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Summary. We report some results obtained in the framework of spin systems, using
Finite-Size Scaling techniques and Monte Carlo Simulations. We focus on the high
precision measurements of Critical Exponents in three dimensional systems of interest
in Condense Matter, and the issue of triviality in four dimensional systems relevant for
Quantum Field Theory.

1 Dedicatoria

Dedicamos este escrito al profesor Alberto Galindo con motivo de su septuagé-
simo cumpleafios. Hemos recogido algunos resultados en el area de simulaciones
numeéricas en sistemas estadisticos obtenidos en trabajos realizados en el Depar-
tamento de Fisica Tedrica | a lo largo de los ultimos afios, durante los cuales él
fue director del departamento.

Aunque este tema de investigacion es, de los realizados en el departamento,
quizd de los mas lejanos a las lineas seguidas por Alberto Galindo, queremos
destacar la gran influencia que nos ha ejercido en todos los aspectos. Empezando
por que ha sido profesor en la licenciatura de todos nosotros (y eso imprime
caracter), pasando por las estrechas relaciones que hemos tenido con él, desde las
tareas docentes y organizativas a las relaciones personales.

La trayectoria cientifica de Alberto ha tenido dos sedes importantes, Madrid
y Zaragoza. Es notable que, aunque ninguno de los autores ha estudiado (ni
nacido o vivido) en Zaragoza, mantenemos unos estrechsimos vinculos con el
Departamento de Fisica Tedrica de la Universidad de Zaragoza (especialmente
con los profesores José Luis Alonso, Andrés Cruz y Alfonso Tarancén).

En tiempos muy recientes, los autores de este trabajo nos hemos involucra-
do en la creacién y puesta en marcha del Instituto de Biocomputacion y Fisica
de Sistemas Complejos (BIFI) de la Universidad de Zaragoza. También en este
empefio, el apoyo de Alberto ha resultado crucial.
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2 Introduction

The scope of this paper is to review part of the activities of the Statistical Me-
chanics group of our Department during the last decade. Specifically we will show
our main results on spin model systems at criticality. In the following section, we
describe the finite-size techniques we have developed and used. Next we report
the high precision numerical values of critical couplings and critical exponents,
obtained for several three dimensional spin models which have been reference
numbers for years [1]. In section 5 we describe our work on diluted Ising model.
We first address the three dimensional case, whose properties were rather con-
troversial. We were able of predicting a single universality class for this problem,
which was confirmed later in experiments [2]. We end with the description of our
results in four dimensional spin systems, at the upper critical dimension. We have
modified the standard Finite-Size Scaling approach, to cover this case. The final
goal is to understand the issue of triviality in quantum field theories.

3 Finite-Size Scaling

In a nutshell Finite-Size Scaling [3, 4, 5, 6, 7, 8] (FSS) aims to solve the paradox
that real systems (which are finite) do show phase transitions, while statistical-
mechanics predicts that all the thermodynamic properties of a finite system are
smooth (analytical!) functions of temperature, pressure or whatsoever control
parameter is of relevance for the problem at hand.

Consider any intensive quantity, O, (e.g. energy, magnetization density, mag-
netic susceptibility, etc.), behaving in the thermodynamic limit as®

(0)oo(t) o |t|7%©, when t — 0. (1)

In practice we can only compute the finite size mean value (O) where L a
characteristic length of the finite system. For a box geometry, L = V'/¢, while
for a strip geometry L is the strip width. For a layer geometry, L is the thickness
of the film.

The basic assumption of the FSS Ansatz [4, 5] is that the finite size behaviour
is governed by the ratio L/&. , where £ is the correlation length of the infinite
system. If this ratio is large, the system has basically reached its thermodynamic
limit. If it is small, we will be in the FSS regime.

On a first thought, finite size effects may look like a nuisance for the data
analysis.® Yet, those effects carry the same information that is contained in the
infinite volume divergences. They turn out [9, 10] to be precious for the inves-
tigation of critical phenomena: one concentrates on the temperature at which

®We define the reduced temperature as t = ﬁcﬁ—:ﬁ ~ T;CTC
definition).

®Such data could be obtained from experiment or by solving a model on a finite
sample.

(not exactly the standard
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the finite size effects are largest, there the FSS is studied. Most (if not all) of
the relevant information can be extracted from the lattice size evolution of the
intensive quantities at the critical point.

