí�
a de Alberto ha tenido dos sedes importantes, Madrid

y Zaragoza. Es notable que, aunque ninguno de los autores ha estudiado (ni

na
ido o vivido) en Zaragoza, mantenemos unos estre
hsimos vín
ulos 
on el

Departamento de Físi
a Teóri
a de la Universidad de Zaragoza (espe
ialmente


on los profesores José Luis Alonso, Andrés Cruz y Alfonso Taran
ón).

En tiempos muy re
ientes, los autores de este trabajo nos hemos involu
ra-

do en la 
rea
ión y puesta en mar
ha del Instituto de Bio
omputa
ión y Físi
a

de Sistemas Complejos (BIFI) de la Universidad de Zaragoza. También en este

empeño, el apoyo de Alberto ha resultado 
ru
ial.
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2 Introdu
tion

The s
ope of this paper is to review part of the a
tivities of the Statisti
al Me-


hani
s group of our Department during the last de
ade. Spe
i�
ally we will show

our main results on spin model systems at 
riti
ality. In the following se
tion, we

des
ribe the �nite-size te
hniques we have developed and used. Next we report

the high pre
ision numeri
al values of 
riti
al 
ouplings and 
riti
al exponents,

obtained for several three dimensional spin models whi
h have been referen
e

numbers for years [1℄. In se
tion 5 we des
ribe our work on diluted Ising model.

We �rst address the three dimensional 
ase, whose properties were rather 
on-

troversial. We were able of predi
ting a single universality 
lass for this problem,

whi
h was 
on�rmed later in experiments [2℄. We end with the des
ription of our

results in four dimensional spin systems, at the upper 
riti
al dimension. We have

modi�ed the standard Finite-Size S
aling approa
h, to 
over this 
ase. The �nal

goal is to understand the issue of triviality in quantum �eld theories.

3 Finite-Size S
aling

In a nutshell Finite-Size S
aling [3, 4, 5, 6, 7, 8℄ (FSS) aims to solve the paradox

that real systems (whi
h are �nite) do show phase transitions, while statisti
al-

me
hani
s predi
ts that all the thermodynami
 properties of a �nite system are

smooth (analyti
al!) fun
tions of temperature, pressure or whatsoever 
ontrol

parameter is of relevan
e for the problem at hand.

Consider any intensive quantity, O, (e.g. energy, magnetization density, mag-

neti
 sus
eptibility, et
.), behaving in the thermodynami
 limit as

5

〈O〉∞(t) ∝ |t|−xO , when t→ 0 . (1)

In pra
ti
e we 
an only 
ompute the �nite size mean value 〈O〉L where L a


hara
teristi
 length of the �nite system. For a box geometry, L = V 1/d
, while

for a strip geometry L is the strip width. For a layer geometry, L is the thi
kness

of the �lm.

The basi
 assumption of the FSS Ansatz [4, 5℄ is that the �nite size behaviour

is governed by the ratio L/ξ∞ , where ξ∞ is the 
orrelation length of the in�nite

system. If this ratio is large, the system has basi
ally rea
hed its thermodynami


limit. If it is small, we will be in the FSS regime.

On a �rst thought, �nite size e�e
ts may look like a nuisan
e for the data

analysis.

6

Yet, those e�e
ts 
arry the same information that is 
ontained in the

in�nite volume divergen
es. They turn out [9, 10℄ to be pre
ious for the inves-

tigation of 
riti
al phenomena: one 
on
entrates on the temperature at whi
h

5

We de�ne the redu
ed temperature as t ≡ βc−β

βc
≈

T−Tc

Tc
(not exa
tly the standard

de�nition).

6

Su
h data 
ould be obtained from experiment or by solving a model on a �nite

sample.
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the �nite size e�e
ts are largest, there the FSS is studied. Most (if not all) of

the relevant information 
an be extra
ted from the latti
e size evolution of the

intensive quantities at the 
riti
al point.

