
For p = 0:8 we have found critical exponents very similar to those of the pure Ising

model.

We have found that the value of the critical exponents show that for lattices up to

V = 32

4

the system, for p = 0:3, is not described by the mean �eld theory, as one might

have believed. Moreover the critical exponents that we have found are very near to those

of the pure percolation. A possible explanation would be that the crossover from the

percolation to the pure Ising is quite small, however we do not see any indications which

point in this direction.

These results suggest the existence of a new �xed point, which can be reached only

starting with strong disorder. It would be very interesting to investigate analytically the

properties of this �xed point. It may be possible that replica techniques may be useful

here.
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the mean value we use whose obtaining with the whole set of hyperplane-hyperplane cor-

relations.

Using the �

c

obtained in the susceptibility �ts we calculate the � exponent of the

correlation length in a two parameter �t, the result is:

�

�1

= 2:9(7)[0:635 � �]

0:71(7)

(11)

with a �

2

=d:o:f = 0:86. The largest value of � that we have used in the previous �t is

�

max

= 4:69(5). Taking account the error bars on �

c

in (11) we report the �nal value:

� = 0:7(1) (12)

In Figure 2 we show the data for the non-connected susceptibility (Fig 2. lower), the

connected one (Fig. 2. middle) and the inverse of the correlation length (Fig. 2. upper)

along with our best �ts for these observables. Also, we plot in Figure 1. the speci�c heat

(Fig 1. upper).
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Figure 2: The non-connected susceptibility (lower), the connected one (middle) and the

inverse of the correlation length against � for p = 0:3 and V = 32

4

. The lines are the �ts

described in the text. We also mark with a vertical dotted line our best estimate of the

critical point.

The speci�c heat is quite di�erent for the two degrees of dilution. In the case p = 0:8 we

observe a divergence of this observable while in the case with large dilution the speci�c heat

does not show any divergence. This is already strong indication of the di�erent behavior

of the two dilutions.
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Figure 1: Speci�c Heat against � for the two values of dilutions and V = 24

4

.

p = 0:3

Observable  �

c

�

2

=d:o:f

�

W

T > T

c

1.45(12) 0.635(4) 0.9

� T > T

c

1.4(1) 0.634(4) 0.50

Table 3: Fits of susceptibilities at p = 0:3. The same notation of the Table 1, without the

log correction in the �t.
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p = 0:8

Observable 2� �

c

�

2

=d:o:f

< m

2

> 0.82(1) 0.18939(5) 0.26

arctanh(< m

2

>) 0.84(1) 0.18935(5) 0.1

arctanh(< m

2

>) +log 0.89(6) 0.18937(3) 1.7

Table 2: Fits of the magnetization at p = 0:8. The same notation as Table 1.\+log"

denotes a �t with a logarithmic correction as explained in the text .

4 Results p = 0:8.

We have analyzed the p = 0:8 data using (9) and the following Ansatz suggested by the

four dimensional �

4

theory [4] because the p = 0:8 dilution is expected to belong in the

same universality class as the 4D Ising model and to have the same logarithmic correction:

< m >� (�t)

�

(log(�t))

1=3

; t < 0:

� �

(log t)

1=3

t



; t > 0: (10)

In some models arctanh(< m

2

>) has a better signal than < m

2

>, hence we report

here the �ts of this observable.

We have used the following procedure to �nd the values of the critical exponents. Firstly

we ignore all data with a Binder cumulant di�erent from zero or one. We perform a global

�t using the routine MINUIT[7]. We repeat this procedure successfully removing the high

temperature data points and monitor the behavior of the e�ective critical exponent as the

data become nearer to the transition point. We observe a plateau and take as our estimate

of the critical exponent this plateau.

Our �nal results for p = 0:8 are shown in Table 1 and Table 2. Also we plot in Figure

1(lower) the speci�c heat against �.

5 Results p = 0:3.

With strong dilution p = 0:3 we use a pure power �t (9) instead of (10). We analyze the

susceptibilities and the correlation length for T > T

c

. The results for the susceptibilities

are reported in Table 3.

To estimate the error on the correlation length we have analyzed the data of the

hyperplane-hyperplane correlation with the jack-knife method, estimating for each jack-

knife bin the correlation length by means of a �

2

minimization. Finally we use the jack-knife

method again to estimate the error of the previous series of binned correlation lengths. As
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p = 0:8

Observable  �

c

�

2

=d:o:f: (log) �

c

(log) �

2

=d:o:f:(log)

�

W

T > T

c

1.13(11) 0.1894(5) 0.18 1.04(10) 0.1889(8) 0.065

� T > T

c

1.17(11) 0.1895(5) 0.04 1.08(8) 0.1894(1) 0.07

� T < T

c

1.11(9) 0.1894(3) 2.0 1.03(9) 0.18994(4) 2

Table 1: Fits of the susceptibilities at p = 0:8. In the second and third columns we

report the results of a pure power �t and in the forth the �

2

value of the �t. In the last

three column the same arrangement but with a power �t with logarithmic dependence as

explained in the text.

