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By our simulation we �nd the G

1

(x) plotted in �gure 12 together with the best power

�t in the range x 2 [2; 5]. We note that the point in x = 1 if far away from the �t because

for ln(x)! �1 the data must converge to 1 (by de�nition G(x=0) = 1) while the power

�t diverges. Anyway we are interested in the asymptotic behavior which seems to be well

described by a power law, G

1

(x) / x

��

with an exponent � = 4:2 � 0:1, in agreement

with the Mean Field result previously cited.

5 Conclusions

We have calculated analytically in the Mean Field approximation the exponent of the rema-

nent magnetization and we obtain numerical results that con�rm that for this observable

the upper critical dimension is eight and not six.

We have calculated numerically for the �rst time the dynamical critical exponents in

six dimensions in three di�erent ways, all compatible within the statistical error.

Thanks to the previous results we can check also the static critical exponents (for

instance getting the z value obtained from the scaling of the q � q correlation function),

and we obtain values that agree very well with the static critical exponents and the critical

temperature found in the literature [6].

Moreover, by monitoring, the growth of the non linear susceptibility in the spin glass

phase, we have shown numerical evidence favoring a p

�4

propagator, constrained to the

q = 0 ergodic component, according with the analytical results obtained assuming sponta-

neously broken replica symmetry. This numerical result is a further check that it is possible

to have spontaneously broken replica symmetry in �nite dimensions.

We plan in the future to extend this work to the �ve dimensional Ising spin glass.
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Figure 10: Behavior of the exponent h(T ). Note that the linear �t which describes well

the data in the cold region tends when T ! T

c

to a value almost twice the one measured

just at T = T

c

and this con�rms that the propagators (which are restricted to the q = 0

ergodic component) at and below T

c

are proportional to p

�2

and to p

�4

respectively.

two regimes in a �nite lattice or due to logarithmic corrections.

Moreover we can see that the dependence of this exponent is well described by a linear

law of the temperature, according to a z(T ) proportional to 1=T .

Finally, we studied the spatial correlations by the following technique (already used

with success for the data analysis in three and four dimensions [11, 12]). We expect a

functional dependence for this correlation function of the form

G(t; x) =

a(T )

x

�

exp

(

�

 

x

�(T; t)

!




)

; (51)

where, as usual, �(T; t) / t

1=z(T )

is the dynamical correlation length. For each value of the

distance we �t the data of the q � q correlation function to the formula

G(x; t) = G

1

(x) exp

h

A(x)t

�B

i

8 �xed x; (52)

and we verify that the value of the B parameter is almost independent from x and then we

�x it during the following study. The dynamical exponent can be expressed as the ratio

z = 
=B, where 
 may be estimated by the power law �t A(x) / x




. This method yields

our third estimate z = 4:2� 0:2 which is again compatible with the Mean Field value. In

�gure 11 we have plotted lnG(x=2; t) versus t, together with the best �t (eq.(52)).

In the in�nite time limit the function G(x; t) converges to G

1

(x) which must give

information on the q � q correlation function at zero overlap, calculated for the SK model

by De Dominicis et al. [9]. They found that G

q=0

(x) / x

�4

at the critical temperature.
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Figure 9: Susceptibility growth in systems of size 8

6

at T = T

c

. The line is the best power

�t which gives an exponent h = 0:49 � 0:01 in agreement with the MF value h

MF

= 1=2.

value (�

MF

= �1).

The line plotted in �gure 9 is the best power �t to the susceptibility data. We have to

be careful when we try to interpolate in such a way because we know that the susceptibility

growth following a power law only in a limited time window; in fact at the beginning of

the simulation the dynamics needs some time to reach the asymptotic regime

2

and then

because of the �nite size of the system they have to converge to some �nite value, i.e. the

data of �gure 9 have to converge to a plateau. These two e�ects may induce systematic

deviations in the estimate of the h exponent: �(t) / t

h

. In our case the �rst transient is

almost absent thanks to the su�ciently high temperature and the problems arising from

the �nite size e�ects have been solved by �tting the �(t) data only in a limited time range

far away from the plateau (estimated in a previous longer run). The line reported in �gure 9

is the best power law �t to the �(t) data (209 samples of an 8

6

system), which gives an

estimate of the dynamical exponent h = 0:49 � 0:01 which is compatible with the mean

�eld value (h

MF

= 1=2).