We will des
ribe here the approa
h of Finite-Size S
aling (FSS) that has been

developed at Madrid. The starting point is the standard s
aling of the free energy

with L:

f(t, h, {uj}, L−1) = g(t, h, {uj}) + b−df(bytt, byhh, {ujb
yj}, b/L). (2)

At this point one takes the blo
k size b = L, thus arriving to a single-site lat-

ti
e. By performing the appropriate derivatives, all the 
riti
al quantities 
an be


omputed. The result 
an be 
ast in general form for a quantity O diverging like

t−xO
in the thermodynami
al limit:

O(L, t) = LxO/ν

[
FO

(
L

ξ(∞, t)

)
+ O(L−ω, ξ−ω)

]
, (3)

where FO is a smooth s
aling fun
tion. In usual appli
ations one is interested in

the ξG2 L regime, thus ξ−ω
is safely negle
ted. Of 
ourse in Eq. (3), we have only

kept the leading irrelevant eigenvalue, ω, but, in fa
t, other s
aling 
orre
tions

like

{Lyj}, {Lyj+yi}, . . . (i, j ≥ 3) (4)

are to be expe
ted. In addition, other kind of terms are indu
ed by the analyti
al

part of the free energy, g. For the sus
eptibility (or related quantities like the

Binder 
umulant or the 
orrelation-length, see below) one should take the se
ond

derivative with respe
t to the magneti
 �eld, h, in Eq. (2).

Equation (3) is still not 
onvenient for a numeri
al study, be
ause it 
ontains

not dire
tly measurable quantities like ξ(∞, t). Fortunately, it 
an be turned into

an useful expression if a reasonable de�nition of the 
orrelation length in a �nite

latti
e, ξ(L, t) (see below), is available:

O(L, t) = LxO/ν

[
F̃O

(
ξ(L, t)

L

)
+ O(L−ω)

]
, (5)

where F̃O is a smooth fun
tion related with FO and Fξ.

To redu
e the e�e
t of the 
orre
tions-to-s
aling terms, one 
ould take mea-

sures only in large enough latti
es. Even in the simplest models, as those in this

paper, if one wants to obtain very pre
ise results, the latti
e sizes required 
an

be unrea
hable. However, this is not the most e�
ient option. In the spe
i�


method we use, the s
aling fun
tion is eliminated by taking measures of a given

observable at the same temperature in two di�erent latti
e sizes (L1, L2). At the

temperature where the 
orrelation lengths are in the ratio L1 : L2, from Eq. (5)

we 
an write the quotient of the measures of an observable, O, in both latti
es

as

QO|Qξ=
L1

L2

=

(
L1

L2

)xO/ν

+AQO
L−ω

2 + . . . , (6)
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where AQO
is a 
onstant.

The great advantage of Eq. (6) is that to obtain the temperature where

Qξ = L1/L2, only two latti
es are required, and a very a

urate and statisti-


ally 
lean measure of that temperature 
an be taken. In addition, the statisti
al


orrelation between QO and Qξ redu
es the �u
tuations.

To perform an extrapolation following Eq. (6), an estimate of ω is required.

This 
an be obtained from the behaviour of dimensionless quantities that we

de�ne below, like the Binder 
umulant or the 
orrelation length in units of the

latti
e size, ξ(L, t)/L, whi
h remain bounded at the 
riti
al point although their

t-derivatives diverge. For a generi
 dimensionless quantity, g, we shall have a


rossing

g(L, tcross(L, s)) = g(sL, tcross(L, s)).

The distan
e from the 
riti
al point, tcross(L, s), goes to zero as [10℄:

tcross(L, s) ∝ 1 − s−ω

s1/ν − 1
L−ω−1/ν . (7)

From Eq. (7), a 
lean estimate of ω 
an be obtained provided that |y4| − ω and

γ/ν − ω are large enough (say of order one).

3.1 Observables

In the prototypi
al 
ase we 
onsider a nearest-neighbor intera
tion. The spins live

in the nodes of a (hyper)
ubi
 latti
e in d dimensions, of size L (the volume being

V = Ld
), with periodi
 boundary 
onditions. The Hamiltonian is

−H = β
∑

〈i,j〉

σi · σj , (8)

and the partition fun
tion

Z =
∑

{σi}

e−H . (9)

We have been deliberately vague about the nature of the spins, be
ause the same

framework 
overs a wide range of models and physi
al situations. For instan
e,

the spins σ, 
ould be just ±1 (Ising model), or unit ve
tors of N 
omponents

(O(N) non-linear σ-model, the N = 1 
ase will be the Ising model). The system

has a global O(N) invarian
e. If β (whi
h plays the role of an inverse tempera-

ture) is positive, the model is ferromagneti
. On the other hand, if β < 0 it is

antiferromagneti
.

