
John von Neumann Institute for Computing

IANUS: Scientific Computing on an
FPGA-Based Architecture

F. Belletti, M. Cotallo, A. Cruz, L. A. Fernández,
A. Gordillo, A. Maiorano, F. Mantovani, E. Marinari,

V. Martı́n-Mayor, A. Munoz-Sudupe, D. Navarro,
S. Pérez-Gaviro, M. Rossi, J. J. Ruiz-Lorenzo,

S. F. Schifano, D. Sciretti, A. Tarancón, R. Tripiccione,
J. L. Velasco

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 553-560, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

IANUS: Scientific Computing
on an FPGA-Based Architecture

Francesco Belletti1,2, Maria Cotallo3,4, Andres Cruz3,4, Luis Antonio Fernández5,4,
Antonio Gordillo6,4, Andrea Maiorano1,4, Filippo Mantovani1,2, Enzo Marinari7,

Victor Martı́n-Mayor5,4, Antonio Muñoz-Sudupe5,4, Denis Navarro8,9,
Sergio Pérez-Gaviro3,4, Mauro Rossi10, Juan Jesus Ruiz-Lorenzo6,4,

Sebastiano Fabio Schifano1,2, Daniele Sciretti3,4, Alfonso Tarancón3,4,
Raffaele Tripiccione1,2, and Jose Luis Velasco3,4

1 Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara (Italy)
2 INFN, Sezione di Ferrara, I-44100 Ferrara (Italy)

3 Departamento de Fı́sica Teórica, Facultad de Ciencias
Universidad de Zaragoza, 50009 Zaragoza (Spain)

4 Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), 50009 Zaragoza (Spain)
5 Departamento de Fı́sica Teórica, Facultad de Ciencias Fı́sicas

Universidad Complutense, 28040 Madrid (Spain)
6 Departamento de Fı́sica, Facultad de Ciencia

Universidad de Extremadura, 06071, Badajoz (Spain)
7 Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00100 Roma (Italy)

8 Departamento de Ingenieria Electrónica y Comunicaciones
Universidad de Zaragoza, CPS, Maria de Luna 1, 50018 Zaragoza (Spain)

9 Instituto de Investigación en Ingenieria de Aragón (I3A)
Universidad de Zaragoza, Maria de Luna 3, 50018 Zaragoza (Spain)

10 ETH Lab - Eurotech Group, I-33020 Amaro (Italy)

This paper describes the architecture and FPGA-based implementation of a massively parallel
processing system (IANUS), carefully tailored to the computing requirements of a class of
simulation problems relevant in statistical physics. We first discuss the system architecture
in general and then focus on the configuration of the system for Monte Carlo simulation of
spin-glass systems. This is the first large-scale application of the machine, on which IANUS
achieves impressive performance. Our architecture uses large-scale on chip parallelism ('
1000 computing cores on each processor) so it is a relevant example in the quickly expanding
field of many-core architectures.

1 Overview

Monte Carlo simulations are widely used in several fields of theoretical physics, including,
among others, Lattice Gauge Theories, statistical mechanics1, optimization (such as, for
instance, K-sat problems).

In several cases, the simulation of even small systems, described by simple dynamic
equations requires huge computing resources. Spin systems - discrete systems, whose

553

variables (that we call spins) sit at the vertices of a D−dimensional lattice - fall in this
category2. Reaching statistical equilibrium for a lattice of 48 × 48 × 48 sites requires
1012 . . . 1013 Monte Carlo steps, to be performed on O(100) copies of the system, corre-
sponding to ' 1020 spin updates. Careful programming on traditional computers (intro-
ducing some amount of SIMD processing) yields an average spin-update time of ' 1 ns:
a typical simulation would use 1 PC for ' 104 years (or ' 10000 PCs for 1 year, opti-
mistically and unrealistically assuming that perfect scaling takes place!) The structure of
simulation algorithms for spin system are however very well suited to some unconventional
computer architectures that are clearly emerging at this point in time (see, e.g.3).

