
The Janus project: boosting spin-glass
simulations using FPGAs

M. Baity-Jesi ∗,∗∗ R. A. Baños ∗∗,∗∗∗ A. Cruz ∗∗,∗∗∗

L. A. Fernandez ∗,∗∗ J. M. Gil-Narvion ∗∗

A. Gordillo-Guerrero ∗∗,∗∗∗∗ D. Iñiguez ∗∗ A. Maiorano ∗∗,†

F. Mantovani ‡ E. Marinari ∗∗,† V. Martin-Mayor ∗,∗∗

J. Monforte-Garcia ∗∗,∗∗∗ A. Muñoz Sudupe ∗,∗∗ D. Navarro ∗∗

G. Parisi † S. Perez-Gaviro ∗∗ M. Pivanti ‡ F. Ricci-Tersenghi †

J. J. Ruiz-Lorenzo ∗∗,§ S. F. Schifano ‡ B. Seoane ∗∗,†

A. Tarancon ∗∗,∗∗∗ R. Tripiccione ‡ D. Yllanes ∗∗,†

∗Departamento de F́ısica Teórica I, Universidad Complutense, 28040
Madrid, Spain.

∗∗ Instituto de Biocomputación y F́ısica de Sistemas Complejos (BIFI),
Zaragoza, Spain.

∗∗∗Departamento de F́ısica Teórica, Universidad de Zaragoza, 50009
Zaragoza, Spain.

∗∗∗∗Departamento de Ingenieŕıa Eléctrica, Electrónica y Automática,
Universidad de Extremadura, 10071. Cáceres, Spain.

†Dipartimento di Fisica, La Sapienza Università di Roma, 00185
Rome, Italy.

‡Dipartimento di Fisica Università di Ferrara and INFN - Sezione di
Ferrara, Ferrara, Italy.

§Departamento de F́ısica, Universidad de Extremadura, 06071
Badajoz, Spain.

Abstract: Spin-glasses have become one of the most computing-demanding problems of the
last 50 years in Statistical Physics. These extremely slow systems represent a clear example of
an easy-to-describe but hard-to-simulate numerical problem. We have developed an FPGAs
architecture, called Janus, able to exploit the simplicity of the problem by an extensive
parallelization of the computing units. In this work we describe the architecture after motivating
the problem. We give the performance figures compared with other more usual architectures.
We have obtained a clear advantage in terms of computing power which produced several top
results in the field. In addition, we describe the current development of the next generation of
the infrastructure: Janus II.

Keywords: Computer architectures, Algorithms, Parallel computation, FPGAs, Computer
Simulation.

1. INTRODUCTION

A major challenge in condensed-matter physics is the
understanding of glassy behavior, see for example Angell
(1995) and Debenedetti (1997). Glasses are materials of
the greatest industrial relevance (aviation, pharmaceuti-
cals, automotive, etc.) that do not reach thermal equilib-
rium in human lifetimes. This sluggish dynamics is a major
problem for the experimental and theoretical investigation

? The Janus project has been partially supported by the EU
(FEDER funds, No. UNZA05-33-003, MEC-DGA, Spain); by the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013, ERC grant agreement
no. 247328); by the MICINN (Spain) (contracts FIS2006-08533,
FIS2012-35719-C02, FIS2010-16587, TEC2010-19207); by the SUMA
project of INFN (Italy); by CAM (Spain); by the Junta de Ex-
tremadura (GR10158); by the Microsoft Prize 2007 and by the
European Union (PIRSES-GA-2011-295302).

of glassy behavior, placing numerical simulations at the
center of the stage.