An interesting generalization of model (8) 
onsists in 
onsidering the square

of the intera
tion σi · σj :

−H ′ = β
∑

〈i,j〉

(σi · σj)
2 . (10)
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Due to Elitzur theorem, the lo
al Z2-invarian
e of model (10) 
annot be sponta-

neously broken and the model is naturally de�ned in terms of the real-proje
tive

spa
e RP

N−1
.

The quantities that we measure are basi
ally the energy (−H) and those

related with the spin �eld. We have the momentum-dependent magnetization

M(k) =
1

V

∑

i

σie
ik·xi , (11)

From it one may de�ne the magnetization

M = 〈‖M(0)‖〉 , (12)

the sus
eptibility

χ = V 〈‖M(0)‖2〉 , (13)

and the �nite-latti
e 
orrelation-length [11℄

ξ =

(
χ/F − 1

4 sin2(π/L)

)1/2

, (14)

where

F =
V

d

〈
‖M(2π/L, 0, . . . , 0)‖2 + permutations

〉
. (15)

In the RP

N−1

ase one generalizes in the obvious way the previous formulae,


onsidering the tensor �eld

ταβ
i = σα

i σ
β
j − δαβ

N
, (16)

(the squared norm for a hermitean matrix, τ , is simply tr(τ τ
†) ).

One may also 
onsider the probability distribution fun
tion of the order pa-

rameter, M(0), through its 
umulants. For instan
e, one 
onsiders the Binder

parameter, whi
h is simply the fourth derivative of the free-energy with respe
t

of the magneti
 �eld, divided by the square of the se
ond-derivative. Expressing

this in terms of rotationally invariant quantities, one �nds (for O(N) models)

g4 =
N + 2

2
− N

2

〈‖M(0)‖4〉
〈‖M(0)‖2〉2 , (17)

Noti
e that g4 is trivially related with the kurtosis of the probability distribution

fun
tion of M(0). Away from the 
riti
al-point (when T > Tc, otherwise one

should take the 
onne
ted part), the Central Limit Theorem tells us that this

distribution is Gaussian, and g4 tends to zero in the thermodynami
al limit. To


ontrol this, one introdu
es the renormalized-
oupling 
onstant:

gR
L =

Ld

ξd
g4 . (18)

For an intera
ting �eld theory, gR
∞ must remain �nite and non-vanishing even if

ξ tends to ∞ .
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4 Measurements of 
riti
al exponents

A su

essful determination of 
riti
al exponents rests on two feet. One must �rst

produ
e high-quality Monte Carlo data, using state-of-the-art algorithms (su
h

as 
luster methods in O(N) models) and 
omputers (sometimes using dedi
ated


omputers, su
h as the SUE ma
hine[12℄). We shall not give details here about

this te
hni
alities. The se
ond foot of the 
al
ulation is to squeeze as mu
h

information of the Monte Carlo data as it is possible. This is were Finite-Size

S
aling enters the stage.

Typi
ally, a study starts by 
onsidering the 
rossing point of several dimen-

sionless quantities as g4 and ξ/L. Using Eq. (7), and a te
hni
ally demanding

joint �t of statisti
ally 
orrelated data, one manages to get very a

urate deter-

mination of the 
riti
al point and, more importantly a fair estimate (10% error)

of the leading 
orre
tions-to s
aling exponent (see table 1). It is 
ru
ial to use

more than one dimensionless quantity, be
ause 
orre
tions to s
aling amplitudes

may have di�erent signs, whi
h 
onstraints largely the joint �t.

With an estimate of ω in our hands, we 
an pro
eed to extrapolate the �nite-

latti
e estimate of the 
riti
al exponents to in�nite volume, using Eq. (6). In this

way, the �nal estimate should be free of systemati
 errors.