We also show in �gure 10 the results (obtained on the 8

5

�12 lattice) for the h exponent

in the low temperature phase (T=T

c

= 0:5; 0:625; 0:75; 0:875). We also plot in this �gure

the value obtained at T

c

(h = 0:49). It is clear that h(T ) is a discontinuous function at

the critical point and that the limit from below, assuming a linear behavior, (h(T

�

c

) ' 0:9)

is almost twice the value of h(T

+

c

) = 0:5, in very good agreement with the correlation

functions (propagators), which are restricted to the q = 0 ergodic component, found by De

Dominicis et al. [9]. The quite small discrepancy can be due to the crossover between the

2

This initial time increases when the temperature is lowered.
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6

at the critical temperature. The line

plotted is the best power �t, which gives a value for the exponent � = �0:98 � 0:01

compatible with the MF one �

MF

= �1.

asymmetric lattice 12 � 8

5

. The last number of samples may appear too small to average

over the disorder; in fact we have used mainly the data from the 8

6

systems to calculate

the moments of the distribution of the overlaps. The data from the bigger systems have

been used to measure almost-self-averaging quantities like energy whose 
uctuations are

very small considering that we are working with a system with a million of spins.

The results are shown in �gure 8 for the energy decay and in �gure 9 for the non linear

susceptibility growth.

We have tried to �t the energy decay both to a power law (E(t) = E

1

+ At

��

) and

to a logarithmic law (E(t) = E

1

+ A[ln(t=� )]

��

). We are interested in the asymptotic

behavior of the decay; then we �t the data in the range t 2 [t

min

;1) for various choices of

t

min

and we expect that the parameters of the �t converge quickly when we increase t

min

.

The impossibility of �tting all the data with a single law (for t < 6) is due to the existence

of an initial short time regime of a few steps during which the dynamic does not follow

yet the asymptotic behavior. We �nd that the logarithmic law does not describe well the

data because, even if it has more adjustable parameters, the best values of the parameters

depend strongly on t

min

, they are very correlated and they tend to unphysical values. On

the other hand we �nd that �tting with the power law the values of the parameters E

1

,

A and � converge to a stable value, with t

min

of order of few Monte Carlo Steps (MCS). In

�gure 8 we plot the power �t obtained with t

min

= 6 (this is the lowest value for which the

�t satis�es the �

2

test); the best parameters are: E

1

= �1:8880� 0:0001, A = 0:37� 0:01

and � = �0:98� 0:01. We note that the decay exponent is compatible with the mean �eld
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Figure 7: Remanent magnetization in d = 8 at two temperatures very near to the critical

one. The lines are the power �ts which give exponents compatibles with the Mean Field

predictions �

MF

= 5=4.

From �gure 6 we can also get another important information: the point where the �tting

function crosses the d

�1

-axis may give us an estimate of the lower critical dimension, which

turn to be d

l

' 2:65.

In �gure 7 we have plotted the data, with the best power �ts, of the remanent mag-

netization in d = 8 at temperature � = 0:260 and � = 0:270. From the �ts we get the

exponents �(�=0:260) = 1:256 � 0:08 and �(�=0:270) = 1:235 � 0:013, which are both

compatible with the MF result (�

MF

= 5=4).

4 Results in d = 6

The major part of the simulation work was done at the critical temperature, chosen as the

weighted mean between the one found by Wang and Young [6] (T

c

= 3:035 � 0:01) and

the one calculated by series expansion [23] (T

c

= 3:027 � 0:005): �

c

= 0:3302 � 0:0005.

In particular we have tested that the exponents we measure do not vary signi�cantly if

the temperature is changed by an amount of the order of the uncertainty on T

c

. To this

purpose we have simulated the same system (of volume 8

6

) at the inverse temperatures

�

1

= 0:330 and �

2

= 0:331, checking that the dynamics were compatible.

Having veri�ed that, for the range of time and sizes we have used, the exponents we

are interested in do not depend on the precise choice of T

c

choice, we have decided to run

all the subsequent simulations at �

c

= 0:330. At the critical point we have simulated more

than two hundred samples of size 8

6

, 13 samples of size 10

6

and also 106 samples of an
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Figure 6: Critical temperatures of the EA model against the dimensionality. The line is a

polynomial �t as described in the text.

We have also repeated the analysis looking at the quantity T

c

2

=(2d � 1), which takes

values in the range [0; 1]. Knowing that in the d!1 limit

T

c

2

2d � 1

= 1 ; (49)

we have tried to �t the critical temperatures by adding to the r.h.s. of eq.(49) a polynomial

in 1=d, obtaining as the best interpolation, reported in �gure 6,

T

c

2

2d� 1

= 1 � 5:16(26)

1

d

2

� 5(1)

1

d

3

: (50)

From the plotted �t we obtain an estimate of �

c

(d = 8) = 0:270 � 0:001. This error is

too small because systematic deviations due to the arbitrarily choice of the �tting function

are not taken into account.

