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Abstract

We study the violation of the 
uctuation-dissipation theorem in the three and four

dimensional Gaussian Ising spin glasses using on and o� equilibrium simulations. We

have characterized numerically the function X(C) that determine the violation and

we have studied its scaling properties. Moreover we have computed the function

x(C) which characterize the breaking of the replica symmetry directly from equilib-

rium simulations. The two functions are numerically equal and in this way we have

established that the conjectured connection between the violation of 
uctuation dis-

sipation theorem in the o�-equilibrium dynamics and the replica symmetry breaking

at equilibrium holds for �nite dimensional spin glasses. These results point to a spin

glass phase with spontaneously broken replica symmetry in �nite dimensional spin

glasses.



1 Introduction

One of the characteristics of the disordered systems at low temperatures (and also of

real glasses) is that its approach to equilibrium is very slow, and it is di�cult to study

equilibrium properties. Obviously in the high temperature regime there is a fast approach

to the equilibrium.

Due to these large time scales, the out of equilibrium regime becomes very important

since in nature the system remains in this regime long times (minutes, days or even years).

From the theoretical point of view it is interesting to develop a theory to describe this

regime [1].

In this paper we will only discuss the low temperature phase (i.e. below the phase

transition point of the system) and center the discussion on Ising spin glasses above their

lower critical dimension (that lies clearly below three dimensions [2]).

In the disordered case and using the Mean Field approximation (i.e. in�nite range

interactions) Cugliandolo and Kurchan have derived a generalization of the 
uctuation

dissipation theorem (FDT) that involves a new function (denoted by X) that determines

multiplicatively (see below) the o�-equilibrium regime. In the equilibrium regime X = 1

and we recover FDT. It is possible to link this X function with the static (equilibrium)

function x(q) (or its inverse q(x)) that appears in the replica symmetry breaking solution

of in�nite dimensional spin glasses [3].

Unfortunately a direct check of this relation between static and dynamic in realistic

models (like �nite dimensional spin glasses) still lacks. One of the goals of this paper is to

check this static-dynamic link in �nite dimensional spin glasses.

The crucial point of the relation between the static and dynamic is that it is possible

to compute the complete functional form of the order parameter (the order parameter is

a number in ordered system but it is a function, q(x), in in�nite dimensional spin glass)

using o�-equilibrium simulations. Violations of the FDT relations have been reported for

fragile glasses [4], but in this case the corresponding equilibrium computations are still

missing.

On the other hand, equilibrium simulations of the three dimensional spin glasses are

very hard and di�cult [2]. It is interesting to examine di�erent methods than can provide

us equilibrium information without to perform (expensive) equilibrium simulations. These

methods exist and are based on o�-equilibrium simulations (see for instance [5, 6, 7]).

They have been used, for example, in the four dimensional Ising spin glass to extract the

Edward-Anderson order parameter [6]. One clear advantage is that, after a fast initial

transient, no thermalization is needed. Another advantage is that it is possible to simulate

large lattices and so the �nal results have irrelevant �nite size e�ects.

Following this philosophy we have computed the order parameter function

1

both from

o�-equilibrium numerical simulations and from equilibrium ones and we have obtained an

impressive agreement between both approaches that con�rm the link between the static

and dynamics in �nite dimensional spin glass and provide us with o�-equilibrium numer-

ical methods to compute static quantities like the probability distribution of the overlap

(P (q) = dx=dq) and the Edward-Anderson order parameter.

1

We have computed directly an integrated version of the order parameter P (q), from which P (q) can

be reobtained by double derivative.
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We have simulated the Gaussian Ising spin glass in three and four dimensions on a

hypercubic lattice with periodic boundary conditions. The Hamiltonian of the system is

given by

H = �

X

<ij>

�

i

J

ij

�

j

: (1)

By < ij > we denote the sun over nearest neighbor pairs. The J

ij

are Gaussian variables

with zero mean and unit variance.

The plan of the paper is the following. In the next section we �x the notation and de-

velop some analytical results. In sections three and four we show the numerical simulation

for the three and four dimensional Ising spin glasses (respectively). Finally we present the

conclusions.