This paper describes the architecture and the FPGA-based implementation of a mas-
sively parallel system carefully tailored for the class of applications discussed above. The
system, that we call IANUS, has been developed by a collaboration of the Universities of
Ferrara, Roma I and Zaragoza, and of Instituto de Biocomputación y Fı́sica de Sistemas
Complejos (BIFI), with Eurotech as industrial partner. Our text is structured as follows:
Section 2 builds a bridge between the structure of the physical problem and its comput-
ing requirements; Section 3 describes our FPGA-based architecture and discusses how
we configure it for our application. Section 4 reports on performance and compares with
corresponding figures for traditional PC clusters and for at least one recently appeared
architecture. Section 5 contains our concluding remarks.

2 Sample Application: Spin Systems on a Lattice

We briefly describe here discrete spin systems, the application that has triggered IANUS
development. Consider N = L × L × L nodes labeled by i = {0, . . . , N − 1} and
arranged on a 3D cubic grid. On each node we place a spin variable si that only takes
discrete values {+1,−1}. An energy cost is associated to every pair of nearest neighbour
sites on the grid (each site has six nearest neighbors, two for each direction x, y and z),
which is proportional to the product of the values of the two spins.

εij = −Jijsisj

the proportionality constants Jij , usually called couplings, are in general different for each
pair of sites, and take the values +1 or −1. For a positive coupling Jij = 1, the situation
in which two neighboring spins are parallel (they takes the same value), is energetically
favoured. Negative couplings favour anti-parallel (mutually opposite) neighboring spins.
Periodic boundary conditions are usually applied so the system is a 3D discrete torus. The
sum of energy contributions for all pairs of neighboring sites is by definition the energy
function of the system.

H =
∑
〈i,j〉

εij = −
∑
〈i,j〉

Jijsisj (2.1)

The notation 〈i, j〉 means that the summation is done only on neighboring sites. The set of
all Jij is kept fixed during a simulation (the set is extracted from distribution probabilities
that fix the physical properties of the systems described by the model: if Jij = 1 ∀i, j we
have the Ising model of ferromagnetism, while random equiprobable values +1,−1 are
considered in the Edwards-Anderson Spin Glass model).

554

The variables si evolve in time according to some specified rules, that we now briefly
describe. Given a system with energy functionH , one is usually interested in its properties
at constant temperature T = 1/β (system in equilibrium with a heat source); every config-
uration of spins {S} contributes to thermodynamic properties with a weight factor given
by the Boltzmann probability P ∝ exp (−βH[{S}]).

The Monte Carlo Metropolis algorithm is a standard tool to generate configurations
according to the Boltzmann probability. As such, it is a key computational algorithm in
this field. It may be described by the following steps:

1. choose a site at random in the lattice, and compute the local energy E of the corre-
sponding spin (containing only contributions of nearest neighbour couplings);

2. perform the move: flip the chosen spin and compute the new local energy E′ and the
energy variation of the move

∆E = E′ − E

3. accept the move with probability P = min [1, exp (−β∆E)] ;

4. go back to 1;

A Monte Carlo sweep is usually taken as a number of iterations of the elementary steps
described above equal to the volume N of the lattice. Several (in practice, a huge number
of) Monte Carlo sweeps are needed in order to reach the equilibrium distribution. It can
be shown that the asymptotic behaviour is the same if we choose to visit sites in any given
lexicographic order, so a sweep is usually performed by sequentially visiting sites.

Inspection of the algorithm and of equation (2.1) shows that the procedure has several
properties relevant for an efficient implementation:

• a large amount of parallelism is available: each site interacts with its nearest neigh-
bors only, so up to one-half of all sites, organized in a checkerboard structure, can be
handled in parallel (two neighboring spins may not be updated simultaneously since
local transition probability must be well-defined at each step), provided enough ran-
dom numbers are available;

• the computational kernel has a regular loop structure. At each iteration the same set of
operations is performed on data words whose addresses can be computed in advance;

• data processing is associated to bit-manipulation (as opposed to arithmetics performed
on long data words), since bit valued variables are involved ;

• the data base associated to the computation is very small, just a few bytes for each site
(e.g., ' 100 KBytes for a grid of 483 sites).

