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Abstract

We compare the probability distributions and Binder cumulants of the overlap in

the 3D Ising spin glass with those of the magnetization in the ferromagnetic 2D XY

model. We analyze similarities and di�erences. Evidence for the existence of a phase

transition in the spin glass model is obtained thanks to the crossing of the Binder

cumulant. We show that the behavior of the XY model is fully compatible with the

Kosterlitz-Thouless scenario. Finite size e�ects have to be dealt with by using great

care in order to discern among two very di�erent physical pictures that can look very

similar if analyzed without large attention.



1 Introduction

The issue of the existence of a phase transition in the three dimensional Ising spin glass has

been a hard and di�cult problem for more than two decades (see for example [1, 2] and

references therein). Today there are clear numerical evidences favoring the existence of a

low temperature broken phase [3, 4, 5, 2], but a deeper understanding of the underlying

physics still lacks. It is clear, for example, that one is very close to the lower critical

dimension (LCD), but understanding the details of the in
uence of such e�ect is highly

non-trivial.

Determining for example the in�nite volume limit of the Edward-Anderson order pa-

rameter [6] (q

EA

) has been beyond reach till very recently, and the existence of the phase

transition (both in 3 and 4 dimensions) has been established by exhibiting the crossing of

the �nite size Binder parameter. One was able to show (for the 3D case see [3, 4]) that

curves of g

L

(T ), g

L+1

(T ) as a function of T would cross at T

(L)

c

, but it was impossible to

determine the non-trivial limit of g

L

(T ) for L ! 1 at T < T

c

(and in the same way it

was impossible to determine the large volume limit of q

EA

). Only in the most recent pe-

riod o�-equilibrium techniques [7] and equilibrium simulations based on parallel tempering

[8] have allowed a statistically signi�cant determination of the 4D in�nite volume order

parameter q

EA

.

We start here by noticing that the behavior of the Binder parameter g

L

(q) in the 3D

spin glass is very reminiscent of the one one �nds in the 2D XY model (without quenched

disorder), g

L

(m) (here m is the magnetization). Even for quite large lattices the curves for

di�erent lattice volumes are well split in the high T phase, but seem to merge better than

cross at low T . Only on very large lattices one can exhibit a non-ambiguous (but always

very small) crossing [3, 5]. The XY 2D model shows that the order parameter is zero in

the thermodynamical limit only very slowly when increasing L.

The same kind of e�ect could be appearing in the 3D Edwards-Anderson spin glass,

and in order to be sure one is dealing with a real phase transition with a non-zero order

parameter one has to be very careful, and to show that is keeping under control possible

contamination. That is why we have decided to run a comprehensive comparison of the

order parameter distributions for the 3D Edwards-Anderson spin glass and for the 2D XY

model. A detailed paper by Binder [9], containing a study of the distribution functions

for the Ising model, can be considered a methodological prototype to this kind of analysis,

and can be used as a nice introduction to the �nite size scaling techniques and ideas used

in this setting.

Let us start by reminding the reader about some main points concerning the de�nition

of the lower critical dimension. The lower and the upper critical dimensions (d

l

and d

u

respectively) are important in qualifying a statistical system. d

u

is the minimal dimension

where mean �eld predictions hold (apart from logarithmic corrections), while the LCD,

d

l

, is the maximal dimension where the �nite T phase transition disappears. A typical

example is the usual Ising model, with d

l

= 1 and d

u

= 4 [10].

Since a �

3

term appears in the e�ective Hamiltonian of spin glasses (see [6, 11] and

references therein) one expects that the upper critical dimension is d

u

= 6. One of the

possible ways to determine the lower critical dimension is based on the determination of

the critical exponent �. One starts from the two points correlation function at the critical
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point, T = T

c

, that for j~x� ~yj ! 1 behaves as

h�(~x)�(~y)i ' j~x� ~yj

�(d�2+�)

: (1)

The LCD is de�ned by

d

l

� 2 + �(d

l

) = 0 ; (2)

i.e. by the fact that there is no power law decay of the two point correlation function at

the (T = 0) critical point. A (replica-symmetric) �-expansion computation [12] gives

� = �

1

3

�+ 1:2593�

2

+ 2:5367�

3

; (3)

where � � (6 � d). At order � one is getting the promising estimate d

l

= 3, that collapses

when including the higher order contributions, that do not allow any real solution for

d

l

� 6. It is clear that because of one of the many reasons that could give troubles (for

example replica symmetric breaking and poor convergence of the �-expansion) here the

�-expansion is not helping in determining the LCD.