This approa
h has been used in a large variety of models produ
ing the results

shown in table 1. Sometimes, detailed (and favorable) 
omparison with experi-

mental measurements is possible.

Table 1. Summary of 
riti
al 
ouplings and 
riti
al exponents for di�erent spin systems

in three dimensions obtained with Monte Carlo 
al
ulations [13, 14, 15, 16, 17℄.

Model βc ν η ω

Ising 0.22165456(20) 0.6294(10) 0.0374(12) 0.87(9)

O(2) 0.454165(5) 0.670(10) 0.0424(25) 0.81(13)

O(3) 0.693002(12) 0.711(10) 0.0414(19) 0.71(16)

O(4) 0.935861(8) 0.758(4) 0.0359(9) 1.85(23)

AF RP

2
�2.4087(4) 0.783(11) 0.038(3) 0.85(4)

Per
olation 0.3116081(11) 0.8765(18) �0.0460(3) 1.62(13)

Diluted Ising � 0.684(5) 0.037(4) 0.37(6)

Diluted Potts � 0.690(5) 0.078(4) ∼ 0.4

5 Diluted Models

The generalization of regular spin models to the more realisti
 
ase of systems

where some kind of disorder is added, is of evident interest: in real samples one

expe
ts some extent of latti
e defe
ts that 
ould 
hange the properties of the

system.
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There is an important result by Harris [18℄ whi
h states that the disorder only


hanges the Universality Class if the α exponent for the pure model is positive.

Limiting ourselves to O(N) models, only for the Ising model in three dimensions,

a positive 
riti
al exponent is found.

The model we 
onsider is a diluted Ising model de�ned as a standard Ising

model but with va
ants (we make below some 
omments for the diluted Potts

model). In every node of a (hyper)
ubi
 latti
e, we pla
e a spin with probability

p. We study quen
hed disorder, namely the position (and number) of va
ants

does not 
hange with time. The value of p ranges from p = 1 (Ising model) to

the per
olation threshold, where the 
riti
al temperature is exa
tly zero (in three

dimensions pc = 0.3116081(11) [14℄).
As we 
onsider quen
hed disorder, in addition of the thermal average over

spin 
on�gurations, one must afterward mediate over disorder realizations. This

averaging over disorder realizations will be indi
ated by an overline. Te
hni
ally,

we have to 
arry out an independent simulation for ea
h va
ants 
on�guration and

then grand-average the results. Fortunately, 
luster methods are also appli
able

for diluted systems and the thermalization time is negligible.

In addition to the previously de�ned quantities, the disorder average allows to

de�ne further dimensionless quantities su
h as

g2 =
〈M2〉2 − 〈M2〉2

〈M2〉2
. (19)

Away from the 
riti
al point (when T > Tc), the Central Limit Theorem implies

that g2 vanishes for large volume as L−d
. However, at the 
riti
al point g2 remains

bounded (see below) when L → ∞. This means that the 
riti
al diluted model

is not self-averaging. Consequently, a large number of disorder realizations must

be 
onsidered. We typi
ally generate 20000 disorder realizations at every p value

and latti
e size.

The �eld-theory for the diluted Ising model is a φ4
theory with a random mass

term:

S[φ] =

∫
d4x

(
1

2
(∂µφ)2 +

1

2
m2(x)φ2 +

1

4!
vφ4

)
. (20)

The mass term is a quen
hed, spatially-un
orrelated, sto
hasti
 variable with

mean r, and varian
e ∆
2
, so we will assume for simpli
ity that the distribution of

m2(x) is Gaussian.

As we said above, one needs �rst to obtain the free-energy for a disorder

realization then average over the randommass. The repli
a-tri
k [19℄ was invented

to manage this kind of problems [19℄: we introdu
e n repli
as of the initial system,

φi, with i = 1, . . . , n. The average of the repli
ated partition fun
tion over the

Gaussian disorder will be denoted by overlines.

F = logZ = lim
n→0

1

n

(
Zn − 1

)
. (21)

This is the starting point of the 
onsiderations in se
tion 5.2.
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Let us re
all what happens on a disordered system whose pure 
ounterpart

su�ers a �rst order transition. The answer is highly dependent on the spatial

dimension. In d = 2 an in�nitesimal dilution renders the phase transition se
ond-

order [20℄. In d = 3 general arguments [21℄ suggest that the latent-heat de
reases

with in
reasing dilution, until a 
riti
al value is rea
hed. The phase transition is

se
ond order from that dilution on. Our results for this Universality Class in the

d = 3 three-state Potts model [17℄ 
ase 
an be found in table 1.

