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Abstract

In this paper we study the on and o�-equilibrium properties of the four dimen-

sional Gaussian spin glass.

In the static case we determine with more precision that in previous simulations

both the critical temperature as well as the critical exponent.

In the o�-equilibrium case we settle the general form of the autocorrelation func-

tion, and show that is possible to obtain dynamically, for the �rst time, a value for

the order parameter.



1 Introduction

Nowadays, the problem of the full characterization of the phase transition both from the

static and dynamical approaches in �nite dimensional spin glasses is still opened.

We center the present discussion in the four dimensional case (the same applies in the

more physical case, the three dimensional system).

From the static simulations is very clear the cut of the Binder cumulant, clear signal of a

phase transition at �nite temperature with an order parameter (the Edward-Anderson order

parameter, that we will denote hereafter as q

EA

). We can identify this order parameter

with the position of a Dirac delta in the probability distribution of the overlap, P (q). Up

to now, the SRSB theory (Spontaneous Replica Symmetry Breaking)[1, 2] and the droplet

theory [3] are compatibles with this result. The di�erences begin with the rest of P (q).

In the droplet theory P (q) is the sum of two Dirac deltas, one in q

EA

and another in the

opposite overlap: this distribution has a Binder cumulant equal to 1. The SRSB theory

maintains this structure but adds a continuous part between (�q

EA

; q

EA

). This is a non

trivial distribution and has a Binder cumulant di�erent from 1, and goes to 1 as T goes to

zero (the SRSB theory predicts two pure states like the droplet theory at T = 0).

The main problem is the impossibility of a direct measure of the order parameter,

q

EA

. From the scaling of the peak of P (q) seems compatible a behaviour like Kosterlitz-

Thouless (KT) transition, i.e. q

peak

� 1=L

�

, but also is compatible a behaviour like

q

peak

= q

EA

+a=L

�

. Obviously the KT scenario goes against the cut of the Binder cumulant.

The explanation of this phenomena could be that the term a=L

�

is bigger than q

EA

for the

range of lattice sizes that has been simulated and then unobservable. The solution is to

simulate bigger lattices in order to get q

EA

� a=L

�

.

The dynamical approach [4] have the same problematic that the just discussed static.

The main object of this approach is the spin-spin autocorrelation, de�ned as:

C(t; t

w

) =

1

N

N

X

i=1

h�

i

(t

w

)�

i

(t

w

+ t)i ; (1)

Usually in the literature [5] it �nds the empirical formula

C(t; t

w

) = t

�x

f(t=t

w

) ; (2)

for instance in the Mean Field case [6] and in the three dimensional case [7]

1

.

The static limit (on equilibrium situation) is achieved send t

w

to in�nite, and then to

simulate large t. With the formula (2) the spin-spin autocorrelation function goes to zero.

But, in the case of a non zero order parameter, this autocorrelation function must go to

q

EA

. It is clear that a formula like

C(t; t

w

) = (q

EA

=f(0) + at

�x

)f(t=t

w

) ; (3)

must be possible to �nd in the regime of t

w

� t � 1, and again we need to do a very

long numerical simulation to observe both the terms q

EA

and at

�x

. In the present work we

show for the �rst time numerical evidence of this kind of behaviour.

1

Also in an on-equilibrium numerical simulation in the three dimensional case [8]: C(t) � t

�x

.
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Up to now, the only numerical studies of o�-equilibrium dynamics in �nite dimensional

spin-glass are those of H. Rieger [7] in the three dimensional case.

The four dimensional case seems more easy to do: is far away from the lower critical

dimension of the spin glasses (d

l

< 3 [9, 10]) and so the static is very clear. In this paper

we will study mainly the o�-equilibrium dynamics of this model in order to compare with

the three dimensional results by Rieger and to examine if it is possible to extract a �nite

value for the order parameter. In addition we have done static (on equilibrium) runs to

characterize with higher precision the location of the critical temperature and the critical

exponents.

In the o� and on equilibrium cases we review the numerical results from the optics

of the previous discussion and we will try to link both approaches in order to obtain a

conclusion according with the existence of a �nite temperature phase transition, with non

zero order parameter.