2 Analytical Results

Let us �x our notations. We will study the quantityA(t) that depends on the local variables

of our original Hamiltonian (H). We can de�ne the associate auto-correlation function

C(t; t

0

) � hA(t)A(t

0

)i ; (2)

and the response function

R(t; t

0

) �

�A(t)

��(t

0

)

�

�

�

�

�

�=0

; (3)

where we have assumed that the original Hamiltonian has been perturbed by a term

H

0

= H+

Z

�(t)A(t) : (4)

In the dynamical framework assuming time translational invariance it is possible to derive

the 
uctuation-dissipation theorem (thereafter FDT), that reads as

R(t; t

0

) = ��(t� t

0

)

@C(t; t

0

)

@t

0

: (5)

As we are interested in spin models we have chosen A(t) = �

i

(t). The brackets h(� � �)i in

eq. (2) imply here a double average, one over the dynamical process and a second over the

disorder.

The 
uctuation dissipation theorem holds in the equilibrium regime, but in the early

regimes of the dynamic we expect a breakdown of its validity. Mean Field studies [8]

suggest the following modi�cation of the FDT:

R(t; t

0

) = �X(t; t

0

)�(t� t

0

)

@C(t; t

0

)

@t

0

: (6)

It has also been suggested in [8, 9] that the function X(t; t

0

) is a function of the autocor-

relation function: X(t; t

0

) = X(C(t; t

0

)). We can then write the following generalization of
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FDT, which should hold in early times of the dynamics, the o�-equilibrium 
uctuation-

dissipation relation (OFDR), that reads

R(t; t

0

) = �X(C(t; t

0

))�(t� t

0

)

@C(t; t

0

)

@t

0

: (7)

We can relate the previous formula, eq. (7), with observable quantities like the magnetiza-

tion. The magnetization in the dynamics is a function of the time and a functional of the

magnetic �eld (that is itself a function of the time: h(t)) and so we can denote it m[h](t).

Using the functional Taylor expansion we can write

m[h](t) = m[0](t) +

Z

1

�1

dt

0

�m[h](t)

�h(t

0

)

�

�

�

�

�

h(t)=0

h(t

0

) + O(h

2

) : (8)

We de�ne the response function

R(t; t

0

) �

�m[h](t)

�h(t

0

)

�

�

�

�

�

h(t)=0

; (9)

and using the fact that in an Ising spin glass m[0](t) = 0, we obtain

m[h](t) =

Z

1

�1

dt

0

R(t; t

0

)h(t

0

) + O(h

2

) : (10)

Using causality we can reduce the range of the integration to (�1; t):

m[h](t) =

Z

t

�1

dt

0

R(t; t

0

)h(t

0

) + O(h

2

) : (11)

This is nothing but that the linear-response theorem if we neglect the terms proportional

to h

2

.

By applying the OFDR we obtain the dependence of the magnetization with time in a

generic time-dependent magnetic �eld (with a small strength), h(t),

2

m[h](t) ' �

Z

t

�1

dt

0

X[C(t; t

0

)]

@C(t; t

0

)

@t

0

h(t

0

) : (12)

Now, we can perform the following experiment. We let the system to evolve in absence of

magnetic �eld from t = 0 to t = t

w

, and then we turn on a constant magnetic �eld, h

0

:

h(t) = h

0

�(t� t

w

).

3

Finally, with our choice of the magnetic �eld, we can write

4

m[h](t) ' h

0

�

Z

t

t

w

dt

0

X[C(t; t

0

)]

@C(t; t

0

)

@t

0

; (13)

and by performing the change of variables u = C(t; t

0

), equation (13) reads

m[h](t) ' h

0

�

Z

1

C(t;t

w

)

du X[u] ; (14)

2

The symbol ' means that the equation is valid in the region where linear-response holds.

3

Franz and Rieger [10] used a di�erent magnetic �eld function in their study of the 
uctuation-

dissipation theorem: h

FR

(t) = h

0

�(t

w

� t).

4

We ignore in our notation the fact that m[h](t) depends on t

w

.
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where we have used the fact that C(t; t) � 1 (we work with Ising spins). In the equilibrium

regime (FDT holds, X = 1) we must obtain

m[h](t) ' h

0

� (1 �C(t; t

w

)) ; (15)

i.e. m[h](t)T=h

0

is a linear function of C(t; t

w

) with slope �1.

The link with the static is the following. In the limit t; t

w

! 1 with C(t; t

w

) = q,

X(C)! x(q), where x(q) is given by

x(q) =

Z

q

0

dq

0

P (q

0

) ; (16)

where P (q) is the equilibrium probability distribution of the absolute value of the overlap.

Obviously x(q) is equal to 1 for all q > q

EA

, and we recover FDT.