Equation (2) allows an estimate of d

l

based on numerical estimates of the � exponent.

In four dimensions, with Gaussian couplings, one �nds � = �0:35 � 0:05 [7], while in 3D

� = �0:40 � 0:05 [5]. The variation of � with d is small, and it seems safe to estimate

d

l

' 2:5. Even if this result is somehow peculiar (since in the �eld theoretical approach

[11] one does not see any trace of propagators with non-integer powers) it is con�rmed by

a mean �eld based analysis [13] where one builds up an interface and looks at its behavior.

This mean-�eld computation gives d

l

= 2:5, in excellent agreement with the numerical

estimate.

Numerical simulations in 3D [3, 5, 2] have now shown clearly that there is a �nite T

phase transition, i.e. that d

l

< 3. The broken phase is mean �eld like, and understanding

more details about it will be the goal of this paper. It is also well established that in 2D

one �nds a T = 0 phase transition (see [2] and references therein). Summarizing, from

state of the art numerical simulations one can deduce that 2 � d

l

< 3.

Also the fact that d

u

= 6 is well supported by numerical results [14, 15]. In 6d one

determines with good accuracy mean �eld exponents (
 = 1, � = 1 and z = 4), with

logarithmic corrections (that have been detected in the equilibrium simulations).

Here we will try to shed more light on the di�cult numerical simulations of the 3D

Edwards Anderson spin glass. The main problem is probably in the fact that the system

is very close to its LCD. So the apparent merging of the Binder parameters in the low

T region, that has only recently been disentangled to show a signi�cant crossing [3, 5], is

dramatically reminiscent of the one one can observe in the case of a Kosterlitz-Thouless

transition. We will try here to learn more about the e�ects of an anomalous situation like

the Kosterlitz Thouless (KT) one, by looking for example to the Binder cumulant and to

the overlap probability distribution P (q). To do this we will discuss in same detail the

structure of the order parameter probability distribution in the 2D XY model without

disorder. We will stress how similar to the 3D spin glass things are at a �rst level of

analysis, and where the relevant di�erences can be found. It is also remarkable that the

pure 2D XY model has a peculiar aging behavior [16]: aging is one of the crucial features

of spin glass systems, and its quali�cation is of large importance.

3



In the next section we will de�ne our models, the physical observable quantities, and we

will give details about our numerical simulations. In section (3) we discuss our results, by

following in parallel the 2D XY model without disorder and the 3D spin glass. In section

(4) we draw our conclusions.

2 Models, Observables and Simulations

We have studied the two dimensional XY model on a squared lattice. The volume is

denoted by V = L

2

, the hamiltonian is

H = �

X

<x;y>

cos(�

x

� �

y

) ; (4)

where < x; y > denotes a sum over nearest neighbor site pairs, � is a continuous real

variable, and periodic boundary conditions are imposed on the system. This model shows

an in�nite order phase transition (with �

c

� 1:11) [17], the Kosterlitz-Thouless transition.

In according with the Mermin-Wagner theorem [10] there cannot be non-zero order pa-

rameters: the magnetization in the thermodynamical limit is zero for all T > 0. The KT

transition is characterized by a change in the behavior of the two point correlation func-

tion, which goes from the exponential decay of the high temperature phase to the algebraic

decay of the low temperature phase. The whole low temperature phase (� > �

c

) is critical

(the correlation length is in�nite).

To simulate this model we have used the Wol� single cluster algorithm [18]. The

simulations have been run at �ve di�erent values of � in the low temperature phase:

� = 1:3; 1:4; 1:5; 1:7; 2:0. For each value of � we have used the lattice sizes L = 8, 16, 32,

64, 128, 256. For each value of (�;L) we have used 200; 000 iterations of the single cluster

algorithm, discarding the �rst half for thermalization. The total CPU time required has

been approximately one month on a 100 MHz Pentium based computer.