2 Model, simulation and static observables

We have studied the 4-d Ising spin glass with nearest neighbor interactions and zero external

magnetic �eld, whose Hamiltonian is

H = �

X

<i;j>

J

ij

�

i

�

j

; (4)

where < i; j > denotes nearest neighbor pairs and the couplings are extracted from a

Gaussian distribution with zero mean and unit variance.

The static and dynamical behaviour of the model have been investigated by several

di�erent simulations during which have been measured quite di�erent observables. In this

section will be analyzed the way we have measured the static exponents and the critical

temperature with a precision higher than that present in the literature [11, 12].

The equilibrium simulations have been performed on small lattices (L = 3; 4; 5; 6; 7; 8)

to ensure the system can reach equilibrium. The main work has been made in a range

of temperature around the critical one, T

c

. To take the mean over the disorder, we have

simulated simultaneously 2048 samples for all the lattice sizes. For each realization of the

quenched disorder we have simulated two replicas with spin �

i

and �

i

. This enable us to

measure the k-th cumulant of the distribution of the overlaps, q

(k)

�

R

q

k

P (q)dq, simply by

averaging the quantity (N

�1

P

i

�

i

�

i

)

k

over a large number of independent con�gurations.

All the calculation have been carried on a tower of the parallel supercomputer APE100

[13], with a real performance of about 5 Gigaops.

A detailed study has been performed to calculate the autocorrelation time at the equi-

librium and consequentely the sweeps needed to reach such equilibrium. At the conclusion

of this study we have a termalization time of about 10

5

sweeps, been sure that using this

value even the biggest system at the lowest temperature will be termalized. To verify the

correctness of this value we have studied the biggest system (L = 8) at the lowest tem-

perature (T = 1:7): we have choose three replicas of the system such that having, at the

starting time, two overlaps set to zero and the third one equal to one; we have followed the

evolution of these overlaps averaging over a large number of disorder con�gurations and
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Figure 1: �

SG

(L; T ) vs. L; the errors are of the order of the symbol.

we have estimated the time needed in order that the three overlaps converge to a single

value.

When the equilibrium has been reached, we have measured how much time is needed

by the observables to decorrelate. In particular we have seen that the overlap between two

replicas has a time correlation function that decreases exponentially, C(t) � exp(�t=� ).

This de�nes a characteristic time whose typical values at T = 1:7 are: for L = 4 � � 200,

for L = 6 � � 1000 and for L = 8 � � 3000. Once we have termalized the system, we

measured every � sweeps the overlap between the two replicas for a time longer than the

equilibration one.

De�ning the spin glass susceptibility as

�

SG

(L; T ) =

1

N

X

i;j

h�

i

�

j

i

2

= Nq

(2)

L

; (5)

where N = L

4

, h(��)i is the thermodynamical average and (��) the mean over the disorder;

and the Binder parameter as

g(L; T ) =

1

2

0

@

3 �

q

(4)

L

(q

(2)

L

)

2

1

A

; (6)

the results of our simulations are plotted in �g.1 for the spin glass susceptibility and �g.2

for the Binder cumulant.

The errors on the plotted data are derived from a jackknife analysis, which also con�rms

that the overlaps measured every � sweeps are decorrelated. Using �nite size scaling we
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Figure 2: g(L; T ) against T ; the errors are of the order of the symbol.

see that �

SG

(L; T ) and g(L; T ) scale as (in the scaling region)

�

SG

(L; T ) = L

2��

~�

SG

(L

1=�

(T � T

c

)) ; (7)

g(L; T ) = ~g(L

1=�

(T � T

c

)) : (8)

Note that at the critical temperature the Binder parameter does not depend on the size of

the system, so T

c

is the temperature where the curves of �g.2 cross themselves.

In the neighborhood of T

c

we can approximate the function ~g with a linear one and so

we obtain the following critical temperature and � exponent

T

c

= 1:80 � 0:01 ; (9)

� = 0:9 � 0:1 : (10)

The value of � is con�rmed also by the results of the analysis done, following [14], on the

quantity

dg

dT

�

�

�

�

�

T

0

: g(T

0

)=g

0

= �L

1=�

; (11)

obtaining

� = 1:06 � 0:06 : (12)

The prediction about the in�nite volume limit of the Binder cumulant is di�erent in the

droplet theory (g(L; T <T

c

)

L!1

�! 1) and in the SRSB picture (g(L; T <T

c

)

L!1

�! g(T )< 1).