Spin glasses are a wide category of prototypical glassy
systems, see Mézard et al. (1987). Spin variables, taking
a small set of discrete values (e.g. two states, up and
down) sit at the nodes of a regular D-dimensional lattice,
and tend to take the same value of their neighbors if the
coupling defined on the edge connecting the corresponding
nodes are positive (and to misalign if the coupling is
negative). The coupling between neighbors is randomly
choosen at the begining of the simulation. The deceivingly
simple rules governing the evolution of a single node
produce a very complex collective dynamics, especially
when one deals with large lattices (order 106 nodes),
as required to compute results that can be compared
with experiments on glassy materials. In order to make
this comparison with experiments, we need to follow the
evolution of a large enough 3D lattice, say 803 sites,

12th IFAC Conference on Programmable Devices and Embedded
Systems
The International Federation of Automatic Control
September 25-27, 2013. Velke Karlovice, Czech Republic

978-3-902823-53-3/2013 © IFAC 227 10.3182/20130925-3-CZ-3023.00039

for time periods of the order of 1 second. One Monte
Carlo Step (MCS) —the update of all the 803 spins in
the lattice— roughly corresponds to 10−12 seconds, so we
need some 1012 such steps, that is ∼ 1018 spin updates.
Furthermore, in order to account for random couplings
of the system we have to collect statistics on several
(∼ 102) copies of the system, adding up to ∼ 1020 Monte
Carlo spin updates. It is essential to realize that the
correct study of glassy behavior requires that the MCS
for each copy be consecutive. Therefore, performing this
simulation program in a reasonable time frame (say, less
than one year) requires a computer system able to update
on average one spin in 1 picosecond or less.

At the time the project started (early 2006), available
commercial CPU technology made it possible to develop
simulation codes that partially exploited the available
parallelism; a large optimization effort resulted in a spin-
flip time of order 1 ns. A cluster of order 100 CPUs would
then need around 109 seconds (that is, more than 30 years)
to complete the simulation described above.

The development of Janus, see Belletti et al. (2008b), Bel-
letti et al. (2009b) and Baity-Jesi et al. (2012), marked
a substantial progress: Janus deploys 256 processors built
with state-of-the-art FPGAs (in 2006). The simple dynam-
ical rules governing a single spin variable can be easily im-
plemented as a small block of logical rules; a single FPGA
hosts up to 1000 single-spin-flip engines. One Janus node
has a 16 ps single spin-flip time. A simulation program
as the one outlined above can be completed in just a few
months, making it a viable option.

A performance increase following the Moore’s law is in-
evitably going to finally beat Janus on spin glass applica-
tions. Nevertheless, FPGA technology improved too, and
larger and faster programmable devices will be shortly
available on the market; we foresee that a new genera-
tion FPGA-based supercomputer, named Janus II, will
be able to outperform its ancestor by at least two order
of magnitude, guaranteeing for itself a long lifetime in
terms of absolute performance and cost/performance and
power/performance ratios in the simulation of spin glass
systems.

In what follow, we briefly describe a typical spin glass
model and the structure of a typical Monte Carlo simula-
tion and discuss why its implementation is more effective
on FPGAs than on conventional CPUs (and GPUs). We
then describe the architecture of Janus, and give per-
formance comparison with respect to other systems. We
finally describe the new Janus II supercomputer, that is
at prototype stage, and discuss its expected performance.

2. SIMULATIONS OF SPIN-GLASSES

The most prototypical and simple spin-glass model is the
three-dimensional Edwards-Anderson model Edwards and
Anderson (1975). The energy of the system is defined as:

E = −
∑
〈ij〉

σiJijσj ; (1)

where σi are the spin variables (modeling magnetic mo-
ments at atomic lattice sites) taking values +1 (spin up)

and −1 (spin down), sitting at the nodes of a three-
dimensional cubic lattice of linear size L. Jij are the
strengths of the interaction (couplings) along the edges
connecting nearest-neighbor nodes. A positive Jij favors
alignment of the spins of the two neighboring nodes while
a negative value favors misalignment. The sum in (1) spans
all pairs of nearest neighbors.

The values in the set of couplings Jij we consider the case
in which the couplings are +1 or −1 with probability 0.5
(binary model). A set of 3L3 Jij is a sample of the system;
the couplings in a sample remain fixed in time.

The local energy of a single spin, say σk at site k, is
determined by the interaction with its six neighbors only:

ε(σk) = −σkφk; (2)

φk =
∑

j=k±x,k±y,k±z

Jkjσj . (3)

The local field φk is determined only by the nearest
neighbors of σk.