We will describe here the approach of Finite-Size Scaling (FSS) that has been
developed at Madrid. The starting point is the standard scaling of the free energy
with L:

f(tv hv {uj}v L_l) = g(tv hv {UJ}) + b_df(bytta byhhv {ujbyj}v b/L) (2)

At this point one takes the block size b = L, thus arriving to a single-site lat-
tice. By performing the appropriate derivatives, all the critical quantities can be
computed. The result can be cast in general form for a quantity O diverging like
t~%0 in the thermodynamical limit:

O(L,t) = L*o/" {Fo ( ) + O(L‘”,é‘“)} : 3)

L
€(00, )
where F is a smooth scaling function. In usual applications one is interested in
the £ Go L regime, thus {¢ is safely neglected. Of course in Eq. (3), we have only
kept the leading irrelevant eigenvalue, w, but, in fact, other scaling corrections
like

[LWY ALV, (6,5 > 3) (4)

are to be expected. In addition, other kind of terms are induced by the analytical
part of the free energy, g. For the susceptibility (or related quantities like the
Binder cumulant or the correlation-length, see below) one should take the second
derivative with respect to the magnetic field, h, in Eq. (2).

Equation (3) is still not convenient for a numerical study, because it contains
not directly measurable quantities like (oo, t). Fortunately, it can be turned into
an useful expression if a reasonable definition of the correlation length in a finite
lattice, £(L,t) (see below), is available:

O(L,t) = L¥/" [ﬁo (@) + O(L‘“)] : (5)

where ﬁo is a smooth function related with F and Fp.

To reduce the effect of the corrections-to-scaling terms, one could take mea-
sures only in large enough lattices. Even in the simplest models, as those in this
paper, if one wants to obtain very precise results, the lattice sizes required can
be unreachable. However, this is not the most efficient option. In the specific
method we use, the scaling function is eliminated by taking measures of a given
observable at the same temperature in two different lattice sizes (L1, L2). At the
temperature where the correlation lengths are in the ratio L; : Lo, from Eq. (5)
we can write the quotient of the measures of an observable, O, in both lattices
as

L, zo /v Y
QO|Q§:§_; = <L_2> +AQOL2 + ..., (6)
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where Ag,, is a constant.

The great advantage of Eq. (6) is that to obtain the temperature where
Q¢ = L1/ Ly, only two lattices are required, and a very accurate and statisti-
cally clean measure of that temperature can be taken. In addition, the statistical
correlation between Qo and Q¢ reduces the fluctuations.

To perform an extrapolation following Eq. (6), an estimate of w is required.
This can be obtained from the behaviour of dimensionless quantities that we
define below, like the Binder cumulant or the correlation length in units of the
lattice size, £(L,t)/L, which remain bounded at the critical point although their
t-derivatives diverge. For a generic dimensionless quantity, g, we shall have a
crossing

g(L,t7(L, s)) = g(sL,t™ (L, s)).

The distance from the critical point, t*"°%(L, s), goes to zero as [10]:

iy VSV (7)

Cross
t (L,s)ocisl/u_1

From Eq. (7), a clean estimate of w can be obtained provided that |y4| — w and
~v/v — w are large enough (say of order one).

3.1 Observables

In the prototypical case we consider a nearest-neighbor interaction. The spins live
in the nodes of a (hyper)cubic lattice in d dimensions, of size L (the volume being
V = L%), with periodic boundary conditions. The Hamiltonian is

—H=5Zm-aj, (8)
(4,3
and the partition function
Z=>Y e, (9)
{o:}

We have been deliberately vague about the nature of the spins, because the same
framework covers a wide range of models and physical situations. For instance,
the spins o, could be just +1 (Ising model), or unit vectors of N components
(O(N) non-linear o-model, the N =1 case will be the Ising model). The system
has a global O(N) invariance. If 8 (which plays the role of an inverse tempera-
ture) is positive, the model is ferromagnetic. On the other hand, if § < 0 it is
antiferromagnetic.