In brief, the algorithm is an obvious target for aggressive parallelization, and, for a
given budget of logical resources, parallelization can be pursued with greater efficiency if
very simple processing elements are available.

555

3 IANUS Architecture

We try to match the architectural features described in the previous section with an FPGA-
based architecture, following earlier attempts4, 5 and leveraging on technology advances.
We use latest generation FPGAs, each accommodating several hundreds (see later for de-
tails) processing engines. A dramatic memory access bottleneck follows, as all engines
process one lattice site each, since several thousands data bits must be moved from mem-
ory to the processing engines at each clock cycle. This bandwidth can only be sustained
by memory available on-chip that, in current generation FPGAs, is large enough for the
data-set.

The system that we have built uses two hierarchical levels of parallelism:

• our system is based on a 4 × 4 grid of processing elements (that we call SPs) with
nearest-neighbour links (and periodic boundary conditions). All SPs are also con-
nected to a so-called IO-Processor (IOP), that merges and moves data to a host com-
puter via 2 Gigabit-Ethernet links. Both the IOP and the SP are implemented by
Xilinx Virtex4-LX160 or Virtex4-LX200 FPGAs.

• The SP processor contains uncommitted logic that can be configured at will (fast on
the fly reconfiguration of all SPs is handled by the IOP). In our typical application,
the SP becomes a many-core processor (we use the terminology proposed recently
in3), each core performing the same algorithm on a subset of the spins (see later for
details).

A block diagram of the system is shown in Fig. 1, while a picture of the IANUS proto-
type is shown in Fig. 2

Figure 1. IANUS topology (A) and overview of the IANUS prototype implementation (B), based on a processing
board (PB) with 16 SPs and one I/O module (IOP).

The computational architecture that we configure on each SP for the first large-scale
IANUS application - the Monte Carlo simulation described above - is shown in Fig. 3.

As a guide to understand the structure, we have a set of processing engines (also called
update cells, UC), that receive all the variables and parameters needed to update one spin
and perform all needed arithmetic and logic operations, producing updated values of the
spin variable. Data (variables and parameters) are kept in memories and fed to the appro-
priate UC. Updated values are written back to memory, to be used for later updates.

The choice of an appropriate storage structure for data and the provision of appropriate
data channels to feed all UCs with the value they need is a complex challenge; designing

556

Figure 2. IANUS board prototype: SPs are accommodated in 4 lines of 4 processors each while the I/O processor
is placed at the centre.

Figure 3. Parallel update scheme. The spins (lattice S) and their neighbors (lattice N) are stored in RAM blocks.
AllL×L spins in a plane in the S lattice of vertical coordinate (memory address) z are updated simultaneously. A
set of L×L Update Cells (UC) are implemented in logic; at each clock cycle they receive all needed neighboring
spins (the lattice planes of vertical coordinates z, z − 1, z + 1). Note that at regime we only need to fetch one
plane from the N lattice, as the other two are available from the previous iteration. The outputs of the UCs are
the updated spins, stored into the S memories at address z. The structure is slightly more complex than described
here as we also need to feed UCs with the coupling values. When all planes in S have been processed, S and N
interchange their roles.

the update cells is a comparatively minor task, since these elements perform rather simple
logic functions.

We now briefly describe our data structure (the reader may find reference to Fig. 3
helpful to follow the discussion). As pointed out before, we can arrange for parallel update
of up to one half of the lattice, processing all white (black) sites in a checkerboard scheme