The probabilities of the spin to be up or down can be
computed from the Boltzmann-Gibbs distribution:

P (σk = ±1) =
exp [±βφk]

exp [βφk] + exp [−βφk]
, (4)

where β = 1/T is the inverse temperature. This defines the
Heat-Bath algorithm: at any given time, we may decide if
the spin σk is up or down by comparing the probability
to be up with a (pseudo-) random number ρ extracted
uniformly in the interval [0, 1).

The recipe for the simulation of the dynamics of a single
sample of the model (1) is then as follows:

(1) Extract the complete Jij configuration.
(2) Extract the initial σi configuration (each spin can be

up or down with equal probability).
(3) Begin a trial spin-flip: pick a site k at random, each

site with equal probability.
(4) compute the local field ε(σk) from (3) and the spin

up probability P (+1) from(4).
(5) Pick a uniformly distributed pseudo-random number

0 ≤ ρ < 1 from your favorite generator.
(6) If ρ < P (+1), then put σk = +1, otherwise put

σk = −1; end of the trial spin-flip.
(7) Repeat from step 3 above as many times as needed.

A MCS in this scheme is a number of trial spin-flip equal
to the number of sites in the lattice.

When one performs a huge number of MCSs, the statistical
properties of the observables that one measures (averages
over all sites and averages over MCSs) do not depend
anymore on the particular order in which the algorithm
visits each lattice sites. It turns out that this property
is independent of any particular lexicographic order we
could impose on the site-visiting scheme. This brings
substantial simplification and makes room for a very
efficient exploitation of the internal parallelism.

In addition, another degree of replication is needed because
some interesting properties of the system comes out when
comparing two independent simulations of the same sam-

IFAC PDeS 2013
Velke Karlovice, Czech Republic

228

Fig. 1. Top: a schematic view of the Janus board internal
and external connections. Bottom: a real photo of a
working Janus board.

ple, starting from independent initial spin configurations.
Usually each sample must be simulated twice at least; the
two identical copies with independent histories are called
replicas.

Traditional architectures, at the time the project started,
were poor in exploiting the internal parallelism. The gen-
eration of several high-quality random numbers (one per
spin) was the principal bottle-neck in the computation.
Traditional CPU are in fact tailored to manage com-
plex basic computations (integer and floating-point arith-
metics) on (relatively) large data sets (32- and 64-bit
words). The ideal spin glass machine would be instead
more similar to an application specific GPU, with data
paths tailored to perform the specific sequence of logical
operations, a control structure shared by a number of
cores larger than in state-of-the-art GPUs, data storage on
on-chip memory only and a memory controller optimized
for typical access patterns as required by the described
algorithm.

Janus is essentially an array of hundreds of thousand of
properly tailored small computational cores simulations
of systems of interacting discrete variables on regular
structures. Nevertheless, Janus is not “only“ an applica-
tion specific facility, performing well on a wide range of
applications but with outstanding performances on spin
glasses.

3. THE JANUS ARCHITECTURE

A Janus board (see fig. 1) contains 16 + 1 FPGA-based
components: 16 SPs (Simulating Processors) and an IOP
(the Input-Output Processor). A board needs an host PC

to be operated. The SP is the unit in which we exploit
internal parallelism, efficiently implementing the algorithm
described before. External parallelism is usually obtained
by farming SPs (16 per board) and by driving more boards.
In its full configuration, Janus is a stack of 16 boards,
totaling 256 SPs.

All the devices inside the Janus Board can be managed
through the IOP, which is connected to the host PCs via
a gigabit Ethernet interface. The host PC runs a standard
Linux operating system, and a set of specific C libraries
allow a user to get through the link to and from the IOP.

We choose the Xilinx Virtex-4 LX200 FPGA as the recon-
figurable device for IOPs and SPs. The main clock in the
board is 62.5 MHz and it is distributed to all IOP and
SP devices. Such a conservative choice has been useful
to guarantee mapping of our application to very dense
firmware codes (we reached near 95% resource occupation
for our heaviest applications).

The IOP card also include 8MB of static memory, a PROM
programming device (to load the IOP’s FPGA firmware on
power-up) and some I/O interfaces: two Gigabit Ethernet
and a serial link (useful for debugging purposes).