Unfortunately with our data (L = 3 to L = 8) is impossible to extrapolate the in�nite

value with a precision such that to discriminate between the two predictions.
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The estimation of the anomalous dimension � can be done �tting the �

SG

data at

T = T

c

with a power law

�

SG

(L; T = T

c

) / L

2��

; (13)

�nding � = �0:35� 0:05 (the error is almost all due to the indetermination on the critical

temperature and to the rapid variation in the region around T

c

of the exponent in eq.(13)).

These results are in agreement with those found by Bhatt and Young in [11] using a

maximum size of 6

4

and 200-800 samples: T

c

= 1:75 � 0:05, � = 0:8 � 0:15 and � =

�0:3� 0:15

Using the scaling law  = �(2 � �) and the exponents values just calculated, we have

 = 2:1�0:2, which is in good agreement with the value obtained by the high temperature

expansions  = 2:0 � 0:4, [15].

By another series of computer runs and using the annealing procedure [16] we have

measured the non connected susceptibility for a wide range of temperature in the spin

glass phase (T < T

c

). We clearly see that the data diverge with the increasing of the

system size, but, cause the small lattices , we �nd that they can be �tted via di�erents

scaling functions: either by

�

SG

(L; T ) = A(T )L

4

h

1 +B(T )L

��(T )

i

; (14)

or by

�

SG

(L; T ) / L

2��(T )

: (15)

In this way we also obtain a further con�rmation of the value of T

c

, as the higher temper-

ature where the power law �t is yet acceptable (by a �

2

test).

3 O�-equilibrium dynamics

In the second part of our study we have simulated systems of greater dimensions (from 8

4

to 32 � 16

3

). At the beginning of every simulation the system is frozen from an in�nite

temperature to one in the critical region, and then we immediately start to measure the

autocorrelation functions, when the system is yet out of equilibrium. Due to the hughes

termalization times of the simulated systems, the o�-equilibrium dynamics is the most

realistic situation and also the most interesting. In fact, thanks to the enormous number

of metastable states, the dynamics is very slow and besides it is reminiscent of the time

passed in the spin glass phase, that we will call t

w

. These e�ects can be clearly seen by

the study of the autocorrelation functions de�ned as

C(t; t

w

) =

1

N

N

X

i=1

h�

i

(t

w

)�

i

(t

w

+ t)i ; (16)

where (��) is the mean over the disorder and h(��)i stands not for an average over the

equilibrium thermodynamic state, cause we are not at the equilibrium, but for an average

over the thermal histories. Nevertheless we have found that, for the system sizes we have

considered, disorder uctuations are always stronger, so generally we omit the angular

brackets.
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w

) vs. t at T = 0:2 with t

w
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(bottom to top).

With our simulations we have analyzed the cold phase (from T = T

c

= 1:8 down to

T = 0:2) using the set of waiting times t

w

= 2

k

with k = 7; 8; : : : ; 21 and averaging over

3072 disorder realizations systems of volumes from 8

4

to 12

4

.

In the four-dimensional Ising spin glass the presence of a critical temperature and

the subsequent spin glass phase has been widely accepted, so the principal question that

remain to answer is which kind of phase space arises for T < T

c

. In the literature there are

principally two theories that try to describe the spin glass systems in their low temperature

phase: one is based on a mean �eld like approximation which predicts a spontaneous replica

symmetry breaking (SRSB picture) and the other that starting from a Migdal-Kadano�

renormalization group technique concludes that the system remain trivial, with only one

pure state (droplet model). The predictions of the two theories about the autocorrelation

function are di�erent: the SRSB picture says that in the limit of t

w

! 1 it must be a

power law that converge to the Edward-Anderson parameter (q

EA

)

C(t; t

w

) = (q

EA

+ at

�x

)

f(t=t

w

)

f(0)

; (17)

while in the droplet model the relaxation is slower

C(t; t

w

) = (log t)

��= 

C

0

 

log(t=� )

log(t

w

=� )

!

