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We study the two-dimensional Potts model to learn about the pseudocritical behavior observed in some first order transitions. 
This behavior can be explained by the presence of a second order-like transition point in the metastable region. We calculate the 
position of this point and measure its critical exponents. 

First order phase transitions exhibit a wide variety 
of  behaviors. Some of  them do not show any pretran- 
sitional effect, the transition occurs abruptly and the 
discontinuities in thermodynamic quantities at the 
transition are comparable to the overall change in the 
whole critical region. In other - weak - cases pretran- 
sitional effects take place, which can also be very sig- 
nificant: everything goes like if a second order tran- 
sition which would occur at a certain coupling r *  is 
preempted from a first order one at a beta fl~ ~< fl*. 

Thus, a weak first order transition behaves like a 
second order one, near, but not too near, the critical 
point. For instance, the inverse correlation length 
should obey the law 

¢ - ~ = A ( / ~ * - / ~ y ' ,  ( l )  

where r *  and v* can be thought of  as the coupling 
and critical exponent of  the virtual second order 
transition point in the metastable region. 

Liquid crystals offer a wide sample of  behaviors of  
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this kind; the quantity f l * -  tic has been measured with 
great accuracy in many real experiments and tested 
in numerical simulation [ 1 ]. A phenomenological 
theory ft. la Landau developed by de Gennes [ 1 ] pro- 
vides a satisfactory description of  the phenomenon.  

Numerical simulations suggest an analogous be- 
havior in several gauge (four dimensional Z2 theory 
[2] ,  pure QCD at finite temperature [3] ) and spin 
systems (3-states three-dimensional Ports model 
[4,5], two-dimensional Potts model [6 ] ) .  r *  has 
been actually observed making use o f  a wide range of  
techniques, from renormalization group (RG)  [6] 
to the analysis observation o f  the important  precur- 
sor effects in thc pseudocritical region [ 3 ]. 

This paper, and a forthcoming one [7] ,  aims to 
clarify the relationship between the various ap- 
proaches and to provide more precise measurements. 

The appealing idea is that the above depicted be- 
havior is a general scheme for weak first order tran- 
sitions, the second order transition being recovered 
when fl*-~flc, the more usual, strong first order one, 
when ( f l* - f l c )  >> 1. In the intermediate region the 
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strength of the transition, as measured for instance 
by the ratio of  the discontinuity in the internal energy 
to the sum of the cnergy in the ordered and disor- 
dered phases, should increase with [3"-tic. 

In this paper we present a study of the two-dimen- 
sional q-states Potts model [8 ] whose action is 

S = - [ 3  ~ 6o,~j, (2) 
<ij> 

where a~= 1, ..., q, and )2<o > is extendcd to all pairs of 
first neighbor spins. 

This simple model presents a ferromagnetic phase 
transition at every value of q. Many of its properties 
are analytically known, including the critical cou- 
pling and the latent heat [9]. The later turns out to 
be an increasing function of q, vanishing for q~< 4. The 
transition is thus second order for q~< 4 and first or- 
der for q>~ 5, with intensity increasing with q. So the 
Potts model for q>~ 5 is an excellent case study of the 
relationship between the properties of a weak first or- 
der phase transition and the second order transition 
point fl*. Our primary aim is the study of the prop- 
erties of[3*. First, let us briefly recall the numerical 
techniques in use to locate an ordinary second order 
point; they roughly fit in two main categories. 

The first one is based on measurements of quan- 
tities which show true divergence at the critical point 
in the infinite volume limit. It is not possible to ob- 
serve divergence in a finite lattice, but definitely it is 
possible to measure quantities, like the susceptibility 
or the correlation length, which would diverge at the 
second order point but are finite around it. The crit- 
ical coupling is then obtained by extrapolating the re- 
suits according to a power law behavior. 

The second technique is based on the direct obser- 
vation of the way in which discontinuities are built 
up right at the critical point: RG methods, finite size 
scaling analysis, or a combination of them can be used 
for this purpose. 

Both of the previous approaches can be gcneral- 
ized to the case of interest. In thc first case, the gen- 
eralization is in principle straightforward. For the 
second approach some extra care is needed: to get [3" 
wc have to work inside the metastable region (which 
would be very interesting in itself), where the sepa- 
ration between true physics and lattice artifacts is even 
more difficult from a numerical point of  view. 

Wc can discuss the properties of the transition us- 

ing a simple non-convex effective potential formal- 
ism. (Notice that this potential transforms into a 
physical convex effective potential by taking the 
convex hull [10]).  Let us consider a potential 
~ ( E )  = - l o g  P B ( E )  where E is the total energy and 
P,~(E) the probability density of finding a configu- 
ration of energy E at a given ft. 