The SPs are the computational nodes of Janus. Each SP
may operate independently or together with other SPs,
depending on the firmware loaded by the user program
running in the host PCs. The user application consists
basically of two layers: a firmware layer, loaded on the SPs,
implements the many cores performing the computational
tasks as described in section 2. A software layer, the Janus
Operating System (JOS), comprises a program running as
a background process in the host PC (josd); it performs
the abstraction and acts as a job queue manager.

Development of a Janus application consists in fact of
two tasks: programming the firmware for the SPs (in
a hardware description language, VHDL is our choice),
complying with the I/O requirements in the IOP, and
programming the mid-level library functions that, based
on the josd interface to user application, implement the
chosen protocol for communication with the SPs.

3.1 A Sample Spin Glass Application Implementation

We try to exploit all FPGA resources to achieve best
performance. The Virtex-4 LX200 FPGA by Xilinx comes
with many small RAM blocks that we can logically com-
bine and stack to reproduce the 3D array of spins on a
lattice of size L (L 2D memories with width L and depth
L). In addition, we have to simulate two replicas at least
as mentioned in section 2. Then, we consider two replicas
of a single disorder sample and divide them in black and
white sites in a checkerboard scheme; then, we arrange
all black spins of one replica together with all white spins
of the other replica in the same 3D memory structure.
We end up with two mixed 3D memory structures (we
call them structure P and structure Q); each spin in one
structure has neighbors only in the other structure: no
spins in the same structure are neighbors of each other
in the physical lattices. Now, we can read or write an
L-wide word from each memory of the 3D structure P
per clock cycle; it turns out that having L memories, we
can read an entire plane of the 3D memory P , update

IFAC PDeS 2013
Velke Karlovice, Czech Republic

229

Fig. 2. Diagram of the SP firmware operation. In the UE,
the logic block H computes the local field, and use it
as an address to the probability Look-Up Table L; the
MC check block compares the probability value with
an incoming pseudo-random number and returns the
new spin value.

it and write back to memory at the next clock cycle; we
only need three planes of neighbors from the 3D memory
structure Q; if we update planes from, say, bottom to top;
of the three planes of neighbors in Q needed to update
a plane in P , two of them will be neighbors also for the
subsequent plane of the structure P . At regime, spanning
the whole 3D memory structure, only one read and at
most one write is needed from each RAM block in order
to update an entire plane of the P structure. We can then
update an entire plane of L2 spins per clock cycle. Besides,
we instantiate identical 3D memory structures to store
all the necessary coupling constants, to be fetched with
the same rate as the spins in the P structure. We then
arrange a set of L2 identical update engines (UE); each
UE receives in input the six neighbors of a single spin and
combinatorially computes the local field; the pre-computed
and constant-in-time spin-up probabilities, normalized to
32-bit unsigned integers, are stored in a Look-Up Table;
each UE contains its own table and accesses it indepen-
dently; the UE also receives a 32-bit word of random bits;
a comparison between the addressed 32-bit probability and
the 32-bit random number is performed and the new value
of the updated spin is returned.

Once the whole P structure is updated, the controlling
state machine interchanges the roles of P and Q, and the
update of the Q structure starts with the same procedure
described above. When the Q structure is updated, a
Monte Carlo step is complete. The whole machinery is
depicted in fig. 2

A key advantage of the FPGA implementation is that we
can generate pseudo-random numbers concurrently with
the rest of the computation and feed them to UEs at
a proper rate. For more details on the efficient imple-
mentation of the previous algorithm we refer the reader
to Belletti et al. (2008b).

It is usually possible to place up to 1024 UEs in a single
FPGA, thus sustaining an update time of 16 ps per spin
at 62.5 MHz clock speed.

We have described the implementation on a quite simple
(but still very interesting) spin-glass model, we success-
fully programmed and used the Janus computer to sim-
ulate various glassy systems. The interested reader can
find in the works Belletti et al. (2008b), Belletti et al.
(2008a), Cruz et al. (2009), Belletti et al. (2009a), Baños
et al. (2010b), Baños et al. (2010a), Baños et al. (2011)
and Baity-Jesi et al. (2012) an exhaustive survey.