Anyway the estimates of �

c

(d = 8) obtained with di�erent interpolations are all in

the range [0:260; 0:270] and we think that the true critical temperature is with very good

probability in this range; in fact, as one can see in �gure 6, the value of �

c

(d = 8) is

strongly dependent on the value of �

c

(d = 6), which is known with high accuracy, and on

the way �

c

(d) tends to zero as the dimensionality is increased.

For example if we assume that the successive improvements of the Bethe-Peierls ap-

proximation tend to increase the value of �

c

(d) for each d, then the formula (47) will

give a lower bound for the inverse critical temperature; in d = 8 this lower bound reads

�

c

(d = 8) > 0:264.
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Figure 5: Remanent magnetization in d = 6 at T = T

c

together with the best power �t,

which gives an exponent � = 0:995 � 0:005.

so the remanent magnetization may be one such quantities.

For this reason we have done some simulations of the Ising Spin Glass model in d = 8

(again with the couplings J = �1) to see if we recover the Mean Field behavior of the

remanent magnetization.

The critical temperature in d = 8 that we have used was extrapolated from the critical

temperatures in d=3 [19], 4 [20] and 6 [6]. In the limit of d!1 the critical temperature

diverges like T

c

(d) '

p

2d. Moreover, in the Bethe-Peierls approximation, there is an exact

formula for the critical temperature [21, 22]

(2d � 1) tanh

2

(�

c

) = 1 (47)

We have used this formula, which turns out to be valid in the d!1 limit, as a starting

point and adding to it some terms which may mimic the �nite dimensions corrections. In

particular we have substitute the r.h.s. of eq.(47) with a fourth order polynomial in 1=d

(the term of zeroth order being always 1) and we tried to �t the known critical temperatures

by �xing two term of the polynomial to zero and leaving free the coe�cients of the other

two terms. Among the six possible choices we have selected the one with smallest value of

�

2

, which is

(2d � 1) tanh

2

(�

c

) = 1 +

B

d

2

+

D

d

4

(48)

with B = 0:95� 0:14 and D = 117� 4. With this �t we estimate the critical temperature

for the eight-dimensional model as �

c

(d = 8) = 0:270 � 0:001. The error reported is an

underestimate of the real one because there are systematic deviations due to the arbitrary

choice of the �tting function.
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3.3 Numerical estimate in d = 6 and d = 8

The measurement of the decay rate of the remanent magnetization is not easy because

although we know that M(t=0) = 1 we try to �t the M(t) data with a power law which

diverges at t = 0. This e�ect is evident in a log-log scale where a power �t behaves

like a straight line, while the M(t) data tends to the value 1 when ln t ! �1; in such a

situation we have to discard the �rst data points to be sure we are measuring the asymptotic

behavior. Unfortunately the useless data are just the ones with smaller relative error, while

the data �tted are a�ected by a greater statistical indetermination which makes worst the

estimate of �.

One possible way to overcome this source of error is to measure some other observ-

able that has the same behavior of M(t), but with a stronger and less 
uctuating signal.

Starting with all the spins up, the magnetization at time t is just the overlap between

the con�guration at time t and the initial one. If we measure the overlap between the

con�guration at time t and one at a �xed small time (t

w

= 3 in our case), we expect that

M(t; t

w

) behaves likeM(t), with similar statistical 
uctuations, but with a signal ten times

greater.

The results of the simulations of the EA model in 6 dimensions can be found in �gure 5

where we have plottedM(t; t

w

= 3) versus the simulation time t; the line is the best power

�t which gives an exponent � = 0:995 � 0:005. This value is compatible with 1, but not

with the Mean Field value �

MF

= 5=4.

As explained in the introduction we believe that the upper critical dimension becomes

d

u

= 8 for such quantities linked to a magnetic �eld. In this case we start the simulation

with the system totally magnetized, as if it was feeling an in�nitely strong magnetic �eld,

12
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Figure 3: Remanent magnetization in the SK model at T = 0:8T
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plotted versus t

��(T )

, to

make more evident the �nite size e�ect (m(t =1) 6= 0). The line is the linear �t.

We have repeated this numerical calculation for a temperature below the critical one

(T = 0:8T

c

) and sizes N = 480; 992; 2016; 4064. In this case we expect that the remanent

magnetization tends to a non-zero asymptotic value due to the �nite size of the system.

