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Analytical and Numerical Normal Solutions 
of the Boltzmann Equation for Highly 

Nonequilibrium Fourier and Couette Flows



Canonical Gas Flows

Investigate Fourier flow and Couette flow
– One-dimensional steady heat flux, shear stress

Determine normal solutions (outside Knudsen layers)
– Spatial/temporal dependence only via hydrodynamic fields 
– Analytical method : Moment-Hierarchy (MH)
– Numerical method : Direct Simulation Monte Carlo (DSMC)

Consider high heat flux, shear stress
– Thermal conductivity, viscosity; velocity distribution
– Departure from Chapman-Enskog (CE) theory
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Three Knudsen numbers for Fourier-Couette flow
– System: thickness of Knudsen layers, wall effects
– Heat-flux, shear-stress: local, finite gradient over λ

Constraints on KnL, Knq, Knτ

– CE, MH normal solutions: KnL << 1
– CE (additional): Knq << 1, Knτ << 1
– DSMC: computational intensity grows as Kn → 0



Chapman-Enskog Theory
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Chapman-Enskog (CE) velocity distribution function
– Normal solution (outside Knudsen layers)
– Expansion for small heat flux q and shear stress τ

(relative to molecular quantities)
CE values for IPL molecules (inverse-power-law) 

– Thermal conductivity and viscosity: K and µ
– Sonine-polynomial coefficients: ak/a1 and bk/b1

– Applicable when KnL << 1, Knq << 1, Knτ << 1



Moment-Hierarchy Method
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Moment-Hierarchy (MH) normal solution
– MH solution extends CE solution to finite Knq and Knτ

– Solve Boltzmann eqn recursively for Maxwell molecules 
– Collision-term moments bilinear in distribution moments
– Tij, Santos, and co-workers: theory, computer algebra

Compare MH and DSMC for Maxwell molecules
– Differences between IPL, VSS, VHS Maxwell molecules
– Dependence of Keff, µeff, ak/a1, bk/b1 on Knq and Knτ



DSMC Method of Bird
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DSMC moments of velocity distribution function
– Temperature T, velocity V
– Heat flux q, shear stress τ
– Higher-order moments

DSMC values for VSS molecules (variable-soft-sphere)
– Thermal conductivity and viscosity: Keff and µeff

– Sonine-polynomial coefficients: ak/a1 and bk/b1

– Applicable for arbitrary KnL, Knq, Knτ



Temperature and Velocity Profiles

Low heat flux and shear stress: Knq = 0.006, Knτ = 0.003
Small temperature jumps, velocity slips

– Argon-like: initial T = 273.15 K, p = 266.644 Pa, λ = 24 µm
– Walls: L = 1 mm = 42λ, ∆T = 70 K, ∆V = 100 m/s
– Nc = 120, ∆t = 7 ns, ∆x = 2.5 µm, ~109 samples/cell, 32 runs
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Transport Coefficient Profiles

Low heat flux, low shear stress: Knq = 0.006, Knτ = 0.003
Thermal conductivity K and viscosity µ

– CE and DSMC agree in central region: normal solution
– Knudsen layers at walls: ~10% of domain each



Maxwell Sonine-Coefficient Profiles

Low heat flux, low shear stress: Knq = 0.006, Knτ = 0.003
Maxwell Sonine-polynomial coefficients ak/a1, bk/b1

– CE and DSMC agree in central region: normal solution
– Knudsen layers at walls: ~10% of domain each



Hard-Sphere Sonine-Coefficient Profiles

Low heat flux, low shear stress: Knq = 0.006, Knτ = 0.003
Hard-sphere Sonine-polynomial coefficients ak/a1, bk/b1

– CE and DSMC agree in central region: normal solution
– Knudsen layers at walls: ~10% of domain each



Maxwell Sonine-Coefficient Profiles

Finite heat flux, low shear stress: Knq ~ 0.017, Knτ = 0.003
Maxwell Sonine-polynomial coefficients ak/a1, bk/b1

– CE and DSMC differ in central region: Knq not small
– Normal solution is nonuniform: Knq ~ T−1/2 and T = T[x]

Plot DSMC values vs. Knq from central region



Maxwell Sonine Coefficients

Maxwell normal solutions for ak/a1 and bk/b1

MH VSS-Maxwell and DSMC VSS-Maxwell agree
– Four DSMC simulations: ∆T = 70, 200, 300, 400 K
– VHS-Maxwell and VSS-Maxwell are almost identical 
– VSS-Maxwell and IPL-Maxwell differ noticeably



Hard-Sphere Sonine Coefficients

Hard-sphere normal solutions for ak/a1 and bk/b1

DSMC hard-sphere and VSS-Maxwell have same trends
– Four DSMC simulations at same conditions as Maxwell
– No exact results available: MH does not apply
– Even-k terms decrease, odd-k terms increase



Maxwell Transport Coefficients

Maxwell normal solutions for K and µ
Maxwell transport coefficients are flux-independent

– MH values for Knτ = 0 are independent of Knq

– DSMC values approach MH values as Knτ → 0
– Difference is within discretization error 



Hard-sphere normal solution for K and µ
Hard-sphere gas is “flux-insulating” and “flux-thinning”

– No exact theoretical results available
– DSMC values decrease slightly with Knq

– Marginally greater than discretization error

Hard-Sphere Transport Coefficients



Maxwell Transport Coefficients

Maxwell normal solutions for K and µ
MH and DSMC agree to within discretization error

– Eight DSMC simulations: ∆V = 100, …, 800 m/s
– Thermal conductivity from viscous heating, larger errors
– Offset MH to account for DSMC discretization error



Hard-Sphere Transport Coefficients

DSMC hard-sphere normal solution for K and µ
– Finite Knτ (shear stress), low Knq (heat flux)
– No exact results available: MH does not apply
– DSMC values decrease with Knτ (like Maxwell)

Hard-sphere gas: “shear-insulating” and “shear-thinning”



Conclusions

MH and DSMC have been applied to canonical gas flows
– Fourier flow: one-dimensional steady heat flux
– Couette flow: one-dimensional steady shear stress

MH and DSMC are in excellent agreement
– Chapman-Enskog at small heat flux, shear stress
– Maxwell molecules at finite heat flux, shear stress

Transport properties depend on heat flux, shear stress
– Maxwell: flux-independent, shear-insulating/thinning
– Hard-sphere: flux/shear-insulating/thinning
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IPL and VSS Molecules

Best VSS ω, α to match IPL ω by equating diffusivities
– Identical match only for hard-sphere
– VSS-Maxwell ≠  IPL-Maxwell (they are very similar)

Infinite-approximation CE changes K and µ by O(0.03)
– Affects reference diameter dref very slightly



Transport Coefficients

Thermal conductivity and viscosity for IPL molecules
– Intermolecular force: hard-sphere through Maxwell
– Stochastic and discretization errors: ±0.002 each
– CE infinite-to-first-approximation difference: O(0.03)

Excellent agreement between DSMC and CE



Sonine Coefficients

Sonine coefficients ak/a1 and bk/b1 for IPL molecules
– Intermolecular force: hard-sphere through Maxwell
– Stochastic, discretization errors: smaller than symbols

Good agreement between DSMC and CE
– Higher-k coefficients have similar agreement
– Slight difference for k = 3, Knq not small enough
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