Nearfl~, 0/;(E) has two local minima at El (fl) and 
152 ( i l l  The first order point tic is defined by the con- 
dition ~'~ (E,)  = 0re(E:). For fl slightly larger than tic, 
there will be only an absolute minimum at E2(f l ) ,  
being E, ([3) ( < E2 (fl)) a local minimum related with 
metastable states. For fl big enough the minimum at 
E~ becomes an inflexion point (spinodal point), and 
the mctastability disappears. This coupling has to be 
identified [1] with fl*, which is thus fixed by the 
condition 

I E: = 0 .  (3) 
d .  Ir:=e,(~) =r; 

So 

0~ ' (E)  =ao + a 3 ( E - E * ) 3 +  . . . .  (4) 

Using the relation pa' (E) = P ~ ( E ) e -  <p' -p)e we find 
that for fl near [3*, e ) a ( E ) = a o + a 3 ( E - E * ) 3 +  
( [3 - [3" )E+. . .  has a local minimum Iocatcd at 

<([3)=r+ (5) 
~ 3 a 3  ' 

and the specific heat Cv reads 

1 d2O "e 
C,~, ~ d E  2 "~ 2x//-3a-3 ([3 *-- [3) ' /2 " (6) 

We conclude that the system behaves as if  it had a 
second order transition at [3" with a critical exponent 

or*=½ . ( 7 )  

An equivalent procedure can be followed for the 
potential depending on the total magnetization 
0#(M). Now, the disordered metastable minimum is 
always at M = 0  and we can write 

~/~(,~/) =bo( f l )  + b2( fl),~/I2 + . . . .  (8) 

At [3", b2 must become zero. By supposing an analyt- 
ical behavior ofb2 near r ,  we obtain for the magnetic 
susceptibility 
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l (d ,fi 
Z k M .],~=o 

=2b2(fl) ~ ( f l * - f l )  + 0 ( ( f l * - , 8 ) 2 ) ,  (9) 

therefore the apparent y critical exponent is 

~*=1. (10) 

It is not possible to use a similar approach to ob- 
tain other critical exponents. By using the relation 

= v ( 2 -  t/) obtained from the fluctuation-dissipa- 
tion theorem and supposing that the exponent r/, re- 
lated with an anomalous dimension, is zero, we may 
conclude that v=  ½ (notice that t/=0, v=  ½ are the 
classical exponents). D= 3 seems to be the critical di- 
mension where the scaling rclation a = 2 - v D  also 
holds. The behavior observed in some three-dimen- 
sional models [5,3] is in agreement with v=  ½. In 
D = 2 the scaling relation a = 2 -  vD is violated, since 
it would imply v =  ] (q=  ] ) what we shall see is also 
excluded by our Monte Carlo (MC) data. 

Analogously, there is a pseudocritical point at 
fl**<flc, related with the ordered metastable states. 
A similar derivation shows that there must be a pseu- 
docritical behavior with c~**= ½, but in this case, the 
exponent for the susceptibility cannot be computed 
directly. 

It would be very interesting to check the previous 
results with a numerical simulation in the metastable 
region. Unfortunately this is not easy since the inho- 
mogeneous configurations can obscure the physics of  
the transition. This problem is related with the con- 
vexity of the physical effective potential in the ther- 
modynamical limit [ l l ]. Further discussion will be 
presented elsewhere [ 7 ]. 

In this letter we will limit ourselves to the results 
obtained working at a safe distance from the critical 
points in order to avoid the inhomogeneous 
configurations. 

We have worked mainly with the 7-states Potts 
model, however we have done some runs in the 10- 
states model to see the trend in t ic-f l*.  For our MC 
simulation we have used a standard heat bath method 
for generating configurations. We worked on lattices 
whose sizes range from 32 × 32 to 128 × 128 at differ- 
ent values of ft. The number of MC sweeps has been 
between one and two millions. We have run the code 
on transputer networks as well as on VAX computers. 

At each measure sweep we stored the total energy, 
the magnetization, and correlation function between 
lines. In the analysis of data we have used the spectral 
density method [ 12], however wc put special atten- 
tion to direct simulations (without extrapolating to 
different fl values) to have a safer estimation of the 
errors. The statistical errors have been computed with 
the jack-knife method using about 10 bin of data. 

The correlation length is computed measuring the 
correlation function between the magnetization of 
parallel lines of spins. In a L ×  L lattice 

C ( d ) - - ~  3 M~+dM:,+ E My+dM~ --q, 
Y 

(11) 

with 

Mx= •It,,y, (12) 
Y 

where/axy is the magnetization q-vector of the spin at 
the point (x, y) (for a spin in state ae{l  .... , q} the 
nth component o f / ,  is 6n,). The correlation length 
~ is computed fitting C(d) to the function 
cosh ( ( d -  ½L)~- ' ) .  

A reliable measure of the correlation length or spe- 
cific heat requires all the configurations to be homo- 
geneous (this amounts to say that we want true V--,~ 
estimates). We shall work at fl far enough from tic, 
where the appearance of inhomogeneitics is strongly 
suppressed, then we shall extrapolate to the critical 
point (see fig. 1 ). 

