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of adding momentum-dependent contributions to the self-energy �

ab

(k) by considering a

self-consistent expansion in 1=N of the variational free-energy [12]. Applying this method

to the RFIM, they were able to show that the new graphs at O(1=N) improved the Gaus-

sian Ansatz and were su�cient to break the so-called dimensional reduction coming from

usual perturbation theory, and which of course held at the Gaussian level. Such an ap-

proach could also be used to improve our theoretical understanding of the model studied

in this paper. It su�ers however from a mathematical di�culty related to the absence of

solutions �

ab

(k) with a �nite number of steps of breaking, forcing one to look for a fully

broken mass �(k; u). So far, no solution has been found in the case of the RFIM and one

would probably have to face the same di�culties for the Random Sine-Gordon Model.

Beyond the quantitative calculation of the critical exponents, an important feature of

the GVT is that it leads to a simple determination of the phase diagram of the model

studied here. In this respect, the �gures 4 and 5 seem to indicate that the distribution

of the height di�erences � de�ned in (19) di�ers from a Gaussian even at temperatures

higher than the usual theoretical prediction T

R

=

�

�

. As the two curves for the sizes

L = 64 and L = 128 coincide quite well, �nite size e�ects can apparently not account for

this discrepancy. Some preliminary analytical results we have obtained using the GVT

above T

R

hint indeed at a possible dynamical transition at a temperature T

d

(T

d

> T

R

)

whose value depends on the amount of disorder given by the variance of the quenched

displacement �eld d(x; y) (see the introductive section). If this would be so, there would

already exist at the temperature T

d

an exponentially large number (in L

2

) of metastable

states and the system would only partially \thermalize" in these traps. Both numerical

and analytical work is currently in progress to investigate this important issue.

4 Conclusions

The results we have obtained describe a very complex picture. A super-rough behavior

seems indeed to be there, implying that the GVT does not account fully for the behavior of

the model. We are discussing here very small e�ects, so we cannot exclude completely that

we are not looking at a transient behavior, but that does not seem likely at all. On the

other side the coe�cient of such a non-linear term seems to be, far out of statistical and

systematic error, di�erent from the one one obtains with a RG computation. Also, a non-

trivial Binder parameter looks non-trivial even in the beginning of the to-be warm phase

(that is maybe not the warm phase yet), suggesting the presence of a complex scenario

also for temperatures T of the order of 0:8.

We have argued that indeed from the theoretical view-point we have some understand-

ing of what is happening. We hope we will succeed to deepen it in the near future.
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Figure 5: The Binder parameter B

(�)

L

as a function of T for the two values of the lattice

size, L = 64 and L = 128.

the latter since it predicts that the asymptotic correlation function grows only logarithmi-

cally with the distance. Consequently, one has a right to wonder how much the Gaussian

Variational approach is trustworthy. Some general remarks on this issue will be given in

this section.

As argued by M�ezard and Parisi in their original paper [6], the Gaussian Variational

Theory (GVT) is exact for the theory of an N -components �eld

~

�(x) in the limit N !1

(while the model considered in this paper corresponds to N = 1). This may be easily

understood by noticing that the GVT coincides with the Hartree-Fock partial resummation

of the graphs due to the interaction potential between the replicas [6]. If the quenched

potential V (x;

~

�) seen at point x by the �eld

~

� is itself a Gaussian variable of zero mean

and variance V (x;

~

�)V (x

0

;

~

�

0

) = �(x�x

0

)R(

~

��

~

�

0

) that is, with a purely local interaction,

then the tadpole contribution to the self-energy �

ab

(k) between two di�erent replicas a

and b will not depend upon the momentum k and will only result in renormalization of the

mass term. When the solution of the variational equations turns out to be consistent with

a continuously replica broken mass term �(u) (where 0 < u < 1 is the distance between the

replicas), this is not a serious limitation and non trivial exponents may be found [6, 8, 9],

related to the small u behavior of �(u). On the contrary, when the solution consists of a

�nite number of breaking steps as in the present case, there is no such small k - small u

cross-over, and the full propagator is proportional to the bare propagator at small k (when

�(0) = 0). This explains why the one-step Ansatz used in [8, 9] necessarily leads to a

logarithmic growth of the correlation function which corresponds to the free behavior, the

only non trivial prediction being the freezing of the coe�cient of proportionality under T

R

(see formulae (6) and (9)).