We have measured the probability distributions of

m

1

�

1

V

�

�

�

�

�

Re

X

x

exp(i�

x

)

�

�

�

�

�

; (5)

that we denote as P

1

(m

1

). We call m

max

1

the value of m

1

where P

1

(m

1

) is maximum and

takes the value P

max

1

� Max[P

1

(m

1

)]. We have looked in detail to the �rst and second

moments of P

1

(m

1

), hm

1

i and hm

2

1

i. We have also computed the Binder cumulant of the

P

1

(m

1

) distribution:

B

1

=

1

2

 

3 �

hm

4

1

i

hm

2

1

i

2

!

: (6)

At low T one can study the XY model by using the spin wave approximation, that neglects

the role of vortices (since they are suppressed at low T ). In the T ! 0 limit all the spins

point in the same direction, and (�) is uniformly distributed, so that

hm

p

1

i =

1

2�

Z

2�

0

d� cos

p

� ; (7)
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and the Binder cumulant at T = 0 has the value

B

1

(T = 0) =

3

4

: (8)

To determine the relevant scaling behavior we use the fact that, for the XY model,

� ' L

2��(T )

and hm

2

i � �=L

2

, where in the spin wave approximation

�(T ) =

T

2�

; (9)

is the anomalous dimension of the �eld. Moreover, since P

1

(m

1

) is a probability distribu-

tion, normalized to one, with non zero maximum value (m

max

1

) (at least for �nite values of

the lattice sizes) and with hm

2

1

i ' L

��

! 0 (at �nite temperatures) we have that

1

P

max

1

m

max

1

' 1; (10)

independently of the lattice size, L. Since

m

max

1

' hm

1

i ' hm

2

1

i

1=2

;

we conclude that

m

max

1

' L

��(T )=2

;

hm

1

i ' L

��(T )=2

;

hm

2

1

i ' L

��(T )

;

P

max

1

' L

�(T )=2

: (11)

The other model we have studied is the three-dimensional Ising spin glass with quenched

random couplings J distributed with a Gaussian law. The Hamiltonian is

H � �

X

<i;j>

�

i

J

i;j

�

j

; (12)

where the spin are de�ned on a three-dimensional cubic lattice and < i; j > denotes a sum

over nearest neighbor pairs.

As usual [2] we have simulated two real replicas (� and � ) with the same quenched

couplings, and we have measured the overlap

q(�; � ) �

1

V

X

i

�

i

�

i

; (13)

and its probability distribution

P (q) = h�(q � q(�; � )i (14)

where, as usual, we denote the thermal average with h(� � �)i, and the average over the

disorder distribution with (� � �). The Binder cumulant of the probability distribution P (q)

is

1

In the rest of the paper the symbol A ' B means A = O(B).
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g �

1

2

2

4

3 �

hq

4

i

hq

2

i

2

3

5

: (15)

We have run L = 4,6,8,10,12 and 16 lattices with 2048, 2560, 512, 512, 2048 and 500

samples respectively. We have used the supercomputer APE-100 [19].

For simulating the spin glass model we have used the simple tempering method for

small lattices (L � 10), and the parallel tempering scheme for large lattices (L � 12) (see

[20, 21, 2] and references therein). Thanks to that we have kept under control the level

of thermalization reached by the system, that is in all cases very good (for a discussion of

the standard criteria of control see [21]). We have checked that the equalities established

numerically in [4], and proven by Guerra [22] hold for our results, and that the P (q) is well

symmetric, supporting the reach of full thermalization.

3 Results

0.8 1.0 1.2

T

0.4

0.5

0.6

0.7

0.8

0.9

g L=4

L=6

L=8

L=10

L=12

L=16

Figure 1: Binder cumulant for the 3D Ising spin glass. On the right, from top to bottom,

curves and data points are for L = 4, 6, 8, 10, 12 and 16.

In �gures (1) and (2) we show the Binder cumulant and the probability distribution of

the 3D Ising spin glass.

Let us discuss �rst the Binder cumulant. In �gure (1) there are two di�erent regions.

In a high temperature region curves corresponding to di�erent lattice sizes are clearly split

(they tend to zero in the thermodynamical limit). At small temperature (i.e. for � larger

6



than �

SG

c

� 1:0), on small lattice sizes (up to L = 10) curves coalesce, within our small

error bars, in one. It is interesting to notice that de�ning a Binder cumulant based on

three di�erent replicas [23] allows a somehow easier determination of the critical behavior.