So we have �tted the data for M(t; t

w

=3) with the following formula

m(t;N) = m

1

(N) +At

��(T )

(46)

where we let � depend on the temperature. Via a preliminary three parameter �t we have

estimated � = 0:785(10) and found no systematic dependence on the lattice size. Then

�xing the value of � to this previously found value, we extrapolated the value of m

1

(N)

by using a simple linear �t, like the one plotted in �gure 3.

Using the values of m

1

(N) found by the previous analysis we were able to �t them to a

power law of the system size: m

1

(N) / N

�0:25(1)

. The data with the best �t are reported

in a double-log scale in �gure 4 (see ref. [16] for a detailed study).

Assuming a linear dependence of the exponent �(T ) with the temperature, which has

been observed in [16, 17] for the SK model and in [18] for a spin glass system on quenched

�

3

graphs (which should behave like a mean-�eld SK model), and from the fact that

�(T = 0:8) ' 0:8, we obtain that the � critical exponent as a function of the temperature

is discontinuous at the critical point (i.e. �(T

�

c

) ' 1 while �(T

+

c

) = 5=4).
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c
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�t which gives an exponent �

MF

= 1:22 � 0:02.

At this point, we can determine the decay rate of the correlation between the system

at time t and the system at t = 0, i.e. the scaling decay of the remanent magnetization:

M(t) = C(t; 0) = hs

i

(t)i =

Z

d��(�)hs

�

(t)i (44)

=

Z

d��(�)H(t)e

(���1)t

�

1

t

3=2

t

1=4

� t

�5=4

: (45)

Thus, the analytical prediction for the exponent �, de�ned by M(t) � t

��

, is, in the

Mean Field limit, � = 5=4.

This result is quite di�erent from the one obtained in the spherical model at T = T

c

where � = 3=4 [13].

3.2 Numerical results in six, eight and in�nite (SK) dimensions

For a numerical con�rmation of this result we have simulated three SK models at criti-

cality (T

c

= 1) of sizes N = 480; 992; 2016 with number of samples of 10000, 5000 and

1000 respectively, obtaining three estimates of the �

MF

exponent all compatible with the

theoretical prediction. Since the data for the remanent magnetization contain non evident

�nite-size e�ects, we have plotted in �gure 2 the data averaged over all the simulated sam-

ples. The observable that we have measured isM(t; t

w

=3) de�ned in eq.(4), which follows

the same decay of M(t) but has some advantages as will be explained below. The line in

�gure 2 is the best power �t which gives �

MF

= 1:22 � 0:02.

10



to the auto-correlation function C(t; t) while the time-dependent behavior, for large t, is

determined by the value of �. In fact, for � = 1=4, �(s+3=2) simpli�es to �(s�2�+2), and,

for large t, the leading behavior of C(t; t) comes from the residue of the pole at s = �2:

C(t; t) � const + t

�1

; (36)

consistent with the hypothesis (30) and (31).

For � 6= 1=4, on the contrary, we can not cancel the pole at s = �3=2 and we should

obtain

C(t; t) � const + t

�1=2

; (37)

in contrast to the previous hypothesis. Thus the only consistent solution for H(t) � t

�

e

�t

is � = 1=4.

Another way that we can use to obtain the � exponent is solving the eq. (28) in Laplace

transform space. In terms of the function g(t)

g(t) � e

�2gt

C(t; t)

�

2

(t)

; (38)

eq. (28) at T = T

c

becomes:

g(t) =

Z

d��(�)e

�2�

c

(2��)t

+ 2

Z

t

0

d t

00

g(t

00

)

C(t

00

; t

00

)

Z

d��(�)e

�2�

c

(2��)(t�t

00

)

: (39)

By using the asymptotic form (31) of C(t; t), we obtain the following asymptotic equation

for the Laplace transform of g(t), that we will denote ~g(s):

~g(s) =

Z

d��(�)

"

1

s + 2�

c

(2� �)

#

(40)

+

Z

d��(�)

"

1

s + 2�

c

(2� �)

#

��

1 �

�T

c

2

�

~g(s) +

a

2

Z

1

s

dx ~g(x) :

�

(41)

By averaging over the eigenvalue distribution we obtain:

~g(s) =

 

1

2�

c

�

p

2s

4�

3=2

c

!

+

 

1

2�

c

�

p

2s

4�

3=2

c

!