For future convenience, we de�ne

S(C) �

Z

1

C

dq x(q) =

Z

1

C

dq

Z

q

0

dq

0

P (q

0

) : (17)

or equivalently

P (C) = �

d

2

S(C)

d

2

C

: (18)

In the limit where X ! x we can write eq. (14) as

m[h](t)T

h

0

' S(C(t; t

w

)) ; (19)

for large t

w

. The main goal of this paper is to test this last relation (eq. (19)).

3 3D Results

The scheme of our o�-equilibrium simulations has been the following. In a run without

magnetic �eld we compute the autocorrelation function. We perform a second run where

from t = 0 until t = t

w

the magnetic �eld is zero and then for t � t

w

we turn on an uniform

magnetic �eld of strength h

0

. The starting con�gurations were always chosen at random

(i.e. we quench the system suddenly from T =1 to the simulation temperature T ).

We have done a �rst simulation with h

0

= 0:1 and t

w

= 10

5

, with a maximum time

of 5 � 10

6

. A second simulation was done with a smaller magnetic �eld, in order to control

that linear-response works: h

0

= 0:05 and t

w

= 10

4

with the same maximum time. The

lattice size in both cases was 64, the number of samples 4 and T = 0:7 (inside the spin

glass phase, the critical temperature is close to 1.0 [11]).

We show in �gure (1) the numerical results, mT=h

0

against C(t; t

w

). We have plotted

also a straight line with slope �1 in order to control where the FDT is satis�ed.

We have also plotted the function S(C), see eq. (17), obtained at equilibrium (i.e. using

the equilibrium probability distribution of the overlaps, P (q)) by means of a simulation of

a 16

3

lattice using parallel tempering [12, 13, 2]. We have simulated, with the help of the

APE100 supercomputer [14], 900 samples of a L = 16 lattice using the parallel tempering

5



method simulating 23 temperatures, from T = 1:8 down to T = 0:7 with a step of 0:05. In

order to control the thermalization we have checked that the P (q) is completely symmetric

in q. We have used 10

6

of sweeps (done of one Metropolis sweep and one exchange of

temperatures) to thermalize and another 10

6

sweeps (Metropolis+Exchange) to measure

(a detail analysis of the static of the three dimensional Ising spin glass will be presented

elsewhere [11]).

Finally we have plotted two points, in the left of the �gure, that are obtained with the

in�nite time extrapolation of the magnetization assuming a law

m(t) = m

1

+

A

t

B

; (20)

with B = 0:18(6) and m

1

T=h

0

= 0:46(8) in the h

0

= 0:05 run, and B = 0:21(7) and

m

1

T=h

0

= 0:47(4) in the h

0

= 0:1 run. The agreement between the two Tm

1

=h

0

results

is very good. In the statistical error there are (almost) no di�erences between the numerical

curves corresponding to the two runs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

tw=105 h0=0.1
tw=104 h0=0.05

Figure 1: m T=h

0

versusC with L = 64 and T = 0:7 for the three dimensional Ising spin

glass. The curve is the function S(C) obtained from the equilibrium data. The straight

line is the FDT prediction. We have plotted the data of the two runs: t

w

= 10

5

, h

0

= 0:1

and t

w

= 10

4

, h

0

= 0:05.

From this �gure we can estimate the order parameter at this temperature, that is

precisely where the numerical curve and the straight line with�1 slope begin to be di�erent,

i.e. where the violation of FDT starts. We can so estimate q

EA

' 0:68. We can relate this

number with the estimate of q

EA

= 0:70(2) obtained in reference [15] using equilibrium

simulations. It is clear that the agreement is very good.
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Surprisingly the S(C) curve �t very well the numerical data even in the region where

FDT does not hold, i.e. the equilibrium distribution determines where begins the violation

of the FDT and moreover the function x(C) is very similar to X(C) even in the very o�-

equilibrium regime, in the whole range of C. For instance S(0) = 0:45 to compare with

the o�-equilibrium data Tm

1

=h

0

= 0:47(4).

In this case we have been able to control down to C ' 0:28, but with an optimal

combination of h

0

and t

w

it should be possible to reach the region of smaller C. In any

case the in�nite time extrapolation of mT=h

0

gives us the �nal point of the S(C) and so

it should not be di�cult to re-construct (by means of educated �ts) the curve S(C) in the

region of small C.