5.1 Universality in diluted three dimensional Ising model

In this subse
tion we will 
onsider only the three dimensional 
ase. Results in two

dimensions 
an be found in Ref. [22℄. The four dimensional 
ase is 
onsidered in

the following subse
tion.

Fig. 1. Phase diagram (β, p) for the 3-d diluted Ising Model. The points are obtained

from Monte Carlo simulations (the error bars are mu
h smaller than the point size. The


ontinuous line is just a smooth interpolation.

In �gure 1 we sket
h the phase diagram of the system, that in
ludes the

Ising universality 
lass (p = 1) and the per
olation one (β = ∞). What about

the universality 
lass of the rest of the line? When we study the problem, the

situation was rather 
ontroversial. Previous estimates of the 
riti
al exponents

showed a 
ontinuous variation along the line. However, we have found that this

dependen
y is only due to 
orre
tions to s
aling.
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Fig. 2. In�nite volume extrapolation for the 3-d diluted Ising model for several values

of the spin 
on
entration p. Considering the leading 
orre
tions to s
aling, we observe

a single extrapolation for the ν exponent and g2 
umulant for p in the range [0.4,0.8℄.

To make short a long story, we show in �gure 2 our results for the ν exponent

and g2 
umulant, as a fun
tion of the latti
e size for every p value, versus L−ω
,

as obtained using Eq. (6). We observe a 
lear size dependen
e but one that 
an

be parametrized using the 
on
ept of 
orre
tions to s
aling with a (very small)

exponent ω ∼ 0.4. Performing a joint �t of both set of data (noti
e the statisti
al


orrelation) with a single limit for ea
h quantity, we obtain a fair result just

ex
luding the p = 0.9 data whi
h is too 
lose to the pure Ising limit. The s
atter

of previous results for the 
riti
al exponents along the 
riti
al line 
an be easily

a

ounted for. Although the 
riti
al exponents are universal, the amplitudes for

s
aling 
orre
tions are not. In parti
ular, note that the p = 0.8 data is quite 
lose

to be a perfe
t a
tion: The s
aling-
orre
tions amplitude is 
ompatible with zero,

within our statisti
al a

ura
y.

The 
riti
al exponent ν estimate is in perfe
t agreement with re
ent experi-

mental determinations (ν = 0.69(1)[2℄), that followed this theoreti
al 
omputa-

tion.

5.2 Triviality in S
alar Quantum Field Theories: the four-dimensional

diluted Ising model

Eu
lidean Quantum Field Theories (EQFT) are parti
ular examples of general

Statisti
al Me
hani
s Systems (SM). EQFT's live in the unstable manifolds of the
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riti
al points of these Statisti
al Me
hani
s Systems (this 
an be shown using

the Wilson �triangle of renormalization� 
onstru
tion) [23℄. Therefore, we 
an use

the Statisti
al Me
hani
s framework to study problems whi
h arise in EQFT, in

parti
ular the triviality issue: is non zero the renormalized 
oupling 
onstant when

the 
ut-o� of the theory is sent to in�nite? [24℄ The problem may be addressed in

perturbation theory (PT), but SM provides us with a powerful non-perturbative

te
hnique. For instan
e, �xed points (where to de�ne the EQFT) not a

essible

in PT [23℄ may be studied.

We fo
us in the renormalized 
oupling-
onstant (18) at the 
riti
al point.

Obviously the Binder parameter should be 
omputed in a �nite geometry. The

main idea is to expand the �eld φ(x) in Fourier modes. In a �nite geometry

the biggest 
ontribution 
omes from the zero mode. It 
an be shown that it has

to be treated non perturbatively while this is not ne
essary for the rest of the

modes [25℄.