��

1�

�T

c

2

�

~g(s) +

a

2

(1��T

c

)

Z

1

s

dx ~g(x)

�

:

(42)

By remembering that �

c

= 1=(2 + �T

c

), we can expand the previous equation in �T

c

.

We will also assume that in the limit s! 0;

R

1

s

dx ~g(x) is negligible with respect to ~g(s),

and we �nally obtain

~g(s) �

1

p

s

+O(1): (43)

Thus, for t ! 1, g(t) � 1=t

1=2

and from (38) we obtain � = 1=4. This solution implies

that

R

1

s

dx ~g(x)� ~g(s).

9
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Figure 1: Integration path.

We recall that for T � T

c

the largest contribution to the dynamical relaxation of the

spins comes from the region of the maximum eigenvalue, � = 2.

At the critical point, the �rst term on the right side of the eq. (28) scales like a power

law t

�3=2+2�

. To be consistent with the hypothesis (30) and (31) we should have � � 1=4.

Now we have to estimate the second term, which is proportional to:

2

Z

t

0

dt

00

Z

d��(�)

t

2�

t

002�

e

�2�

c

(2��)(t�t

00

)

(32)

Let us consider t

0

= t � t

00

and we de�ne the exponential as an integral in the complex

plane,

e

�2�

c

(2��)t

0

=

X

k

(�1)

k

k!

[2�

c

(2 � �)t

0

]

k

=

Z

C

ds

2�i

�(�s) [2�

c

(2 � �)t

0

]

s

; (33)

where C is the path shown in �gure 1 (i.e. s = s

0

+ ir, where r 2 R, and s

0

is an arbitrary

real number in (�1; 0)) �(s) is the Euler Gamma function. We obtain:

2

Z

C

ds

2�i

Z

t

0

dt

0

�(�s)

t

2�

(t� t

0

)

2�

t

0s

Z

d��(�)(2�

c

)

s

(2� �)

s

: (34)

After the integration over t

0

and � we can write:

8

p

�

Z

C

ds

2�i

�(�s)t

1+s

�(s + 1)�(1 � 2�)

�(s� 2� + 2)

4

s

(2�

c

)

s

�(s+ 3=2)

�(3 + s)

(35)

To evaluate the integral (35) we analytically continue the function on the left of the path

C, i.e. in the region where Re s < s

0

. Thereby, we have to consider the residues of the

poles in this region. The residue of the pole at s = �1 gives the constant contribution

8



large t is given by the Hartree-Fock approximation

1

:

�(t; t

0

) = C(t; t)�(t� t

0

) (23)

where C(t; t) is the dynamical auto-correlation:

C(t; t

0

) = hs

i

(t)s

i

(t

0

)i; (24)

evaluated at t = t

0

. We represent the average over the thermal noise as h(� � �)i, while

(� � �) indicates the average over the disorder as usual. With respect to the eigenvalues the

auto-correlation function can be written as follows

C(t; t

0

) =

Z

d��(�)hs

�

(t)s

�

(t

0

)i: (25)

The Langevin equation, (21), becomes

@

t

s

n

(t) = (��

n

� 1)s

n

(t)�

g

2

C(t; t)s

n

(t) + �

n

(t) (26)

The self-consistent solution of eq. (26) is

s

n

(t) = s

n

(0)e

(��

n

�1)t

e

�g=2

R

t

0

dt

0

C(t

0

;t

0

)

+

Z

t

0

dt

00

e

(��

n

�1)(t�t

00

)

e

�g=2

R

t

t

00

dt

0

C(t

0

;t

0

)

�

n

(t

00

); (27)

where t = 0 is the initial time.

We want to analyze the evolution of the system at T = T

c

from a uniform initial

condition: s

n

(0) = 1 ; 8n. From (27) we obtain the following self-consistent equation for

C(t; t):

C(t; t) = H

2

(t)

Z

d��(�)e

2(���1)t

+ 2

Z

t

0

dt

00

 

H

2

(t)

H

2

(t

00

)

!

Z

d��(�)e

2(���1)(t�t

00

)

(28)

where

H(t) = e

�g=2

R

t

0

dt

0

C(t

0

;t

0

)

: (29)

Let us suppose for H(t), at T = T

c

, a time-dependent asymptotic behavior (t!1) like

H(t) � t

�

e

�gt

; (30)

where � can be determined self-consistently from eq.(28). This hypothesis implies for

C(t; t), at large t, the behavior

C(t; t) � (2 + �T

c

)�

a

t

: (31)

where a is an appropriate constant. The critical temperature of the Hamiltonian (18) is

given by T

c

= T

0

c

+�T

c

= 2+�T

c

(T

0

c

= 2 is the critical temperature of (18) when g = 0)

and a perturbative calculation gives �T

c

= �2g so that 2�

c

= 1 + g [15].