: (18)

The data we are collect (see �g.3 and �g.4) seem to follow well the scaling law used in

[7] and in [6]

C(t; t

w

) = t

�x

0

(T )

~

C(t=t

w

) ; (19)
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with a scaling function

~

C(z) =

(

constant for z ! 0

z

x

0

(T )��(T )

for z !1

(20)

The values of the exponent x

0

(T ) will be plotted together with the values of x(T ) in �g.9,

while �(T ) is plotted in �g.7 .

To evaluate the goodness of the two proposed scaling formulas eq.(19) and eq.(18) we

have plotted in �g.5 the T = 0:45 data rescaled following the former law, noting that they

collapse very well on a single curve. On the contrary, following the droplet model scaling

law, it was impossible for us to �nd a value for the parameters �= and � such to force

the data over a single curve; in �g.6 we show the best scalings we could obtain in order to

make the data collapsing in the t < t

w

or in the t > t

w

region.

Nevertheless the very good rescaling of the data in �g.5 we have performed a deeper

analysis to �nd the value of the Edward-Anderson parameter, q

EA

, which is assumed to

be zero in eq.(19). The value of q

EA

can be found performing the t ! 1 limit after the

t

w

!1 limit; for this purpose we have done very long simulations (more than 4 millions

Monte Carlo sweeps). We note that the scaling laws followed by the data in the two regions

t� t

w

and t� t

w

are essentially di�erents. In the former the data can be well �tted by

a power law of the ratio t=t

w

, while in the latter we obtain a law equal to that of eq.(17)

times a function of t=t

w

which is almost a constant.

Such a behaviour for C(t; t

w

) can be justi�ed supposing that the system evolves as long

as t � t

w

with a quasi equilibrium dynamics which converges to q

EA

while for t � t

w

it

decorrelates faster and toward zero (C � t

��

with �(T ) � x(T ) 8T ), but always with a

critical slowing-down.
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Figure 5: T = 0:45 aging autocorrelation function rescaled following eq.(19), with
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C(t; t
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) against t=t

w

.
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Figure 6: Tentatives of rescaling following the droplet model law eq.(18): in the left plot

�= = 0:0054 and log(� ) = �1; in the right plot �= = 0:043 and log(� ) = �1000.
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Figure 7: �

t

w

=0

(T ) (top) and �

t

w

6=0

(T ) (bottom) against T ; the lower line represents the

power �t �(T ) = 0:21(1)T

0:92(7)

; the upper line both the linear and the power �t: respec-

tively �(T ) = 0:000(3) + 0:30(1)T and �(T ) = 0:303(8)T

1:00(3)

.

The values for �(T ) have been obtained �tting the C(t; t

w

= 0) data with a power law

and for t

w

6= 0 with

C(t; t

w

) /

�

t

t

w

�

��(T )

; (21)

in the range t=t

w

� 15. In �g.7 we plot the results either for t

w

= 0 and for t

w

6= 0.

We note that both the �ts are compatible with the linear dependence in the temperature

predicted from the experimental measurements [17].

In the region t

w

=t � 32 we have performed the analysis assuming that the correlation

function could be factorized as

C(t; t

w

) = (q

EA

+ at

�x

)C(t=t

w

) ; (22)

where we have approximated C(z) = 1�c

1

z

c

2

for z ! 0. In a �rst step has been calculated

the rescaling function C(t=t

w

) �tting the correlation function at a �xed value of t. Secondly,

divided the data by this rescaling function, we have veri�ed that the curves for di�erents

ratios t=t

w

collapse over a single curve and we interpolate the data via a power law plus

constant, following eq.(17). In �g.8 we plot in a log-log scale typical C(t; t

w

)=C(t=t

w

) data

with the best �t; we note that until today this data have been �tted via a simple power

law, while it is evident that the points in �g.8 are not on a straight line.

From the just described �t we obtain the values of q

EA

and x as a function of the

temperature (see �g.9 and �g.10). As a guide to the eye we plot in �g.10 the simpler

10
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Figure 8:

C(t; t

w

)

C(t=t

w

)

data at T = 0:9 versus t; the upper line is the best power plus constant

�t: 0:60(4) + 0:32(4) t

�0:08(1)

, while the lower line is the best power �t.

function that behaves like jT �T

c

j

�

near the critical temperature and tends to 1 for T = 0

q

EA

(T ) =

�

T

c

� T

T

c

�

�

; (23)

where T

c

= 1:8 and � =

�

2

(d � 2 + �) = 0:74 (using the values found in the previous

section). From �g.9 we note that only the quantity x(T ), not x

0

(T ), is such that x(T )=T is

roughly independent from the temperature, so that only in this parametrization the t

w

=1

autocorrelation function (R(t;T ) = C(t; t

w

=1) at temperature T ) can be written as

R(t;T )�R(1;T ) = b(T ) exp(�B T log(t)) : (24)

The relevance of the variable T log(t) has been observed in experiments on magnetic re-

manence in a wide region [17].