For completeness we report here the expected critical behavior of the observables:

� � jtj

�

� � jtj

��

< m

2

>� (�t)

2�

; t < 0 (9)

where � denotes either �

W

or �, t � (T � T

c

)=T

c

is the reduced temperature and m is the

intensive magnetization.

To make �ts we use the average of the hyperplane-hyperplane correlation functions in

the four directions.

We have simulated two di�erent dilutions: p = 0:8 and p = 0:3. The greater dilution,

p = 0:3, is not very near to the percolation threshold (p

c

= 0:197).

We have mainly worked on a large lattice, 24

4

, with periodic boundary conditions and

one disorder realization. For the calculations of the correlation length and for some runs

at p = 0:3 we have used a V = 32

4

lattice. With these large lattice sizes we expect that

the di�erence between di�erent realizations of the disorder will be small provided we do

not simulate very near to the critical point. We have checked this by comparing the results

obtained using di�erent realization of disorder and by matching the L = 24 results with

the L = 32 results. For the results reported in this letter the agreement is very good.

We have run (on WorkStations) 27 di�erent temperatures for the dilution p = 0:3 and

22 for p = 0:8. A total of �ve million cluster updates have been done. To estimate the

statistical error we have used the jack-knife method.

A source of systematic error is the e�ect due to the �nite size of our lattice. We

have used the Binder cumulant to investigate this e�ect. When the cumulant is di�erent

from zero (high temperature phase) or one (low temperature phase) �nite size e�ects are

present. Every measurement used in the �ts reported in this letter has a Binder cumulant

compatible with zero or one. In the thermodynamic limits this parameter tends to the step

function with the discontinuity at the transition point.
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This model is not identical to the site diluted model because although we can write

J

new

ij

� �

i

�

j

(7)

these J

new

ij

are not independent. However it is believed that both models are in the same

universality class.

3 Numerical Method and Observables.

We have used the cluster algorithm due to Wolf [5] for Monte Carlo Simulations. This

update method has the advantage that it does not su�er from critical slowing down for

the pure model in four dimensions. The dynamical critical exponent for the integrated

correlation time of the magnetic susceptibility for the pure model is compatible with zero,

z = �0:10(15) [6]. We do not believe that this will be strongly modi�ed in the diluted

case. It is easy to translate this algorithm to a diluted Ising model: one simply does not

take into account the lattice holes when building a cluster. The average size of clusters is

equal to the non-connected magnetic susceptibility for any degree of dilution.

We have measured the non-connected susceptibility (�

W

), the total magnetization (M),

the speci�c heat (C), the Binder cumulant (B), the connected susceptibility (�) and the

correlation among the magnetizations of parallel hyperplanes (G

plane

(d)) each de�ned as

follows:

�

W

=

1

V

< M

2

>;

� =

1

V

(< M

2

> � < jM j >

2

);

C =

1

V

((< E

2

> � < E >

2

);

B =

1

2

 

3�

hM

4

i

hM

2

i

2

!

;

G

plane

(d) =

X

x

M(x)M(x+ d) ' cosh((d �

L

2

)=�) (8)

where V = L

4

is the volume, E is the total energy, � is the correlation length, M is the

total magnetization and M(x) is the total magnetization of the hyperplane �xed by x. If

we label the lattice by i � (x

1

; x

2

; x

3

; x

4

) the hyperplane magnetization is

M(x

1

) =

X

x

2

;x

3

;x

4

S(x

1

; x

2

; x

3

; x

4

):

If � � �

c

we can relate the susceptibilities by

� = (1�

2

�

)�

W
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The g expansion at �xed � does seem to lead nowhere. This may leads to the suspicion

that there may be two di�erent regimes one for small � and the other for large �.

With this motivation we have studied the behavior of a four dimensional diluted spin

system, where according to the usual point of view the critical exponents should be those

of mean �eld. We have found that at large dilution the exponent for the susceptibility

 is de�nitely larger that one, thus suggesting that the mean �eld theory results do not

hold. Our simulations have been done for lattices up to V = 32

4

. We cannot exclude that

for larger lattices the behavior of the system crosses over to the mean �eld, although this

possibility is rather unlikely.