4. JANUS PERFORMANCES

In the case of a CPU implementation we have two ap-
proaches: the Asynchronous Multi-Spin Coding (AMSC)
approach, consist on filling bit positions in a long word
with spins (or couplings) belonging to the same site of
independent samples. On the other hand, in the Syn-
chronous Multi-Spin Coding (SMSC) approach, one fills
the bits with spin variables (and couplings) taken from a
single sample, choosing of course a set of spins that can be
updated simultaneously.

In what follows we consider the single spin-update-time
(SUT) as the unit of performance. On an SP running 1024
updates per clock cycle, at 62.5 MHz clock cycle, the SUT
is 16 ps.

We performed several performance measures on a wide
range of many-core systems (Cell Broadband Engine, 4-
core Nehalem Intel CPU Xeon 5560, Tesla C1060 GP-
GPU), and some partial tests on a 8-core Intel Sandy
Bridge processor (Xeon E5-2680), see Guidetti et al.
(2010). We compare Janus performances to mixed AMSC-
SMSC implementations, reporting on two kind of SUT
measures: the time needed for completing the simulation
divided by the total amount of trial spin-flips needed
to update a single sample (single-system SUT): this has
to be compared with the full SMSC implementation in
a single Janus SP; the time needed for completing the
simulation divided by the total amount of trial spin-flips
needed to update all the simulated samples (global SUT):
we compare this to the performance of a Janus board, in
which one may consider both AMSC and SMSC levels of
parallelism. Results are summarized in Table 1.

The figures we show for the GPU processor deserve a
further comment. Floating-point application usually get
large advantages by the use of GPUs, but this is not the
case for our sample application; in facts, the Tesla C1060
does not really outperform other standard architectures,
and keeps one order of magnitude less performing than
Janus hardware. GPU are more effective on applications
with reduced memory accesses; the computational kernel
of our application requires few operations: the local field
of a single spin, for instance, can be computed with 6
XORs and 5 sums on a set of 12 variables (6 neighbor
spins and 6 couplings). The GPU performances are then
limited by memory-bandwidth despite peak performances
are one order of magnitude larger than competing multi-
core architectures.

We see then that recent standard architectures will indeed
fill the gap with Janus. Still, the Janus computer, based
on six-year-old technology, remains architecture of choice
for spin glass simulations. The figures we presented show
that Janus is capable of performing a given simulation in

IFAC PDeS 2013
Velke Karlovice, Czech Republic

230

Table 1. Comparison of Janus performance to some commercial processor: Intel Nehalem (dual
socket board with two 4-core Xeon 5560), Tesla C1060 and Intel Sandy-Bridge (dual socket
board with two 8-core Xeon E5-2680). In the upper part, the single-system spin update time,
to be compared with the SMSC implementation of a single SP of Janus. In the lower part, the
global spin-update time, to be compared to the global spin-update time of a whole Janus board.
The number of independent systems simulated in parallel in the AMSC scheme is shown in

parentheses

single-system SUT (ns/spin)

L Janus SP I-NH (8 Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060 I-SB (16 cores)

16 0.063 0.98 0.83 1.17 – –

32 0.016 0.26 0.40 0.26 1.24 0.37

48 0.021 0.34 0.48 0.25 1.10 0.23

64 0.016 0.20 0.29 0.15 0.72 0.12

80 0.020 0.34 0.82 1.03 0.88 0.17

96 0.027 0.20 0.42 0.41 0.86 0.09

128 – 0.20 0.24 0.12 0.64 0.09

global SUT (ns/spin)

L Janus I-NH (8 Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060 I-SB (16 cores)

16 0.004 (16) 0.031 (32) 0.052 (16) 0.073 (16) – –

32 0.001 (16) 0.032 (8) 0.050 (8) 0.032 (8) 0.31 (4) 0.048 (8)

48 0.0013 (16) 0.021 (16) 0.030 (8) 0.016 (16) 0.27 (4) 0.015(16)

64 0.001 (16) 0.025 (8) 0.072 (4) 0.037 (4) 0.18 (4) 0.015 (8)

80 0.0013 (16) 0.021 (16) 0.051 (16) 0.064 (16) 0.22 (4) 0.011 (16)

96 0.0017 (16) 0.025 (8) 0.052 (8) 0.051 (8) 0.21 (4) 0.012 (8)

128 – 0.025 (8) 0.120 (2) 0.060 (2) 0.16 (4) 0.011 (8)

Table 2. Resource comparison between FPGAs
in Janus (Xilinx XC4VLX200) and Janus II

(Xilink XC7VX485T).

device logic cells distributed RAM block RAM

XC4VLX200 200448 1392 Kb 6048 Kb

XC7VX485T 485760 8175 Kb 37080 Kb

10 times shorter wall-clock-time. Still, FPGA technology
has followed its course and we expect that today state-
of-the-art FPGA based processors would outperform the
Janus SPs.

