1. Utiliza el resultado matemático

$$\int_0^\infty d\epsilon \frac{F(\epsilon)}{e^{\beta(\epsilon-\mu)}+1} = \int_0^\mu d\epsilon F(\epsilon) + \frac{\pi^2}{6} \beta^{-2} F'(\mu) + \mathcal{O}(\beta^{-4}) ,$$

siendo $F(\epsilon)$ una función cualquiera tal que la integral converge, para obtener los primeros términos del desarrollo del nivel de Fermi μ y de la energía media $\langle E \rangle$ de un gas de Fermi en potencias de T/T_F .

- 2. A grandes densidades, los efectos relativistas son importantes en un gas de Fermi. Consideremos un gas de Fermi completamente degenerado (es decir, T=0) en condiciones tales que la energía de las partículas es grande comparada con la energía en reposo mc^2 (límite ultrarrelativista). En ese caso, la energía ϵ de una partícula libre está relacionada con su cantidad de movimiento p por $\epsilon=cp$. Teniendo en cuenta esto y recordando que el número de estados de una partícula con número de onda comprendido entre k y k+dk es $\mathcal{N}(k)dk=g(V/2\pi^2)k^2dk$ (donde g es la degeneración debida al espín), calcula para un gas ideal de Fermi tridimensional en el límite ultrarrelativista a T=0: (a) la energía de Fermi en función de la densidad, (b) la energía media del gas y (c) la presión en función de la densidad.
- 3. Considérese un gas ideal de bosones a la temperatura T. Si T es menor que la temperatura de condensación T_0 , puede suponerse que el potencial químico es prácticamente nulo. Sin embargo, si T es ligeramente superior a T_0 , μ es finito, aunque pequeño, y la mayor parte de los bosones tienen energías distintas de cero. (a) En esas condiciones ($T \geq T_0$), calcula en función de la temperatura el potencial químico y la energía del sistema. (b) Calcula el salto de la derivada $\partial C_V/\partial T$ en el punto $T=T_0$.
- 4. Muestra que en un gas ideal bidimensional de Bose-Einstein no existe condensación de Bose.
- 5. Calcula las fluctuaciones del número de fotones contenidos en un recinto de volumen V y en equilibrio con el mismo a la temperatura T.