An important example where the Gaussian Ansatz leads to erroneous results is the Ran-

dom Field Ising Model (RFIM). Recently, M�ezard and Young proposed a general method

10



0.4 0.6 0.8

Τ

0

0.05

0.10

0.15

0.20
a

2

0.5

0.6

0.7

0.8

0.9

a
1

Figure 4: The coe�cients a

1

and a

2

from our best �ts to the form (13) versus the temper-

ature T in all the temperature range we have explored. Here L = 128.

probability distribution does not explain the behavior of the system for T < T

R

, while the

hypothesis of a super rough phase, with a log

2

d behavior of the correlation functions,

matches the numerical �ndings very well. In order to gather more information about this

glassy phase we have looked at the probability distribution of

� � h� h

0

; (19)

where h

0

is a �rst neighbor of h. In order to monitor the shape of the probability distribution

we plot in �g. (5) the related Binder parameter de�ned as

B

(�)

L

(T ) �

1

2

�

3�

h�

4

i

h�

2

i

2

�

: (20)

B

L

is zero for a gaussian distribution, and 1 for a �-function. In our measurement it is very

small in the warm phase, calling again for a very Gaussian behavior. On the contrary in

the low T phase we get a non trivial shape. Here B

L

is de�nitely non-zero, non-one, and in

our T range does not seem to depend on L. This shows again that in the cold phase there

is a non-trivial behavior. A value of B

L

which is non trivial (non 0 and non 1) and does

not depend on L is reminiscent of a Kosterlitz-Thouless like situation. Further analysis

will be required to reach a better understanding of the characteristic features of the low T

phase.

3 Some Comments on the Variational Approach

We have already argued that the numerical results presented above do not coincide with

the analytical predictions either of the Renormalization Group or of the Gaussian Varia-

tional approach. From the qualitative standpoint, the disagreement is even stronger with
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Figure 3: The measured correlation function C(d) and the measured correlation function

divided by the lattice Gaussian propagator versus the lattice Gaussian propagator, at

T = 0:45 on a lattice of size L = 128, after discarding the �rst ten distance points. The

straight continuous lines are our best �ts to a linear behavior, while the dotted line is the

bets �t to a quadratic behavior of the function C(d).
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Figure 2: The measured correlation function C(d) divided by the lattice Gaussian propa-

gator versus the lattice Gaussian propagator, at T = 0:45 on a lattice of size L = 128. The

straight line is our best �t to a linear behavior, by using all distance data points.

with a very small �

2

and in complete agreement with what we got by �tting all data points.

Two comments about two remarkable facts are in order. In �rst the linear coe�cient of

the best �t for the ratio is equal to the quadratic coe�cient of the best �t for C(d), and

the constant coe�cient in the ratio �t is equal to the linear coe�cient of the quadratic �t

to C(d). In second discarding ten short distance points does not change the results for the

linear and the quadratic contribution. We are de�nitely not looking at a short distance

e�ect. Let us also notice that the reader could think that since the error on the di�erent

points of the divided C(d) of �g. (3) are quite large the slope has to be compatible with

zero. This is not true since the data points (di�erent correlation functions for di�erent d

values) are highly correlated, and the error over the slope has to be estimated directly. We

have presented evidence that the value of the slope is non-zero.

The �t to the form (13) gives a very good result both in the warm phase (where it

coincides with the gaussian �t) and in the cold phase. The presence of a lattice term

corresponding to a continuum log

2

d behavior accounts very well for our numerical data.

In �g. (4) we show the coe�cients a

1

and a

2

from our best �ts in all the temperature range

we have explored (we use here all distance points). The continuous lines are only a visual

aid, smoothly joining the numerical data points. The coe�cient of the non-linear term P

(2)

L

becomes sizeably di�erent from zero exactly close to the critical temperature T

c

=

2

�

. The

e�ect is quite clear and convincing. The coe�cient a

1

is not the one of the log(d) term in

the continuum limit, that is renormalized by a contribution coming from the P

(2)

L

(d) term.

We �nd that the coe�cient of the continuum log

2

term is of the order of 5 times smaller

than the universal value we would expect from the RG computations. This is a fact that

will have to be understood in better detail. The linear dependence of a

1

over T in the high

T phase, where a

2

= 0, is very clear.

We believe that the previous evidence clearly shows that the ansatz of a purely gaussian

7
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Figure 1: The measured correlation function C(d) versus the lattice Gaussian propagator,

at T = 0:45 on a lattice of size L = 128. The straight line is our best �t to a linear

behavior, by using all distance data points.