5. JANUS II

The next generation of the Janus supercomputer will
respect the general architecture of its predecessor, with
many improvements made possible by technology advances
in the last years.

We plan the following main improvements:

• Latest-generation FPGA devices.
• A tighter coupling between the IOP and the host PC.
• A faster and more flexible communication between

IOP and SPs inside one board and across boards.

Janus II will be a again cluster of processing boards. Each
board is a set of 16 SPs and an IOP as in Janus, built on a
processing board (PB). The PB provides all electrical links
and connectors to arrange the SP grid into a 4× 4× 1 3D
toroidal network: the added third dimension with respect
to the Janus board allow for communication between SPs
on adjacent boards. The PB also provides the 125 MHz
master clock to all devices.

The IOP features the largest increase in complexity with
respect to other Janus components. It will integrate all
of the previous IOP functionality and will integrate the
host PC. A Computer-On-Module (COM) express board
plugs onto the IOP piggy-back module. The COM express
system will have Sandy-Bridge class CPU and at least 4
GB DDR3 memory. A Solid State Disk will be connected

to the COM express via SATA links. The core of the IOP
will of course be an FPGA performing all data-routing
and control. We select the Xilinx Virtex-7 XC7VX485T.
The FPGA processor will export a 8x PCI Express Gen 2
link to the COM module and provide enough high-speed
serial links (GTX) to all the SPs on the board and to IOPs
in other boards. The IOP interfaces to the world via an
Infiniband adapter; there will be service connections also:
two Gigabit Ethernet channels and two serial interfaces.
The IOP of course provides also the programming interface
for on-the-fly configuration of the SPs’ FPGAs.

The SP also features one Xilinx Virtex-7 XC7VX485T.
At variance with the previous Janus SP, it will also
host some DDR3 DRAM. It will have direct connections
to neighboring SPs in the 3D logical toroidal network,
physically implemented with high-speed serial transceivers
in the FPGA (5 GB/s transfer rate minimum).

The fast interconnection network and the new FPGA
features provide large margins for performance improve-
ments. Janus II features FPGAs with more than twice the
logic, 6 times more distributed memory and 6 times more
block RAM (see table 5) than the largest Virtex-4 devices.

The available logic permits a factor 2 increase in terms
of number of updates per clock-cycle. Another factor 2
comes from the faster clock of the system (in Janus it was
62.5 MHz). Please note that we consider running even at
faster speed inside the SPs, and that we are conservatively
supposing that our application will run at the rate given
by the master clock. The main difference with Janus will
be the high-speed direct connections between the SPs in
the 3D mesh: each link is about five times faster than each
link in the 2D SP mesh of a Janus board.

Taking in consideration the sample application described
in section 2, available memory and connection speed allow
for simulating two replicas of a single sample of a 3D
spin glass on a lattice of linear size L = 1200 dividing
it into sublattices of 300 × 300 × 150 among the 128 SPs

IFAC PDeS 2013
Velke Karlovice, Czech Republic

231

Fig. 3. Performance growth in time; each point correspond
to the time we actually get a code running on a specific
architecture. Green points are the Intel series (one
CPU); the red point corresponds to the CBE and the
blue point is the Tesla GPU. The black line are per-
formances of one board of the Janus machines (Janus
II is expected starting full scientific production by the
end of 2013). The red line represents the performance
growth predicted by a Moore’s Law with doubling
performance each 18 months. The green line is the
performance growth trend extracted by considering
only our data points for the Intel series, giving a
doubling in performance each year, approximately.

of 8 adjacent boards. With a sustained update rate of
2000 spins per clock on 300 × 300 planes cycle inside each
SPs, the most demanding bandwidth would be the border
spins transfer through the links connecting SPs in different
boards, requiring 2000 bits transfered in 150 cycles (before
they become necessary to start the next update sequence
in the neighbor SP) corresponding to 3.3 Gb/s.