1

We have veri�ed that the results obtained are consistent with this assumptions.
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(see equation (1)); in particular we are interested in the exponent of such a decay at the

critical temperature (which hereafter will be called simply �), to compare it with the same

exponent of the SK model.

We report in the following subsections our calculation of the � exponent in the MF

approximation (see reference [13] for another calculation of the � exponent in the spherical

spin-glass model), together with the numerical veri�cation and the estimates of such an

exponent in the �nite dimensional cases (d = 6 and d = 8) and also for the SK model.

3.1 Analytical results in the SK model

To study analytically the dynamical properties of the SK model we de�ne the following

soft-spin Hamiltonian:

�H = ��

X

ij

J

ij

s

i

s

j

+

1

2

X

i

s

2

i

+

1

4!

g

X

i

s

4

i

; (18)

where s

i

(i = 1; :::; N), are one-dimensional real variables and J

ij

is a symmetric matrix

with independent elements following a Gaussian distribution with zero mean and variance

proportional to 1=N . From the random matrix theory [14] we know that, in the thermo-

dynamic limit (i.e. N goes to in�nity), the probability distribution for the eigenvalues of

J

ij

is given by the semi-circle law:

�(�) =

1

2�

(4 � �

2

)

1=2

j�j < 2: (19)

A relaxation dynamics is introduced by means of the following Langevin equation:

@

t

s

i

(t) = �

@(�H)

@s

i

(t)

+ �

i

(t): (20)

where �

i

(t) are Gaussian noises with zero mean and variance h�

i

(t)�

j

(t

0

)i = 2�

ij

�(t� t

0

). To

study the dynamical evolution of this model, we diagonalize the J

ij

matrix and we consider

the dynamics of the projections s

n

(t) of the spins s

i

(t) on the eigenvector directions  

n

i

(with eigenvalues �

n

), such that s

i

(t) =

P

n

s

n

(t) 

n

i

, where n = 1; ::; N is the eigenvector

index. The properties of independence and orthonormality of the eigenvectors, [14] let us

de�ne the following Langevin equation for the component s

n

:

@

t

s

n

(t) = (��

n

� 1)s

n

(t)�

g

3!

X

��


s

�

(t)s

�

(t)s




(t)

X

i

 

�

i

 

�

i

 




i

�  

n

i

+ �

n

(t): (21)

where �

n

(t) are the components of �

i

(t) in the eigenvectors basis.

As usual we take into account the non linear term perturbatively. The dynamical

response function G(t; t

0

) is given by the Dyson equation:

G

�1

(t; t

0

) = G

�1

0

(t; t

0

) + �(t; t

0

) ; (22)

where G

�1

0

(t; t

0

) is the inverse bare response function and �(t; t

0

) is the self-energy. In

analogy with the equilibrium dynamics, we suppose that the leading term for large N and

6



The growth of this correlation length with the Monte Carlo time de�nes the dynamical

exponent z trough

�(T; t) / t

1=z(T )

: (12)

We have seen that in three and four dimensions [11, 12] the data �t very well the

following functional form

G(t; x) =

A(T )

x

�

exp

(

�

 

x

�(T; t)

!




)

; (13)

Thereby, this will be the third way to obtain the dynamical critical exponent. This third

estimate of z is independent of the values of the static critical exponents.

Moreover, the equilibrium overlap-overlap correlation function constrained to q = 0 was

obtained by De Dominicis et al. [9], and in six dimensions reads

C

SRSB

(x)j

q=0

�

(

x

�4

if T = T

c

,

x

�2

if T < T

c

.

(14)

or in momenta space

C

SRSB

(p)j

q=0

�

(

p

�2

if T = T

c

,

p

�4

if T < T

c

.

(15)

The fact that the equilibrium correlation function C(x) has a power law decay also for

T < T

c

, implies that spin glasses are always critical in the glassy phase (i.e. below T

c

)

and therefore we can relate the o�-equilibrium behavior of the correlation function to the

equilibrium critical exponents. Since the susceptibility is the integral of the correlation

function

� =

Z

d

6

x C(x) (16)

so that in the region where the susceptibility grows (following a power law with time, the

overlap remains very small), we can substitute equations (14) in equation (16) obtaining

�(t) �

(

t

1=2

if T = T

c

,

t

4=z(T )

if T < T

c

.