As a next step we plot in �g. (2) C(d) divided by the lattice propagator P

L

(d) as a

function of P

L

(d). Linearity of this quantity as a function of P

L

(d) implies the presence of

a log

2

term in the C(d). The e�ect is very clear, and the evidence for the presence of such

a contribution unambiguous. We �nd here that

�

C(d)

P

L

(d)

�

(all points)

(linear)

= 0:52 + 0:12P

L

(d) ; (15)

again by using data points from all distances.

The only concern we are left with is that in the previous analysis we have used all

distance points, while we are trying to resolve a long distance behavior. We have to be

careful not to be mislead by short distance artifacts, which could obscure the true long

distance behavior. In order to play safe, we plot in �g. (3) both C(d) and

C(d)

P

L

(d)

as a

function of P

L

(d) for distances larger than 10 lattice units, and our best �ts done by using

only these distance points. In this case we �t C(d) both to the linear and to the quadratic

form. We get

C

(d>10)

(linear)

(d) = �0:06 + 0:69P

L

(d) ; (16)

that is very similar to our previous �t, and

C

(d>10)

(quadratic)

(d) = �0:014 + 0:56P

L

(d) + 0:093P

(2)

L

(d) : (17)

The most remarkable result is for the ratio we get

�

C(d)

P

L

(d)

�

(d>10)

(linear)

= (0:52 � :01) + (0:12 � :02)P

L

(d) ; (18)
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also believe it is important to use the discrete form both for picking up the logarithmic

behavior and for picking up the super-rough behavior which is dominated by a squared

logarithm.

The lattice Gaussian propagator, which reproduces in the continuum limit the logarith-

mic behavior, is

P

L

(d) �

1

2L

2

L�1

X

n

1

=1

L�1

X

n

2

=0

1 � cos(

2�dn

1

L

)

2 � cos(

2�n

1

L

) � cos(

2�n

2

L

)

: (10)

As we have already stressed we also need a lattice transcription of the squared logarithmic

term. It is natural to take

P

(2)

L

(d) � P

L

(d)

2

: (11)

These are indeed the terms we have used to �t our numerical data and to try to distinguish

a logarithmic behavior from a di�erent asymptotic law.

In the following we will be comparing two possible behaviors of the correlation function

C(d). One is the Gaussian scaling

C(d) = a

0

+ a

1

P

L

(d) ; (12)

while the second includes a quadratic term, i.e.

C(d) = a

0

+ a

1

P

L

(d) + a

2

P

(2)

L

: (13)

In the case of an high temperature T , in the high T phase, the Gaussian �t to the correct

lattice propagator is very successful, and the non-Gaussian best �t gives a non-linear

contribution compatible with zero. In this region we do not encounter any problem.

We will discuss in the following the low T region, and we will use as an example the

temperature T = 0:45. In �g. (1) we plot the measured correlation function C(d) versus

the lattice Gaussian propagator, at T = 0:45 on a lattice of size L = 128. A linear �t

looks at this level quite satisfactory. The discrepancy at low distances is not necessarily

worrying, since we expect short distance modi�cations to the asymptotic behavior. We

note for future comparison that the best �t gives here

C

(all points)

(linear)

(d) = �0:02 + 0:62P

L

(d) ; (14)

by using here all data points in the �t. Let us note now that in this �t and in all the

following but for the quadratic one, eq. (17), the errors (which we have estimated by a

jack-knife approach) are very small, of the order or smaller than one percent. All the

best �ts have been found be exact minimization of the �

2

function, since in all cases it is

quadratic in the parameters. The estimated linear coe�cient is exactly the one one �nds

in the variational approach (since the lattice propagator is equal, in the continuum limit,

to (const +

1

2�

log(r))). A quadratic �t works here very well, but since it has one more

parameter than the linear �t let us ignore this fact for a moment. The quadratic �t of eq.

(17), with 3 free parameters and done discarding 10 distance points, has on the contrary

a very large error, but we report it for the indications it gives about the reliability of the

value we quote for the quadratic coe�cient (see the following discussion). Fitting including

distance points starting for example from d = 4 would give a accurate determination of all

parameters.

5



run further simulations and more analysis of the numerical data, and to look better in the

theoretical problem of selecting the correct analytic approach.

2 The Numerical Simulations

We have ran our numerical simulations on the APE parallel computer [11]. Our code,

all written in a high level language and very elementary, was running at the 20% of the

theoretical maximal speed. The clear limit was the memory to the 
oating point unit

bandwidth, that in our way to write the problem was limiting us to the 25% of the theo-

retical e�ciency. It would be surely possible and not very di�cult to rewrite the code to

obtain with an e�ciency close to 50%. Our code was running at a sustained performance

close to one G
ops on a APE tube (with a theoretical optimal performance close to the 5

G
ops).