An interesting generalization of model (8) consists in considering the square
of the interaction o; - 0 ;:

~H' =8> (0:-0,). (10)
(i)
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Due to Elitzur theorem, the local Zs-invariance of model (10) cannot be sponta-
neously broken and the model is naturally defined in terms of the real-projective
space RPN,

The quantities that we measure are basically the energy (—H) and those
related with the spin field. We have the momentum-dependent magnetization

1 .
M(k) = 3 3 o™=, (1)
From it one may define the magnetization
M = ([IM(0)]), (12)
the susceptibility
x = V{IM0)]?), (13)
and the finite-lattice correlation-length [11]
X/F—1 1/2
f =\ 7= a3 ) (14)
4sin“(mw/L)
where v
F= 4 {|M(2m/L,0,...,0)||> + permutations) . (15)

In the RPV—! case one generalizes in the obvious way the previous formulae,
considering the tensor field

5o

‘N’

(the squared norm for a hermitean matrix, 7, is simply tr(7 71)).
One may also consider the probability distribution function of the order pa-

rameter, M(0), through its cumulants. For instance, one considers the Binder

parameter, which is simply the fourth derivative of the free-energy with respect

of the magpnetic field, divided by the square of the second-derivative. Expressing
this in terms of rotationally invariant quantities, one finds (for O(N) models)

CN+2 N (MO
IR (VIO DER

Notice that g4 is trivially related with the kurtosis of the probability distribution
function of M(0). Away from the critical-point (when T > T, otherwise one
should take the connected part), the Central Limit Theorem tells us that this
distribution is Gaussian, and g4 tends to zero in the thermodynamical limit. To
control this, one introduces the renormalized-coupling constant:
d
9r = 2794- (18)

af _ _a B
0 =o0i0; —

(16)

(17)

For an interacting field theory, g% must remain finite and non-vanishing even if
£ tends to oo
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4 Measurements of critical exponents

A successful determination of critical exponents rests on two feet. One must first
produce high-quality Monte Carlo data, using state-of-the-art algorithms (such
as cluster methods in O(NN) models) and computers (sometimes using dedicated
computers, such as the SUE machine[12]). We shall not give details here about
this technicalities. The second foot of the calculation is to squeeze as much
information of the Monte Carlo data as it is possible. This is were Finite-Size
Scaling enters the stage.

Typically, a study starts by considering the crossing point of several dimen-
sionless quantities as g4 and /L. Using Eq. (7), and a technically demanding
joint fit of statistically correlated data, one manages to get very accurate deter-
mination of the critical point and, more importantly a fair estimate (10% error)
of the leading corrections-to scaling exponent (see table 1). It is crucial to use
more than one dimensionless quantity, because corrections to scaling amplitudes
may have different signs, which constraints largely the joint fit.

With an estimate of w in our hands, we can proceed to extrapolate the finite-
lattice estimate of the critical exponents to infinite volume, using Eq. (6). In this
way, the final estimate should be free of systematic errors.

This approach has been used in a large variety of models producing the results
shown in table 1. Sometimes, detailed (and favorable) comparison with experi-
mental measurements is possible.

Table 1. Summary of critical couplings and critical exponents for different spin systems
in three dimensions obtained with Monte Carlo calculations [13, 14, 15, 16, 17].

| Model | Be | v | n | w |
Ising 0.22165456(20)|0.6294(10)|0.0374(12)| 0.87(9)
0(2) 0.454165(5) | 0.670(10) |0.0424(25)(0.81(13)
0(3) 0.693002(12) |0.711(10) |0.0414(19)|0.71(16)
0(4) 0.935861(8) | 0.758(4) | 0.0359(9) |1.85(23)
AF RP? —2.4087(4) |0.783(11) | 0.038(3) | 0.85(4)
Percolation | 0.3116081(11) |0.8765(18)|-0.0460(3)(1.62(13)
Diluted Ising — 0.684(5) | 0.037(4) | 0.37(6)
Diluted Potts — 0.690(5) | 0.078(4) | ~ 0.4

5 Diluted Models

The generalization of regular spin models to the more realistic case of systems
where some kind of disorder is added, is of evident interest: in real samples one
expects some extent of lattice defects that could change the properties of the
system.
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There is an important result by Harris [18] which states that the disorder only
changes the Universality Class if the o exponent for the pure model is positive.
Limiting ourselves to O(/N) models, only for the Ising model in three dimensions,
a positive critical exponent is found.

The model we consider is a diluted Ising model defined as a standard Ising
model but with vacants (we make below some comments for the diluted Potts
model). In every node of a (hyper)cubic lattice, we place a spin with probability
p. We study quenched disorder, namely the position (and number) of vacants
does not change with time. The value of p ranges from p = 1 (Ising model) to
the percolation threshold, where the critical temperature is exactly zero (in three
dimensions pe = 0.3116081(11) [14]).