We have run in several lattice sizes and analyzed 
the asymptotic (large L) behavior. All the results re- 
ported in this letter have been checked to be free of  
finite size effects. See also ref. [ 13 ] for a recent, very 
careful discussion of finite size effects in Ports model. 

We have focused our attention in the measure of 
the correlation lcngth. We have confidence that the 
systematic errors due to finite size effects are smaller 
than the statistical ones. As previously noted, an- 
other source of systematic error is the appearance of 
inhomogeneities. We have not found evidence of that 
for fl~< 1.292 after several millions of MC sweeps. 

In a first stage we compute the exponent v* as well 
as the critical point r *  by a three parameter fit of the 
correlation length to the function A ( f l -  r *  ) - v-. Our 
results for v* are 
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Fig. 1. Specific heat cv= ( (E 2) - (E) 2)/V (lower side) and correlation length ~ (upper side) for the 7-states (left) and 10-states (fight) 
Potts model. The dashed lines have been obtained with the spectral density method from the rightmost point data. 

v * = 0 . 5 3 ( 8 ) ,  (13) 

f l *=  1 .2945(9) .  (14) 

This value is incompatible with the scaling predic- 
tion 0.75 and in accordance with the guess o f  the clas- 
sical v = ½. 

Unfortunately it is not possible to give a precise 
value forfl* from the three-parameter fit, although it 
is clear tha t /?*> fie. Notice that there is a shift of/?c 
due to finite size effects that decreases as L -2 .  We 
have measured this shift extrapolating the/?e(L) ob- 
tained in smaller lattices to the value Be(L= 128) 
=1.2933.  

However, assuming v*= ~ we can obtain a better 
estimation of/?*.  In fig. 2 we plot the ~-~ values 
squared, as a function of/?. The linear behavior is very 
clear. We have computed/?* both by fitting the points 
obtained directly in the numerical simulation and us- 
ing the spectral density method at the point /?= 1.292 
with a full agreement. Our final result is 

/ ? * = 1 . 2 9 4 4 ( 3 ) .  (15) 

Another interesting quantity is the maximum cor- 
relation length (at tic). We have obtained 

¢ ~ a x = 2 4 ( 5 ) ,  (16) 

to be compared with the estimation 30 of  ref. [ 13 ] 
based on an extrapolation from q =  10 results. 

The transition in the q =  7 model is so weak that it 
is very difficult to measure the maximum correlation 
length or the value of  r * .  we  have needcd large lat- 
tice sizes as well as long MC simulation due to critical 
slowing down. 

For a stronger transition it is expected that the 
maximum correlation length will be smaller, and r *  
is farther from fie, and consequently easier to com- 
pute. Nevertheless, the second order-like behavior will 
not be so clear. 

We have also measured the correlation length for 
q =  10 in lattices up to L = 9 6 .  The results are sum- 
marized in fig. 3. Although the linear behavior o f  
1/~z versus fl is not as precise as in the q =  7 case, it is 
still rather clear. 

The maximum correlation length is found to be 
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Fig. 3. Inverse correlation length squared as a function offl for q=  10, and ~ (rhomb) and p* (square) values. 

Cm.~ =6.1(5) ,  ( 1 7 )  B * = 1 . 4 3 3 ( 2 ) ,  ( 1 8 )  

to  be  c o m p a r e d  w i t h  t h e  e s t i m a t i o n  ~ =  5 .9  ( 7 )  o f  ref. 

[ 1 4 ] .  

T h e  c o m p u t e d  v a l u e  o f  f l *  u s i n g  the  c o r r e l a t i o n  

l ength  d a t a  a n d  f i x i n g  ~* to  ½ is 

w h i l e  t i c =  1 . 4 2 6 0  a n d  its  sh i f t  d u e  to  f i n i t e  s i ze  e f f ec t s  

g i v e s / ~ c ( L =  9 6 ) =  1 . 4 2 5 4 .  

W e  h a v e  a n a l y z e d  the  p r o p e r t i e s  o f  t h e  w e a k  f irst  

o r d e r  f e r r o m a g n e t i c  t r a n s i t i o n  o f  the  t w o - d i m e n -  

4 8 9  
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sional Potts model obtaining a good description of its 
behavior considering a second order-like transit ion 
in the metastable region. We think that the picture 
presented in this paper for the 2D Potts model is gen- 
eral for weak first order transitions, behaving as a 

pseudouniversality, what is supported by the results 
obtained in other models. We find critical exponents 
in good agreement with their mean field values, what 

has been observed experimentally in a wide variety 
of systems. We remark that the measure of the appar- 

ent critical exponents can be useful to distinguish be- 
tween a weak first order transit ion and a true second 
order one. 
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