This analysis implies that the Ansatz X(t; t

0

) = X(C(t; t

0

)) is correct in �nite dimen-

sional spin glasses and that eq.(19) holds in the three dimensional Ising spin glass even for

intermediate waiting times.

4 4D Results

In this section we study in detail the scaling properties of the function X(T;C) and its

dependence on the waiting time. We have used the same procedure as in the three dimen-

sional runs.

For the static measurements we have simulated an L = 8 lattice using the parallel

tempering method. We have simulated 1536 samples in a range of temperatures that goes

from T = 1:35 to 1:95 with a step of 0:05 (we remark that the transition temperature is

1.80 [6]). We have performed 10

5

sweeps (Metropolis+Exchange) to thermalize and we

have measured, using Metropolis+Exchange, during 10

5

sweeps. This takes around one

month of the parallel computer APE100 [14]. We have checked that thermalization was

achieved by analyzing the symmetry of the overlap probability distribution. From these

simulations we have extracted the function S(C) shown in �gure 2.

For the dynamical measurements we have performed o�-equilibrium simulation using

the same procedure that we have written in the previous section.

We take few samples (6 in the present case) of a very large system (L = 24 and L = 32)

such that it cannot thermalize in any computer accessible time. We have measured the

correlation (runs without magnetic �eld) and the response functions of the system for

various waiting times (t

w

= 2

8

; 2

11

; 2

14

; 2

17

) verifying that for increasing t

w

the data of

mT=h

0

versus C(t; t

w

), plotted in �gure 2, collapse on a single curve loosing the dependence

on the waiting time. We have simulated almost all the runs with h

0

= 0:1: only in one run

of a L = 32 lattice at T = 1:0 we have put h

0

= 0:05.

The clear agreement between the static and dynamical data supports (again) the cor-

rectness of the theoretical hypothesis. Nevertheless the data for the largest waiting time

lie a little above the static curve. We justify this discrepancy noting that in a numerical

simulation of a relatively small volume (L = 8 in our case) the delta function for q = q

EA

in the P (q) is replaced by a quite broad peak. This e�ect smoothes the cusp we expect in

S(C) at the value C = q

EA

lowering the numerical curve with respect to the right one. In

the three dimensional case the data obtained from the simulation of 16

3

lattice are very

close to asymptotic values (by comparing, for instance, with S(C) obtained in 8

3

and 12

3

7



0
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0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

tw=214

tw=217

Figure 2: m T=h

0

versusC with L = 32 and T = 1:35 for the four dimensional Ising spin

glass. The curve is the function S(C) obtained from the equilibrium data. The straight

line is the FDT prediction. Here h

0

= 0:1.

lattices [11]).

Once we have veri�ed that we can obtain information on the overlap distribution func-

tion P (q) (measuring the linear response of a large system kept in the out of equilibrium

regime) we have performed a systematic study in the whole frozen phase.

We want to stress that the data from the L = 24 and the L = 32 systems coincide

within the errors, suggesting that our results are not a�ected by �nite size bias. Anyhow,

we present data from both the lattice sizes.

In �gure 3 we plot the integrated response against the correlation function for di�erent

temperatures. The straight lines (m=h

0

= (1 � C)=T ) represent the quasi equilibrium

regime in which the system stays while C > q

EA

. Note how the data measured in the

regime where C < q

EA

collapse on a single curve independently of the temperature.

We can understand this fact calling a hypothesis that was developed in the study of the

P (q) in the Mean Field approximation by one of the authors (G.P.) and Toulouse [16, 17].

It assumes that the order parameter q(x; T ) [3], in the Mean Field theory, is a function

of the ratio x=T for q < q

EA

. This imply that we can write, in this approximation,

x(q; T ) =

(

T ~x(q) for q � q

EA

(T ) ;

1 for q > q

EA

(T ) ;

(21)
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0.1
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0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T=1.35
T=1.0

T=0.75
T=0.5

Figure 3: m=h

0

versusC with L = 32 and di�erent temperatures for the four dimensional

Ising spin glass. The lines are the FDT regime: (1 � C)=T . Note how the data stay on a

single curve when they leave the straight line (the FDT regime). Here h

0

= 0:1.

and, integrating x(q; T )=T , we obtain the relation between m=h

0

and C

m

h

0

=

S(C)

T

=

8

<

:

Z

q

EA

C

~x(q)dq + (1 � q

EA

)=T for C � q

EA

(T ) ;

(1 �C)=T for C > q

EA

(T ) :

(22)

The terms in the r.h.s. of eq.(22) describe the two regimes present in �gure 3: the �rst

gives an expression for the curve followed by the data in the o�-equilibrium regime, while

the second is the straight line (FDT regime).