(17)

If we take the limit T ! T

c

in the above equation we obtain that h(T ), the exponent of

the growth of the susceptibility, must be discontinuous at the critical point (i.e. h(T

�

c

) = 1

while h(T

+

c

) = 1=2).

Moreover, if we assume that 1=z(T ) is proportional to the temperature (this happens in

three and four dimensions [11, 12]) we must obtain a linear dependence on the temperature

for h(T ) in the low temperature phase.

3 Remanent magnetization

The �rst part of this work has been dedicated to the decay of the remanent magnetization.

We prepare the system with all the spins up (M(t=0) = 1) and then we let it evolve

towards equilibrium where, in absence of any external �eld, no magnetization should re-

main. In the cold phase we expect the decay of the remanent magnetization to be algebraic

5



We �nd that the Mean Field prediction for this exponent is � = 5=4.

Another aim of this paper is to measure the dynamical critical exponent z in order

to compare it with the Mean Field results (z

MF

= 4). To do this we have measured the

behavior of the energy and susceptibility as a function of the Monte Carlo time

E(t)�E

1

/ t

��

(6)

�(t) / t

h

(7)

and the q � q correlation function.

We will also examine the dependence of the energy on the Monte Carlo time. We

assume that at the critical point (and only at the critical point) it is possible to connect

the approach to equilibrium of the energy and of the equal time correlation functions to

the equilibrium static and dynamical exponents. For example, in the case of the energy we

�nd:

E(t)�E

1

/ t

�dim(E)=z

; T = T

c

; (8)

where z is the dynamical critical exponent, dim(E) � d � 1=� is the dimension of the

energy operator and d is the dimension of space. Assuming d = 6 and � = �

MF

= 1=2 we

have that the exponent of the energy decay at T = T

c

is � = 4=z.

Analogously for the non linear susceptibility

�(t) = L

d

hq

2

(t)i; q(t) =

1

L

d

X

i

�

i

(t)�

i

(t); (9)

where � and � are two real replicas with the same quenched disorder, and we can write

the following dependence on the Monte Carlo time [7]

�(t) / t

(2��)=z

; T = T

c

; (10)

for t� �

eq

(L), where �

eq

(L) is the equilibration time, which should diverge as �

eq

(L) / L

z

.

Here we have used that dim(�) = 2��. By assuming the Mean Field value for � we obtain

for the exponent of the susceptibility: h = 2=z at T = T

c

.

From these formul� it is possible to calculate the dynamical exponent via two di�erent

observables. In the six dimensional case, if z = z

MF

= 4 we should see a behavior like t

�1

for the energy and t

1=2

for the non linear susceptibility.

Finally, a third way to calculate the dynamical exponent is to use the overlap-overlap

correlation length at distance x and time t de�ned by

G(x; t) �

1

V

X

i

h�

i+x

�

i+x

�

i

�

i

i; (11)

where again � and � are two real replicas with the same disorder.

In the simulations we start from a random con�guration (T =1) and suddenly quench

the system to T

c

or below. Then the system begins to develop internal correlations and

we can de�ne a time dependent o�-equilibrium correlation length, �(T; t), as the typical

distance over which the system has already developed correlations di�erent from zero, i.e.

G(x; t) ' 0 for x > �(T; t).
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been able to compute the one loop correction to the dynamical critical exponent, z, whose

Mean Field (MF) value (the base of the �-expansion) is 4. They found

z(�) = 4

�

1 �

�

12

�

; (2)

where � = 6 � d.

In particular we have obtained the z exponent [10] using three di�erent o�-equilibrium

methods: the decay of the energy, the growth of the non linear susceptibility and the

scaling of the overlap-overlap correlation function. These three methods provide us with

three estimates of z or ratios of z to the static critical exponents which are in a very good

agreement with the Mean Field predictions (�

MF

= 1=2, �

MF

= 0 and z

MF

= 4).

Whereas calculations of z have been done at the critical temperature of the system

we have performed numerical simulations inside the cold phase to monitor the \expected"

dependence on the temperature of the exponent z (as obtained in three and four dimen-

sions [11, 12]) and to check the predictions of De Dominicis et al. (by monitoring the

growth of the susceptibility) that imply that the propagator restricted to the q = 0 ergodic

component behaves like p

�4

, where p is the momenta of the propagator. Obviously at the

critical point we expect the usual dependence on the momenta, i.e. p

�2

.

We remark that the analytical prediction of De Dominicis et al. was done assuming

that the spontaneous breaking of the replica symmetry is that of Mean Field. Hence, our

numerical results are a further test that the spin glasses in �nite dimensions follow the

picture of Mean Field.