2 The Model.

The Hamiltonian of the site diluted Ising model can be written in the following form:

H = �

X

<i;j>

�

i

S

i

�

j

S

j

(5)

where < i; j > denotes the nearest neighbor pairs, S

i

= �1 are spin variables and �

i

are

independent quenched variables with taking the values 1 and 0 with probability p and 1�p

respectively, p is the degree of dilution or proportion of spins.

The phase transition disappears for p below a certain value known as p

c

. We can

calculate this value using percolation theory, in four dimensions as p

c

= 0:197. At this

point the critical exponents are � = 0:68, � = �0:72 and  = 1:44. It is clear that

�

c

(p) ! 1 when p ! p

c

, where �

c

(p) is the critical point of (5) for a given value of

dilution [2].

The properties of the model with p = 1 are known as it corresponds to the usual Ising

Model. There is a second order transition at �

c

= 0:1495 with critical exponents � = 0,

 = 1 and � = 1=2 (the mean �eld values)[4].

The inuence of dilution on the Ising Model can be studied with the help of the Harris

criterion [3, 4]: if the critical exponent � of the undiluted model is greater than zero the

critical behavior is modi�ed, otherwise it is not. The present case, in four dimensions, is

marginal with � = 0 and the criteria does not help us.

Another approach is to use �eld theoretical methods [1]. If we introduce n replicas we

arrive at an O(n) symmetric theory containing a cubic anisotropy term with a coe�cient

proportional to 1� p [3]. By calculating the one loop ��function of this model and taking

the limit n ! 0, we �nd that the only �xed point in four dimensions is Gaussian. Thus,

we have the mean �eld exponents independently of the dilution values [3].

A related model is the random bond Ising Model de�ned by

H = �

X

<i;j>

J

ij

S

i

S

j

(6)

where the J

ij

are independent quenched variables taking the values 1 and 0 with probability

p and 1� p [4].
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1 Introduction

Random magnetic systems have been the subject of intensive studies over the last 20 years

and much progress has been achieved. The simplest model for a random magnetic system

is a ferromagnetic system in which the disorder induces uctuations in the value of the cou-

pling (or equivalently of the temperature). The simplest realization is a randomly diluted

Ising system, where sites (site diluted) or bonds (bond diluted) are randomly removed.

The equivalent Ginsburg Landau model has the following form

Z

J

=

Z

d[�] exp(�S

J

[�]); (1)

where

S

J

[�] =

Z

d

D

x

�

1

2

(@

�

�(x))

2

+

1

2

(m

2

+ J(x))�(x)

2

+

g

4!

�(x)

4

�

; (2)

and the quenched random variables J are Gaussian distributed with variance

J(x)J(y) = ��(x� y): (3)

Here both � and g play the role of coupling constants. It is possible to study analytically

this model by considering the case a small coupling constants. In this case perturbation

theory may be used to compute the renormalization group ow.

One �nds that in four (and more) dimensions the origin is an attractive �xed point,

while in less than four dimensions there is a �xed point where both coupling are of order �

in dimensions D = 4 � �. Apart from the detailed problem of computing the �xed point,

the situation seems to be clear.

However this result tells us nothing about the possibility of having an other �xed point

for large values of the coupling constants. We already know that in the case of a pure

system (� = 0) there should be no other non trivial �xed points but this statement does

not imply that the same scenario is valid for �.

Indeed let us suppose to solve the model at �xed non zero � and perform an expansion

in g. It is extremely di�cult to arrive to any conclusion. Indeed one should start by

computing the free propagator G

0

(x; y), which satis�es the equation

(��+m

2

+ J(x))G

0

(x; y) = �(x� y); (4)

Whenm

2

becomes su�ciently small,G

0

(x; y) diverges. In the pure case (i.e. J = 0) this

divergence corresponds to the onset of long range correlations. If we perform a perturbative

analysis in �, we �nd that this property holds also at non zero �, however a more precise

analysis shows that due to non-perturbative e�ects localized eigenvalues are present.

The transition point is controlled by the extended eigenvalues of the free propagator;

therefore also at values of m

2

greater than the critical one the quadratic terms has negative

eigenvalues and the g expansion is particularly tricky. One may think that the exponent

controlling the localization transition are relevant, however they are apparently non trivial

also for dimensions greater than 4.
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Abstract

In this letter we show strong numerical evidence that the four dimensional Diluted

Ising Model for a large dilution is not described by the Mean Field exponents. These

results suggest the existence of a new �xed point with non-gaussian exponents.
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