0 0.2 0.4 0.6 0.8 1.0

q

0

1

2

3

4

P
(q

)
L=4

L=6

L=8

L=10

L=16

Figure 2: Probability distribution of the overlap, P (q), for the 3D Ising spin glass. T = 0:7

From right to left curves and data points are for L = 4,6,8,10 and 16.

Only when thermalizing a L = 16 lattice (quite large for current standards, and im-

possible to thermalize deep in the critical region without the use of parallel tempering

[2]) one is able to exhibit a clear crossing between, for example, the L = 8 curve and the

L = 16 curve. This implies the existence of a phase transition at �nite temperature with

a non-zero order parameter, q

EA

6= 0 (see Kawashima and Young [3] for the model with

quenched binary couplings, J = �1).

We can compare �gure (1) with �gure (3), where we show our numerical results for the

Binder cumulant,B

1

, for the 2D XY model. Up to L = 10 the XY model and the 3D Ising

spin glass have a very similar behavior: again, within error bars, in the low temperature

region all the curves for di�erent lattice sizes collapse in a single curve, without any visible

sign of �nite size e�ects.

The behavior of the full probability distribution of the order parameter (m

1

for the 2D

XY model and q for the 3D Ising spin glass) is very similar. Figures (4) and (5), where

we show P

1

(m

1

) at � = 1:3 and � = 2:0 respectively, can be compared to the analogous

�gure for the spin glass P (q), (2). The overall shapes are very similar. The peak shifts to

the left, and in both cases P (0) looks constant in our statistical precision.

We give in table (1), at � = 1:3, the expectation values of the observables shown �gures

(4) and (5). By �tting these values by using a single power �t we �nd

7
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0.4

0.6

0.8

B
1

L=4

L=8

L=16

Figure 3: Binder cumulant, B

1

, for the 2D XY model. From top to bottom, L = 4, 8 and

16.

0 0.2 0.4 0.6 0.8 1.0

m
1

0

1

2

3

4

P
1
(m

1
)

L=8

L=16

L=32

L=64

L=128

L=256

Figure 4: Probability distribution for the 2D XY model, P

1

(m

1

), at � = 1:3.
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1
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1
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Figure 5: Probability distribution for the 2D XY model, P

1

(m

1

), at � = 2:0.

m

max

1

' L

�(0:08�0:01)

;

hm

1

i ' L

�(0:09�0:01)

;

hm

2

1

i ' L

�(0:17�0:01)

;

P

max

1

' L

+(0:09�0:01)

: (16)

These results are in remarkable agreement among them and in good agreement with the

spin wave exact value �(� = 1:3) = 0:12. Corrections due to vortices are equivalent to a

higher e�ective temperature [24], that undergoes here a 30% shift.

We have also established that a power �t to a non-zero in�nite volume order parameter

of the form

m

max

1

(L) = m

max

1

(1) +

A

L

B

; (17)

with m

max

1

(1) di�erent from zero and A and B constant is excluded by the data.

Figures (4) and (5) are interesting: they show a �nite size non-trivial behavior that

we know, from theoretical ideas (the Mermin-Wagner theorem), and from the analysis of

the numerical data, will converge to a zero centered delta function limiting probability

distribution in the in�nite volume limit. This is the point we want to stress. Since the 3D

spin glass has a very similar behavior (and even for the 4d model, where the crossing of

the Binder cumulant is clear, it is non-trivial to show that q

EA

tends to a non-zero limit)

it is crucial to understand where di�erences are.
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We also want to stress that P

1

(m

1

) shows a clear plateau, roughly L-independent, close

to the m

1

' 0 region. The plateau height grows with the lattice size (in a statistically

signi�cant way in our numerical data, see (1)). This is one of the interesting results of

this note: the in�nite volume 2D XY m

1

delta function is constructed from the increasing

�nite volumes by a �nite m

1

peak that shifts towards m

1

' 0, and by a plateau in the

m

1

' 0 region that slowly increases with the lattice size, to eventually match the peak in

the m

1

= 0 delta function.