We will illustrate the above 
onsiderations in the example of the four dimen-

sional diluted Ising model. The e�e
tive a
tion follows from (20) and (21):

Zn = Zeff =

∫
d[φi] exp(−Seff [φi]) , (22)

with

Seff [φi] =

∫
ddx



1

2

n∑

i=1

(∂µφi)
2
+
r

2

n∑

i=1

φ2
i +

u

4!

[
n∑

i=1

φ2
i

]2

+
v

4!

n∑

i=1

φ4
i



, (23)

where u = −3∆2
. This gives us a starting point for the analyti
al 
al
ulation.

The n → 0 limit should only be taken at the end. For v = 0 the a
tion is O(n)-
invariant. When u = 0 the a
tion des
ribes n de
oupled Ising models. We remark

that u is negative and proportional to the dilution. In our numeri
al simulation a

site is o

upied with probability p, so ∆
2 = p(1 − p).

We 
an 
ompute the Binder 
umulant isolating the 
ontribution of the zero

mode, ψi, to the a
tion [26℄. The e�e
tive a
tion for the zero mode, in a L4

volume and at the MF 
riti
al point (i.e. r = 0), is

Seff [ψi] = L4



 u
4!

(
n∑

i=1

ψ2
i

)2

+
v

4!

n∑

i=1

ψ4
i



 , (24)

and the partition fun
tion is

Zeff(n) =

∫ ( n∏

i=1

dψi

)
exp(−Seff [ψi]) . (25)

In the asymptoti
 regime (large L) the renormalization group implies that the

relation 4u+ 3v ≃ 0 is satis�ed with good pre
ision [27℄. Therefore:
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Zeff(n) =
1√
3π

∫ ( n∏

i=1

dψi

)
dλ exp

[
−1

3
λ2 + λ

∑

i

ψ2
i −

∑

i

ψ4
i

]
. (26)

A trivial 
omputation tells that dimensionless ratios, like the Binder 
umulant, do

not depend on the spe
i�
 value of v, thereby we have also �xed v = 4!/Ld
in

the previous formula and in the rest of the se
tion.

We 
an perform the integrals on the ψ variables

Zeff(n) =
1√
3π

∫
dλ e−λ2/3I0(λ)

n , (27)

where

Im(λ) ≡
∫
dψ exp

[
λψ2 − ψ4

]
ψm . (28)

Now, we identify the moments of the magnetization in terms of the moments of

the repli
ated variables (ψa)

〈M2m〉 → 〈ψ2m
a 〉 . (29)

with

〈ψ2m
a 〉 =

1√
3π

∫
dλ

I2m(λ)

I0(λ)
e−λ2/3 . (30)

Evaluating numeri
ally the previous integrals we obtain [26℄

Bdisordered = 0.32455 . . . . (31)

The only sour
e for triviality in (18) is the fa
tor L/ξ. A perturbative RG 
al
u-

lation indi
ates [26℄

ξ(L) ≃ L

v(L)1/4
≃ L(logL)1/8 , (32)

where v(L) is the 
oupling v renormalized at the s
ale L. The logarithm, whi
h

appears at the upper 
riti
al dimension, drives the renormalized 
oupling 
onstant

to zero in the thermodynami
 limit. For the sake of 
ompleteness,

gdisordered
R ≃ 1√

logL
. (33)

Hen
e, the theory is trivial.

We remark that this result relies in PT (we have 
omputed [26℄ the behavior

of the running 
oupling v(L) starting from PT results) [27℄. However, we have

found a reasonable agreement between numeri
al simulations and PT [26℄.
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6 Con
lusions

We hope that this small note will be illustrative of the power of Finite-Size S
aling

for the non perturbative study of Field Theory.

The questions that 
an be addressed are of a large variety, and the results

are of remarkable a

ura
y. Universal quantities, freed of systemati
 errors, 
an

be obtained by means of an in�nite-volume extrapolation. One 
an even a
hieve

tasks usually 
onsidered as impossible, as 
areful determinations of non-universal


riti
al parameters. This is illustrated in the lo
ation of the perfe
t a
tion (where

the amplitude for the leading s
aling-
orre
tions vanishes) for the diluted Ising

model).

The approa
h 
an be extended to the upper 
riti
al dimension as well. We

have found agreement between analyti
al results and 
omputer simulations in the

4d Ising model.
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