As we consider quenched disorder, in addition of the thermal average over
spin configurations, one must afterward mediate over disorder realizations. This
averaging over disorder realizations will be indicated by an overline. Technically,
we have to carry out an independent simulation for each vacants configuration and
then grand-average the results. Fortunately, cluster methods are also applicable
for diluted systems and the thermalization time is negligible.

In addition to the previously defined quantities, the disorder average allows to
define further dimensionless quantities such as

2 -
2=
(M?)
Away from the critical point (when 7" > T¢), the Central Limit Theorem implies
that go vanishes for large volume as L~%. However, at the critical point g5 remains
bounded (see below) when L — oo. This means that the critical diluted model
is not self-averaging. Consequently, a large number of disorder realizations must
be considered. We typically generate 20000 disorder realizations at every p value
and lattice size.
The field-theory for the diluted Ising model is a ¢* theory with a random mass
term:

(19)

Slo] = /d4w (% (0.0)* + %mQ(wW + %w“) : (20)

The mass term is a quenched, spatially-uncorrelated, stochastic variable with
mean r, and variance A2, so we will assume for simplicity that the distribution of
m?2(z) is Gaussian.

As we said above, one needs first to obtain the free-energy for a disorder
realization then average over the random mass. The replica-trick [19] was invented
to manage this kind of problems [19]: we introduce n replicas of the initial system,
@i, with ¢ = 1,...,n. The average of the replicated partition function over the
Gaussian disorder will be denoted by overlines.

F:logzzhml(ﬁ—l) : (21)

n—0n

This is the starting point of the considerations in section 5.2.
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Let us recall what happens on a disordered system whose pure counterpart
suffers a first order transition. The answer is highly dependent on the spatial
dimension. In d = 2 an infinitesimal dilution renders the phase transition second-
order [20]. In d = 3 general arguments [21] suggest that the latent-heat decreases
with increasing dilution, until a critical value is reached. The phase transition is
second order from that dilution on. Our results for this Universality Class in the
d = 3 three-state Potts model [17] case can be found in table 1.

5.1 Universality in diluted three dimensional Ising model

In this subsection we will consider only the three dimensional case. Results in two
dimensions can be found in Ref. [22]. The four dimensional case is considered in
the following subsection.

Ising
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Fig. 1. Phase diagram (3, p) for the 3-d diluted Ising Model. The points are obtained
from Monte Carlo simulations (the error bars are much smaller than the point size. The
continuous line is just a smooth interpolation.

In figure 1 we sketch the phase diagram of the system, that includes the
Ising universality class (p = 1) and the percolation one (8 = o). What about
the universality class of the rest of the line? When we study the problem, the
situation was rather controversial. Previous estimates of the critical exponents
showed a continuous variation along the line. However, we have found that this
dependency is only due to corrections to scaling.
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Fig. 2. Infinite volume extrapolation for the 3-d diluted Ising model for several values
of the spin concentration p. Considering the leading corrections to scaling, we observe
a single extrapolation for the v exponent and g2 cumulant for p in the range [0.4,0.8].

To make short a long story, we show in figure 2 our results for the v exponent
and g2 cumulant, as a function of the lattice size for every p value, versus L™,
as obtained using Eq. (6). We observe a clear size dependence but one that can
be parametrized using the concept of corrections to scaling with a (very small)
exponent w ~ 0.4. Performing a joint fit of both set of data (notice the statistical
correlation) with a single limit for each quantity, we obtain a fair result just
excluding the p = 0.9 data which is too close to the pure Ising limit. The scatter
of previous results for the critical exponents along the critical line can be easily
accounted for. Although the critical exponents are universal, the amplitudes for
scaling corrections are not. In particular, note that the p = 0.8 data is quite close
to be a perfect action: The scaling-corrections amplitude is compatible with zero,
within our statistical accuracy.

The critical exponent v estimate is in perfect agreement with recent experi-
mental determinations (v = 0.69(1)[2]), that followed this theoretical computa-
tion.