We have repeated this analysis for the overlap probability distribution P (q) of the

3D spin glass (see �gure (2)). The best scaling �t of the peak position, q

M

, where the

probability distribution is maximum, by a power law (the data are in table (2)) gives

q

M

= (0:70 � 0:02) + (1:6� 0:7)L

�(1:5�0:4)

; (18)

where T = 0:7. In this �t we have used all lattice volumes (L � 16). The �t had a

�

2

=dof = 0:15. This thermodynamical value we get for q

EA

is close to the value that has

been extracted from an o�-equilibrium simulation (q ' 0:7) [5]. The best (two parameter)

�t obtained by �xing q

M

= 0:7 (considered as an input from the dynamical simulations)

gives compatible results with smaller errors. In �gure (6) we show the q

M

data versus L

�1:5

(see also table (2)), and the curve from the best (two parameter) �t.

From the numerical data for the 3D spin glass (that are from a state of the art large

scale numerical simulation) we cannot exclude the possibility of q

EA

= 0 in the in�nite

volume limit. We �nd that the best �t (that uses in this case only L � 6 data)

q

M

= (1:0� 0:1)L

�(0:12�0:02)

(19)

is very good. So, even if the scenario of a non-zero overlap is favored (the static value is

equal to the dynamic one, the exponent of a decay to q = 0 is very small) in the 3D case we

cannot use this limit to be sure of the existence of a phase transition with a non-zero order

parameter (in 4d recent high statistics data allow to establish this evidence [8]). The safe

evidence for the existence of a phase transition in the 3D spin glass relies in this moment

on the statistically signi�cant crossing of the �nite L Binder cumulant [3, 5], that makes

visible �ne details of the equilibrium probability distribution.

Also the behavior of P (0) turns out to be the potential source of many ambiguities.

We have seen that in the XY model it grows very slowly with the lattice size, in order to

asymptotically contribute to the m

1

= 0 delta function. Also in the 3D spin glass, where

in a mean-�eld like broken phase we expect a �nite limit for P (0) we observe a constant

plateau with a (non necessarily statistically signi�cant) growth for L = 16. This behavior

contributes to falsify the droplet model picture, where one would expect P (0) to decrease

with the lattice size.

4 Conclusions

We have shown that the two dimensional ferromagnetic XY model and the three dimen-

sional Ising spin glass �nite volume order parameter probability distributions behave very

similarly. The Binder cumulants on small lattice volumes show a similar merging at low T .

Only on large lattices the 3D spin glass exhibits a crossing typical of a phase transition.
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0
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q
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Figure 6: Value of the overlap q

M

such that P (q) is maximum (3D Ising spin glass). The

continuous line is the �t described in the text. T = 0:7.

L m

max

1

hm

1

i hm

2

1

i P

max

1

P

1

(0)

16 0.74(1) 0.485(6) 0.283(4) 2.64(9) 0.83(5)

32 0.70(1) 0.456(5) 0.260(3) 2.79(8) 0.93(2)

64 0.66(1) 0.431(5) 0.231(3) 3.00(9) 0.97(6)

128 0.62(1) 0.405(4) 0.205(2) 3.08(7) 0.94(9)

256 0.60(1) 0.382(5) 0.183(3) 3.36(11) 1.09(6)

Table 1: Numerical data for the 2D XY model, � = 1:3. See the text for more details.

L q

M

P (0)

4 0.91(1) 0.398(3)

6 0.81(1) 0.376(5)

8 0.77(1) 0.39(2)

10 0.76(1) 0.39(2)

16 0.72(1) 0.49(7)

Table 2: Numerical data for the 3D Ising spin glass, T = 0:7. See the text for more details.

11



The results that we have discussed for the XY model are completely compatible with the

KT predictions. We have analyzed the �nite volume behavior of the peak of the �nite vol-

ume order parameter probability distribution. In the case of the XY model the preferred

limit is zero. In the spin glass case the preferred value is non-zero, and compatible with

an o�-equilibrium estimate, but from the present data one cannot rule out the possibility

of the position of the peak going to zero in the in�nite volume limit.

We have also established that P (0) in the KT scenario has a �nite volume non-zero

value, that increases in the in�nite volume limit. In �nite volume one can then exhibit

probability distributions with the same shape of that of a �nite dimensional spin glass that

have a trivial thermodynamic limit (a delta function in the origin). Analyzing �nite size

e�ects is crucial before reaching conclusions about the critical behavior. In the 3D spin

glass good evidence for the existence of a mean �eld like phase transition is based on a

dynamical determination of the Edward-Anderson order parameter and on the crossing of

the Binder cumulant on large lattices, but determining with good precision the shape of

P (q) on large lattice sizes will be important for making more details of the critical behavior

crystal clear.
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