In the next paragraphs we will show that this hypothesis [16, 17] also implies that the

o�-equilibrium part is independent of the temperature (i.e. in the region where C < q

EA

,

[m=h

0

](C) is independent of the temperature). Using that the magnetic susceptibility is

one in the spin glass phase and with the help of eq.(21) it is possible, with a little algebra,

to show that

1� q

EA

(T )

T

+ [1� T ~x(q

EA

(T ))]

dq

EA

(T )

dT

= 0 : (23)

Now is very easy to demonstrate that the curves describing the o�-equilibrium regime

(C � q

EA

(T ) in eq.(22)) do not depend on the temperature. By deriving the curve expres-

sion with respect to T we obtain

d

dT

�

m

h

0

�

=

d

dT

"

S(C)

T

#

= ~x(q

EA

(T ))

dq

EA

(T )

dT

�

1

T

dq

EA

(T )

dT

�

1� q

EA

(T )

T

2

= 0 ; (24)

9



where in the last equality we have made use of eq.(23). So we have veri�ed that the

�rst expression in eq.(22) does not depend on T . We �nally write that for C ! q

�

EA

the

hypothesis [16, 17] implies

S(C) '

p

1� C : (25)

At this point we have seen that Mean Field predicts qualitatively the behavior plotted

in �gure 3 for a �nite dimensional spin glass. Now we will examine quantitatively the data

of �gure 3

For C < q

EA

we have seen (�gure 3) that the numerical data can be approximated by

a power law of the variable 1 � C

mT

h

0

=

(

TA(1� C)

B

for C � q

EA

(T ) ;

1� C for C > q

EA

(T ) ;

(26)

with A ' 0:52 and B ' 0:41 (not very far from the Mean Field behavior, (1 � C)

1=2

).

Multiplying both sides of the previous expression by T

�1=(1�B)

we have

mT

h

0

T

�

1

1�B

=

8

<

:

T

�

B

1�B

A(1� C)

B

= A

h

(1� C)T

��

i

B

for C � q

EA

(T ) ;

T

�

1

1�B

(1� C) = (1 � C)T

��

for C > q

EA

(T ) ;

(27)

where we have introduced � = 1=(1 � B) ' 1:7 for convenience. Doing so we can rescale

the data for all the temperatures on a single curve like the one shown in �gure 4.

The good scaling of data (�gure 4) obtained with di�erent magnetic �elds is a con-

�rmation that we are working in the linear response regime. It should be noted also the

absence of di�erent �nite size e�ects for the lattices we have considered (24

4

and 32

4

).

5 Conclusions

In this paper we have found that the violation of the 
uctuation-dissipation theorem in

�nite dimensional spin glasses follows the lines of the violation of the theorem in Mean

Field models.

We have also found that the function that determine the violation is given, since inter-

mediate waiting times, by the double integral of the probability distribution of the overlap

calculated at equilibrium.

This fact gives us a further con�rmation that the Ansatz used in references [8] are

correct even in �nite dimensional models (i.e. X depends only on C, as it was established

in reference [10]). We have also obtained that the violation of the theorem is given by the

static (i.e. we can express X(C) as a function of static quantities).

Moreover we have seen that by controlling the scaling of the waiting times it is possible

to construct the X(C) curve without doing equilibrium simulations. Also these curves

provide us an useful and precise method to compute the Edward-Anderson order parameter.

The form of the X(C) function is very di�erent from that of droplet (a distinguish

ferromagnet), ferromagnetic and one step replica symmetry breaking systems [4], and so

we have obtained another evidence that the �nite dimensional Ising spin glasses cannot be

described by the droplet model.
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Figure 4: (mT=h

0

) T

��

versus (1 � C) T

��

with � = 1:7. Note that in the plot we have

included data measured on di�erent lattices and in presence of di�erent magnetic �elds. In

the FDT regime (left part of the �gure) the factor T

��

has no e�ect because in this region

mT=h

0

= 1 � C. The o�-equilibrium regime (right part of the �gure) follows a power law

with power B = 0:41.
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Finally we have studied the scaling properties of X(C) �nding that it is possible pa-

rameterize it using static Mean Field analytical results. It gives us a further evidence of

spontaneously broken replica symmetry (in�nite steps of replica symmetry breaking).
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