Such implementation would then be capable of an update
rate of 256000 spins per clock-cycle, corresponding to a
single-system SUT of 32 × 10−15 (and the global SUT is
just half that amount in a complete configuration with
16 Janus II boards). A simulation program as the one
described at the end of section 4 (two replicas, 1011 Monte
Carlo steps) with only 16 samples, would obtain relevant
results in about one year.

In a single SP the single-system SUT would be around 4
times better than in Janus. With only two SPs, we could
allocate two replicas of a L = 150 system and simulate
them with a 4500 updates per spin rate and complete the
task in a month. On a farm of 16 8-cores Sandy-Bridge
processors it would take almost two years (assuming the
measured performance for a L = 128 system from Table 1
applies).

The Janus II computer then establish again a significant
gap with commercial processors.

6. CONCLUSIONS

We have described two Janus generations of supercom-
puter for Spin Glass application. In the second generation
we expect a significant improvement with respect to the
previous one, due to progresses in FPGA technology and
some major architectural design modifications.

We expect Janus II to be a durable facility; in figure 3
we compare best performance values taken from table 1.
If the trend in Intel performance growth should continue,
and if the estimate we provide for the Janus II computer
holds, the latter has an advantage of almost four years,
which is enough to ensure a significant output of scientific
production. If the trend continues by the usual Moore’s
law starting form the Sandy-Bridge performances, Janus
II will again remain unrivaled for some years.

REFERENCES

Angell, C. (1995). Formation of glasses from liquids and
biopolymers. Science, 267, 1924–1935.

Baños, R.A. et al. (2010a). Critical behavior of three-
dimensional disordered potts models with many states.
J. Stat. Mech., 2010(5), P05002.

Baños, R.A. et al. (2010b). Static versus dynamic hetero-
geneities in the d = 3 edwards-anderson-ising spin glass.
Phys. Rev. Lett., 105, 177202.

Baños, R.A. et al. (2011). Sample-to-sample fluctuations
of the overlap distributions in the three-dimensional
edwards-anderson spin glass. Phys. Rev. B, 84, 174209.
doi:10.1103/PhysRevB.84.174209.

Baity-Jesi, M. et al. (2012). Reconfigurable computing for
Monte Carlo simulations: Results and prospects of the
Janus project. The European Physical Journal Special
Topics, 210, 33–51.

Belletti, F. et al. (2008a). Nonequilibrium spin-glass
dynamics from picoseconds to a tenth of a second. Phys.
Rev. Lett., 101, 157201.

Belletti, F. et al. (2008b). Simulating spin systems on
IANUS, an FPGA-based computer. Computer Physics
Communications, 178, 208–216.

Belletti, F. et al. (2009a). An in-depth view of the
microscopic dynamics of ising spin glasses at fixed
temperature. J. Stat. Phys., 135, 1121–1158.

Belletti, F. et al. (2009b). JANUS: an FPGA-based Sys-
tem for high performance scientific computing. Com-
puting in Science & Engineering, 11, 48–58.

Cruz, A. et al. (2009). Spin glass phase in the four-
state three-dimensional potts model. Phys. Rev. B, 79,
184408. doi:10.1103/PhysRevB.79.184408.

Debenedetti, P. (1997). Metastable liquids. Princeton
University Press, Princeton.

Edwards, S. and Anderson, P. (1975). Theory of spin
glasses. J. Phys. F: Metal Phys., 5, 965–974.

Guidetti, M. et al. (2010). Spin glass monte carlo simula-
tions on the cell broadband engine. In R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Wasniewski (eds.),
Lecture Notes in Computer Science. Parallel Processing
and Applied Mathematics. 8th International Conference
(LNCS) 6067, PPAM 2009, 467–476. Springer, Berlin.

Mézard, M., Parisi, G., and Virasoro, M. (1987). Spin
Glass Theory and Beyond. World Scientific, Singapore.

IFAC PDeS 2013
Velke Karlovice, Czech Republic

232

	227