Our program was truly parallel, in the sense each lattice was divided among many pro-

cessors. For example on a APE tube, which has 128 processors arranged in a 3 dimensional

tubular shape of 2� 2 � 32 we were running a single lattice on 4 processors, and we were

running in parallel 32 di�erent random substrates in the third processor direction. With

this approach the smaller lattice we could simulate is 4 � 4. Our actual runs have all

been using L = 64 and L = 128, simulating 256 di�erent substrate realizations and by

evolving two uncoupled replica's of the system in each random substrate (with a total of

512 systems). The average over the disorder was taken over such 256 realizations of the

random quenched substrate.

We have started from a high value of T , running simulations for decreasing T values.

For L = 128 we have used temperatures of 0.9, 0.8, 0.7, 0.65, 0.6, 0.45 and 0.35, while for

L = 64 we have used the values 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.50, 0.45,

0.40, 0.35, 0.30. At each T value our run was starting from the last con�guration of the

higher T value. We have been very conservative in requesting a long thermalization. At

each T value we have added for L = 64 :5 millions full Monte Carlo sweeps of the lattice

(:7 millions for L = 128), and then we have measured the correlation functions 100 times

during 100; 000 further lattice sweeps. That turned out to guarantee a good statistical

determination of the correlation functions. To check that in better detail we have chosen

two T values, one in the warm phase and one in the cold phase, i.e. T = :60 and T = :35

for L = 64. On this lattice, starting from the �nal con�gurations, we have added �rst a

series of 100; 000 more lattice sweeps, and measured expectation values again. Then we

have repeated the procedure (all the measurements and the statistical analysis) by doubling

the added run (i.e. with 200; 000 added sweeps), and by doubling it again (with 400; 000

added sweeps), and again (with 800; 000 added sweeps). For both T values all results were

compatible, and no transient e�ects were detected. The data points for the L = 128 are

always very similar to the ones on the smaller lattice, in all our range of temperatures.

The dynamics was a simple Metropolis Monte Carlo simulation.

Let us note that all our numerical data are fully compatible (even if based on larger

lattices and a better statistics), as far as we have been able to check, with the data of

reference [1]. What di�ers here is the analysis of the data, and the fact that a more

extensive data sample allows us to look in better detail to the relevant quantities. We

will detect here a small e�ect, and the high statistics we have is crucial to be sure it is

signi�cant. We stress the importance of comparing the full set of correlation functions, at

all distances, with the lattice form computed on the same value of the lattice size L. We

4



When one considers the case of a disordered substrate the situation is far less easy to

analyze. The traditional approach to the problem is the one based on Renormalization

Group ideas, while only recently the variational approximation approach by M�ezard and

Parisi [6] has been applied to the problem. The results one obtains in the two approaches

have something in common. Both approaches �nd that there is a transition at T = T

R

=

�

�

.

In the high T phase thermal 
uctuations make the quenched disorder irrelevant, and the

systems behaves as the pure model. Here correlations behave logarithmically, i.e.

C

T>T

R

(d) '

T

��

log(d) : (6)

The di�erences come for T < T

R

. In the Renormalization Group approach [3, 4, 5] one

gets a new log

2

d dominant contribution. Here one �nds that

C

(RG)

T<T

R

(d) ' a

1

log(d) + a

2

log

2

d ; (7)

where a

1

is non-universal, and a

2

is

a

2

�

�

T

R

� T

T

R

�

2

2

�

2

: (8)

The presence of such a super-rough phase (where by super-rough we imply a log

2

d behavior

of the height-height correlation functions) is indeed an interesting potential implication of

the presence of quenched disorder. Such a behavior would imply that the low T phase is

rougher than the high T phase, that is quite unusual. At high T thermal 
uctuations are

able to carry the surface away from the deep (but not deep enough) potential wells due

to the quenched disorder. So the roughening is the same than for the pure model. At low

T the surface gets glued to the bulk. In the ordered case this makes the surface smooth,

since the bulk is ordered. But in presence of the quenched disordered substrate this e�ect

does not smooth the surface, but on the contrary forces it to follow a very rough potential

landscape. This mechanism could force a super-rough behavior.