557

at once. In order to maximize performance, we resort to a simple trick, by replicating the
system twice: the two replicas share the same coupling data base, but follow independent
dynamics, doubling the overall statistics. We arrange all white sites of replica 1 and black
sites of replica 2 in one lattice (stored in S, the updating spin block, see Fig. 3) and all black
sites of replica 1 and white sites of replica 2 in another lattice (the neighbors block, called N
in Fig. 3). With this arrangement, all spins in the updating block have their neighbors in the
neighbors block only. These artificial lattices have the same topology as the original ones,
and are mapped directly onto embedded RAM blocks on the FPGA. Consider the simple
case of an L = 16 system. The updating spin lattice (and of course the neighbors lattice)
may be stored in 16 RAM blocks (whose labels are the x coordinates), each 16 bit wide
(bit index is the y coordinate) and 16 word deep (memory addresses are z coordinates).
We need three similar structures to store the couplings Jij one per each coordinate axis
(each site has two links to neighbors in each direction). Fetching one 16 bit word for each
RAM block at the same address z corresponds to fetching a full (xy) plane of the updating
spin block (or the neighbors or coupling blocks in one direction). This scheme is easily
generalized to several values of lattice size L. Of course only fractions of entire planes may
be updated for very large lattices (since in this case there are not enough logical resources
within the FPGA), but this can be easily managed.

Each update step consumes one (pseudo)-random number. Random number genera-
tors use a large fraction of the available hardware resources. We implemented the Parisi-
Rapuano shift-register wheel7, defined by the rules

I(k) = I(k − 24) + I(k − 55) (3.1)
R(k) = I(k)⊗ I(k − 61) ,

where I(k− 24), I(k− 55) and I(k− 61) are elements (32-bit wide in our case) of a shift
register initialized with externally generated values. I(k) is the new element of the wheel,
and R(k) is the generated pseudo-random value. This generation rule is easily arranged on
configurable logic only, so, by exploiting cascade structures, each wheel produces about
one hundred values per clock cycle.

After spins are fed to an update cell, the local (integer) energy values are computed
and used to address a look-up table whose entries are pre-calculated Boltzmann probability
values (normalized to 232−1). The probability is compared with the 32 bit random number
in order to decide the spin’s fate. Look-up tables (LUTs) are implemented in distributed
RAM whose availability is one limiting factor in the number of possible parallel updates.
On the other side, LUTs are small data sets so arranging them on RAM blocks would be a
waste of precious storage. Since two reads are possible from each LUT in one clock cycle,
each one is shared between two update cells. A more detailed description can be found in
in8.

We accommodate all memory structures, 512 update cells and a matching number of
random generators and LUTs on the XILINX-LX160 FPGA available on the SP. A larger
FPGA (the XILINX-LX200 that will be used for the full-scale IANUS system) doubles all
values. Independent simulations are carried out on each SP belonging to the IANUS sys-
tem, since several simulations associated to different parameters of the system are needed
anyway. The number of update cells corresponds to the number of updates per clock cycle
(512 on the LX160 and 1024 on the LX200). Note that at 1024 updates per clock cycle and
62.5 MHz clock frequency, the random number generator alone runs at 64 Gops (32-bit)

558

on each node (1 Tops per IANUS board), even neglecting the cost of XOR operations.
In short, we are in the rewarding situation in which: i) the algorithm offers a large

degree of allowed parallelism, ii) the processor architecture does not introduce any bottle-
neck to the actual exploitation of the available parallelism, iii) performance of the actual
implementation is only limited by the hardware resources contained in the FPGAs.

4 Performance

The algorithms described above run on our FPGA with a system clock of 62.5 MHz, cor-
responding to an average update time of 1/(512× 62.5× 106) = 32 ps/spin (16 ps/spin in
the LX200 version, as the number of update cells doubles) per FPGA, that is 2 ps/spin (1
ps/spin) for a full IANUS processing board (16 FPGAs).