2 Numerical simulation and observables

We have simulated the six (eight) dimensional Ising spin glass whose Hamiltonian de�ned

in a hypercube of volume L

d

with periodic boundary conditions is

H = �

X

<i;j>

S

i

J

ij

S

j

; (3)

where < i; j > denotes nearest neighbor pairs, J

ij

= �1 (with the same probability) are

quenched variables and S

i

= �1 are spin variables.

The static of this model was studied by Wang and Young [6]. Simulating lattice sizes

up to L = 8 they found that the static critical exponents were compatible with the Mean

Field predictions (�

MF

= 1=2; �

MF

= 0) and that there were logarithmic corrections to the

Mean Field exponents, an e�ect linked to the upper critical dimension. Their estimate for

the critical temperature was T

c

= 3:035 � 0:01.

We will study the decay of the remanent magnetization de�ned as

M(t; t

w

) =

1

L

d

L

d

X

i=1

�

i

(t)�

i

(t

w

); t� t

w

: (4)

This observable decays like

M(t; t

w

) / t

��

: (5)
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1 Introduction

One can identify two main problems in the current spin glass theoretical research. The

�rst one is the nature of the spin glass phase in �nite dimensions. The droplet theory can

not to explain a great quantity of numerical data which it is possible to interpretate in the

framework of a theory like Mean-Field (i.e. with spontaneously broken replica symmetry)

[1]. In the last part of this paper we will see that the numerical data point, in particular

one of the propagators of the theory, clearly to a low temperature phase of the Mean-Field

type.

We note that in a recent paper [2] it was shown that if the in�nite volume is done

in a given (weak) topology, the in�nite volume overlap probability distribution P (q) does

not depend on the couplings (always in this weak product topology). This result is not

in contradiction with our �ndings that point towards the correctness of the Mean Field

expressions for the propagators.

The second main problem is the analytical calculation of critical exponents (static

and dynamical) in three dimension in order to be able to confront the theory with the

experiments. The �rst part of this paper is devoted to study the value of the upper

critical dimension for the decay exponent of the remanent magnetization. This knowledge

is essential for a further calculation of the value of this exponent in �nite dimensions (e.g.

using the �-expansion). This exponent has a great physical importance, mainly because it

gives us information on the early regimes of the dynamics and because it is often measured

experimentally [3].

The remanent magnetization is de�ned as follows: we put the system under a large

magnetic �eld, turn it o� and follow the decay of the magnetization of the system. . The

magnetization decays like

M(t) � t

��

; (1)

which de�nes the � exponent [4]. Following the results of D. Fisher and H. Sompolinsky [5]

we should expect that � is equal to the MF value only for d � 8, i.e. for exponents of

observables which are reminiscent of t he \magnetic �eld" the upper critical dimension is

eight, not six.

We check this fact numerically in the present paper obtaining the value of the � ex-

ponent in six, eight and in in�nite dimensions (the SK model) that we have computed

analytically. These results show that for this observable the upper critical dimension is

eight instead of six.

Moreover we have found numerically, for the SK model, that the dependence of � with

the temperature is discontinuous at the critical point.

Another related issue addressed in this paper is the numerical evaluation of the dynam-

ical critical exponent in six dimensions. In the past Wang and Young [6] checked that in

six dimension the static critical exponent are those of Mean Field, but such a check still

lacks for the dynamical side of the problem. Hence, another of the goals of this paper is

to show that the upper critical dimension is six for dynamics as well.

To do this, we have developed di�erent techniques that yield accurate determinations

of the dynamical exponent.

We will plan a further use of these techniques in �ve dimensions in order to check the

recent analytical calculation by two of the authors (G. Parisi and P. Ranieri)[8]. They have
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Abstract

We have studied numerically the remanent magnetization in the six and eight

dimensional Ising spin glass and we have compared it with the behavior observed in

the SK model, that we have also computed analytically. We also report the value of

the dynamical critical exponent z in six dimensions measured in three di�erent ways:

from the behavior of the energy and the susceptibility as a function of the Monte

Carlo time and by studying the overlap-overlap correlation function as a function of

space and time. These three results are in very good agreement with the Mean Field

prediction z = 4. Finally we have checked numerically the analytical prediction,

obtained by assuming spontaneously broken replica symmetry, for the most singular

part of the propagator in the spin glass phase. This last result supports the existence

of spontaneously broken replica symmetry in �nite dimensional spin glasses.