The application of the variational approximation [6] to this system [7, 8, 9] does not

lead to presence of a log

2

d term, but to a behavior similar to the one of the high T phase,

with a slope of the logarithmic term which freezes at the critical point

C

(VAR)

T<T

R

(d) '

T

R

��

log(d) : (9)

We will try to argue in section (3) that in some sense this is an intrinsic limit of a too

straightforward application of the variational approximation (originally discussed for sys-

tems with continuous replica symmetry breaking [6]) to systems with a single step broken

replica symmetry, and we will suggest that a more complex approach could be needed in

order to get a fair picture of this kind of systems.

A numerical analysis of references [2, 1] was making indeed the mystery even greater.

Systems which should belong to the same universality class seem to show a very di�erent

behavior. Reference [2] was unable to detect any signature of the glass transition when

measuring static quantities in a continuum random phase model, that, as we said, should

belong to the same universality class of our discrete model (but see the comment [2]). The

authors of [1] study the model we have de�ned before, and seem to detect numerically a

picture compatible with the variational ansatz. The approach suggested from Cule and

Shapir seemed to us interesting, and worse to be pursued further. It has motivated us to

3



1 Introduction

Recently the two letters [1, 2](and a related comment, [2]) have stressed, by obtaining new

numerical results, the interest of a problem that can be described in the �rst instance as

the one of the surface of a crystal deposited on a disordered substrate.

The model has at today a long story. Renormalization Group ideas have been applied

at �rst [3, 4, 5], while more recently the M�ezard and Parisi [6] variational approximation

has lead to the drawing of a quite di�erent picture [7, 8, 9].

The relevant universality class describes indeed many and di�erent physical situations.

The �rst one, that we have already quoted, is the model of a crystal deposited on a

disordered substrate. A second one is a two dimensional array of 
ux lines with the

magnetic �eld parallel to the superconducting plane in presence of random pinning. Close

to the phase transition (whose existence is predicted by the Renormalization Group and

the by Variational Theory) the two models are expected to have the same critical behavior.

The universality class is the one of the 2D Sine-Gordon model with random phases.

Let us de�ne our system. The dynamical variables of the model are the integral dis-

placements d(x; y) of the surface from a disordered bidimensional substrate. The variables

x and y take integral values going from 1 to L. The number of points of the lattice is

S = L

2

. The displacements d(x; y) take positive, negative or zero integral values. The

disordered substrate is characterized by quenched random heights �(x; y) in the range

(�

a

2

;+

a

2

), where a is the elementary step of the surface columns (and will be one in the

numerical simulations). The total height of the surface on the elementary (x; y) square is

h(x; y) � a d(x; y) + �(x; y) : (1)

The Hamiltonian of the system is

H �

�

2

L

X

x;y=0

h

(h(x; y)� h(x+ 1; y))

2

+ (h(x; y)� h(x; y + 1))

2

i

; (2)

where in the numerical simulations we will put the surface tension � equal to two. The

partition function will be de�ned as

Z

�

�

X

fd(x;y)g

e

��H

: (3)

We will consider a quenched substrate, i.e. the free energy F will be de�ned as

F � �logZ

�

: (4)

We will discuss here mainly about the height-height correlation function, which we de�ne

as

C(d) = h(h(~r

0

+

~

d)� h(~r

0

))

2

i ; (5)

where we only take the 2 dimensional vector

~

d of the form (d; 0) or (0; d), and by h�i we

denote collectively the average over the di�erent realizations of the noise, over the di�erent

origins and the thermal average.

In the Gaussian model with integral variables and no disorder, the surface is rough for

T > T

R

[10]. In the warm phase the C(d) of eq. (5) behaves as log(d). When T < T

R

the

surface becomes 
at, glued to the ordered bulk.

2



How (Super) Rough is the Glassy Phase of a

Crystalline Surface with a Disordered Substrate?

Enzo Marinari

(a)

, Remi Monasson

(b)

and Juan J. Ruiz-Lorenzo

(b)

(a): Dipartimento di Fisica and Infn, Universit�a di Cagliari

Via Ospedale 72, 09100 Cagliari (Italy)

(b): Dipartimento di Fisica and Infn, Universit�a di Roma La Sapienza

P. A. Moro 2, 00185 Roma (Italy)

marinari@ca.infn.it

monasson@roma1.infn.it

ruiz@chimera.roma1.infn.it

March 7, 1995

Abstract

We discuss the behavior of a crystalline surface with a disordered substrate. We

focus on the possible existence of a super-rough glassy phase, with height-height cor-

relation functions which vary as the square logarithm of the distance. With numerical

simulations we establish the presence of such a behavior, that does not seem to be

connected to �nite size e�ects. We comment on the variational approach, and suggest

that a more general extension of the method could be needed to explain fully the

behavior of the model.
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