It is interesting to compare these figures with those appropriate for a PC. Understanding
what exactly has to be compared is not fully trivial. Popular PC codes update in parallel
the same site of a large number of (up to 128) replicas of the system, each mapped onto one
bit of the processor word. The same random number is shared by all replicas. This scheme
(we call it Asynchronous Multi Spin Coding, AMSC) extracts reasonable performance
from architectures with large word sizes in a context in which the natural variable size is
just one bit. This approach is useful for statistical analysis on large samples. On the other
hand, it is less appropriate when a small number of replicas of a large system must be
updated many (e.g., 1012 . . . 1013) times. In this case an algorithm that updates in parallel
many spins of the same lattice (exactly what we do in IANUS) is a much better choice.
Such codes (that we call Synchronous Multi Spin Coding, SMSC) were proposed several
years ago, but never widely used. We put a rather large effort in developing efficient AMSC
and SMSC codes on a high-end PC (an Intel Core2Duo - 64 bit - 1.6 GHz processor). A
comparison - see Table 1 - shows that one IANUS processing board has a performance of
hundreds (or even thousands) of PCs.

Preliminary measurements of these codes ported to the IBM Cell Broadband Engine
(CBE) (work is still in progress in this area) show that one CBE (using all 8 synergistic
processors) is approximatively 10− 15 times faster than an Intel Core 2 Duo PC.

LX160 LX200 PC (SMSC) PC (AMSC)
Update Rate 2 ps/spin 1 ps/spin 3000 ps/spin 700 ps/spin

Table 1. Comparing the performances of one IANUS processing board and two different PC codes.

Finally note that the mismatch between processing power available on the system and
bandwidth to the host is such that a full simulation run must be executed on IANUS; this
is at variance with recent architectures in which FPGA co-processors are directly attached
to a traditional CPU and executes relatively fine-grained tasks.

Our planned IANUS installation (16 sub-systems of 16 processors each, expected for
fall 2007) has a processing power equivalent to≥ 10000 PCs or approximately 1000 CBEs,
making it possible to carry out the physics program outlined above in about one year time.
IANUS will be housed in one standard rack; power dissipation will be ' 4 KW, a huge
improvement with respect to a large PC farm.

559

5 Conclusions

Our performance are admittedly obtained by carefully handcrafting an appropriate archi-
tecture for a parallel-friendly algorithm. This experience teaches, in our opinion, some
lessons relevant in a more general context:

• we have put in practice the potential for performance of a many-core architecture,
exposing all parallelization opportunities available in the application.

• The huge performances that we obtain depend on huge bandwidth to/from memory,
only achievable with on-chip embedded memories.

• FPGAs can be configured to perform functions poorly done by traditional CPUs, ex-
ploiting a large fraction of available resources. This compensates the overheads asso-
ciated to reconfigurability and inherent to any FPGA structures.

At present we are fine-tuning for IANUS a Monte Carlo procedure for random graph
colouring (a prototype K-sat problem), for which we also expect large performance gains
with respect to PCs. This code, that we describe elsewhere, will assess the performance
potential of FPGA-based processors for algorithms with irregular memory access patterns.

Acknowledgements

IANUS has been partially funded by the UE (FEDER funds) and by Diputación General
de Aragón (Spain) and supported by the Spanish MEC (FIS2006-08533 and TEC2004-
02545).

References

1. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical
Physics, (Cambridge University Press 2005).

2. See for instance Spin Glasses and Random Fields, edited by P. Young, (World Scien-
tific, Singapore, 1998).

3. K. Asanovic et al., The Landscape of Parallel Computing Research: A View from
Berkeley, Tech. Report UCB/EECS-2006-183, (2006).

4. J. H. Condon and A. T. Ogielski, Fast special purpose computer for Monte Carlo
simulations in statistical physics., Rev. Sci. Instruments, 56, 1691–1696, (1985).

5. A. Cruz, et al., SUE: A Special Purpose Computer for Spin Glass Models, Comp.
Phys. Comm., 133, 165, (2001) .

6. F. Belletti et al., IANUS: An Adaptive FPGA Computer, Computing in Science and
Engineering, 71, 41, (2006).

7. G. Parisi and F. Rapuano, Effects of the random number generator on computer sim-
ulations, Phys. Lett. B, 157, 301–302,(1985).

8. F. Belletti et al., Simulating spin systems on IANUS, an FPGA-based computer,
http://arxiv.org/abs/0704.3573, Comp. Phys. Comm., (2008, in press).

560