We call o�-equilibrium correlation length, �(t), the typical distance over which the

system is termalized after a time t. For this domain growth the SRSB picture predicts a

power law [9]

�(t) / t

1=z(T )

; (25)

while in the droplet model, where the energy barriers scales proportional to L

 

, the law is

�(t) / (T log t)

1= 

: (26)

At least at the critical temperature there is a scaling relationship between the dynamical

exponent z(T

c

) and the one which describe the dynamics in the quasi equilibrium regime,

11
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Figure 9: x(T ) (top) and x

0

(T ) (bottom) against T (the value at the greater temperature

is equal: x(T

c

) = x

0

(T

c

)); the line is best power �t x(T ) = 0:083(3)T

1:04(7)

.
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Figure 10: Edward-Anderson order parameter against T ; the line is only a guide to the eye

as explained in the text.
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x(T

c

) = x

0

(T

c

) (because q

EA

(T = T

c

) = 0)

x =

d � 2 + �

2z

: (27)

This equation is satis�ed by all the exponents we have estimated at the critical temperature:

x = 0:15, � = �0:35 and z = 5:3.

To �nd the behaviour of the o�-equilibrium correlation length we have measured, like

in [9], the equal time spatial correlation functions

G(r; t) =

1

N

N

X

i=1

h�

i

(t)�

i+r

(t)i

2

; (28)

where the averages are the same as in eq.(16) and t is the time since the cooling. This

study has been performed on systems of volume 32 � 16

3

.

From scaling concepts we know that, at large values of r, G(r; t) must behave like

G(r; t) / r

�(d�2+�)

f

 

r

�(t)

!

; (29)

and, supposing f(y) = A exp(�By

D

), we have �tted our data with the function

G(r; t) = Ar

�(2+�)

exp

h

�B(rt

1=z

)

D

i

: (30)

In the t ! 1 limit the exponential term tends to 1 and we obtain a spatial correlation

function that decrease with a power law: in �g.11 we plot such function at the critical

temperature (T

c

= 1:8). Note that from the slope of the curve we obtain an estimation of

the � exponent compatible with that of section 2.

At the lower temperatures the value of � depends strongly on the r range we interpolate

over, cause the �tting function diverges at r = 0. On the contrary, trying to �t the data

in di�erent ranges of r, we �nd that the dynamical exponent z(T ) is a robust parameter

which remains unchanged for every r range (plotted in �g.12)

Fitting the plotted data with a power law we obtain, up to the critical temperature

z(T ) = A T

��

; (31)

with A = 9:7 � 0:5 and � = 1:0� 0:1.

A preliminar analysis of a new set of data at T = 0:9 = T

c

=2 suggests a value of � ' �1

with a large error. The fact that the value of z at this temperature is higher than the

correspondent value at T

c

makes the evaluation of the exponent � proner to systematic

error. Nevertheless this rough estimation of � is compatible with the prediction of the

reference [18].

4 Conclusions

In this paper we have studied the on and o�-equilibrium properties of the four dimensional

Gaussian spin glass.
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Figure 12: z(T ) vs. T ; the line is the power �t, eq.(31).
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In the static case we have determined with more precision that in previous simulations

both the critical temperature as well as the critical exponent.

In the o�-equilibrium case we have settled the general form of the autocorrelation

function, and shown that is possible to obtain dynamically, for the �rst time, a value for

the order parameter. We have plotted this value as a function of the temperature. Also

we have established the temperature dependence of the exponents that appear in this

o�-equilibrium dynamics, linear in all the cases.

As open problem leaves the estimation, using the static spin glass susceptibility, of the

order parameter simulating much more large lattices. We plain study in the future this

problem.
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