5.2 Triviality in Scalar Quantum Field Theories: the four-dimensional
diluted Ising model

Euclidean Quantum Field Theories (EQFT) are particular examples of general
Statistical Mechanics Systems (SM). EQFT's live in the unstable manifolds of the
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critical points of these Statistical Mechanics Systems (this can be shown using
the Wilson “triangle of renormalization” construction) [23]. Therefore, we can use
the Statistical Mechanics framework to study problems which arise in EQFT, in
particular the triviality issue: is non zero the renormalized coupling constant when
the cut-off of the theory is sent to infinite? [24] The problem may be addressed in
perturbation theory (PT), but SM provides us with a powerful non-perturbative
technique. For instance, fixed points (where to define the EQFT) not accessible
in PT [23] may be studied.

We focus in the renormalized coupling-constant (18) at the critical point.
Obviously the Binder parameter should be computed in a finite geometry. The
main idea is to expand the field ¢(x) in Fourier modes. In a finite geometry
the biggest contribution comes from the zero mode. It can be shown that it has
to be treated non perturbatively while this is not necessary for the rest of the
modes [25].

We will illustrate the above considerations in the example of the four dimen-
sional diluted Ising model. The effective action follows from (20) and (21):

= = / dli] exp(—Se[i) . (22)
with
n n n 2 n
Sl = [l |53 @0+ 5t | at| +pYoet]. @)
o 24 o 2 AT 4!1':117
where u = —3A2. This gives us a starting point for the analytical calculation.

The n — 0 limit should only be taken at the end. For v = 0 the action is O(n)-
invariant. When u = 0 the action describes n decoupled Ising models. We remark
that w is negative and proportional to the dilution. In our numerical simulation a
site is occupied with probability p, so A% = p(1 — p).

We can compute the Binder cumulant isolating the contribution of the zero
mode, 1);, to the action [26]. The effective action for the zero mode, in a L*
volume and at the MF critical point (i.e. 7 = 0), is

n 2 n
u v
slv = |1 (3o02) + 530w 20
i=1 i=1
and the partition function is

Zeti(n) = / (H d%) exp(—Ses[¥i]) - (25)

In the asymptotic regime (large L) the renormalization group implies that the
relation 4u + 3v ~ 0 is satisfied with good precision [27]. Therefore:



Advanced applications of Finite-Size Scaling 449

zeff(n):#/(qdwi) d\ exp [—%A?MZ#—Z# - (28)

A trivial computation tells that dimensionless ratios, like the Binder cumulant, do
not depend on the specific value of v, thereby we have also fixed v = 4!/L¢ in
the previous formula and in the rest of the section.

We can perform the integrals on the 1 variables

Zet(n) = \/% / dX e MBI (A" (27)
where
In(\) = / dy exp [M? — ¢t ™ (28)

Now, we identify the moments of the magnetization in terms of the moments of
the replicated variables (¢,)

(M2m) — (3. (29)

with
2m\ __ 1 I2m()‘) e—)\2/3
<wa >_ \/?)—,]_[_‘/\dA IQ(A) . (30)

Evaluating numerically the previous integrals we obtain [26]

Bdisordered =0.32455. ... (31)

The only source for triviality in (18) is the factor L/£. A perturbative RG calcu-
lation indicates [26]

L

DT S L(log L)'/® (32)

(L) ~

where v(L) is the coupling v renormalized at the scale L. The logarithm, which
appears at the upper critical dimension, drives the renormalized coupling constant
to zero in the thermodynamic limit. For the sake of completeness,

disordered
N— . 33
R /—log I ( )

Hence, the theory is trivial.

We remark that this result relies in PT (we have computed [26] the behavior
of the running coupling v(L) starting from PT results) [27]. However, we have
found a reasonable agreement between numerical simulations and PT [26].
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6 Conclusions

We hope that this small note will be illustrative of the power of Finite-Size Scaling
for the non perturbative study of Field Theory.

The questions that can be addressed are of a large variety, and the results
are of remarkable accuracy. Universal quantities, freed of systematic errors, can
be obtained by means of an infinite-volume extrapolation. One can even achieve
tasks usually considered as impossible, as careful determinations of non-universal
critical parameters. This is illustrated in the location of the perfect action (where
the amplitude for the leading scaling-corrections vanishes) for the diluted Ising
model).

The approach can be extended to the upper critical dimension as well. We
have found agreement between analytical results and computer simulations in the
4d Ising model.

Partially supported by FPA2000-0856, FPA2001-1813, BFM2001-0718, BFM2003-
8532 and HPRN-CT-2002-00307.
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