

Analytical and Numerical Normal Solutions of the Boltzmann Equation for Highly Nonequilibrium Fourier and Couette Flows

M. A. Gallis,¹ J. R. Torczynski,¹ D. J. Rader,¹ M. Tij,² and A. Santos³

¹Sandia National Laboratories, Albuquerque, New Mexico ²Université Moulay Ismaïl, Meknès, Morocco ³Universidad de Extremadura, Badajoz, Spain

25th International Symposium on Rarefied Gas Dynamics St. Petersburg, Russia; July 21-28, 2006

Canonical Gas Flows T_1 Fourier Flow T_2 T_2 T_2 T_2 T_3 T_4 T_2 T_2 T_2 T_3 T_4 T_2 T_2 T_2 T_3 T_4 T_2 T_4 T_2 T_2 T_3 T_4 T_4 T_2 T_4 T_4 T_4 T_4 T_4 T_4 T_4 T_5 T_4 T_2 T_4 T_4 T_5 T_4 T_4 T_5 T_4 T_5 T_4 T_5 T_4 T_5 T_4 T_5 T_5 T_4 T_5 T_5

Investigate Fourier flow and Couette flow

- One-dimensional steady heat flux, shear stress

Determine normal solutions (outside Knudsen layers)

- Spatial/temporal dependence only via hydrodynamic fields
- Analytical method : Moment-Hierarchy (MH)
- Numerical method : Direct Simulation Monte Carlo (DSMC)
- **Consider high heat flux, shear stress**
 - Thermal conductivity, viscosity; velocity distribution
 - Departure from Chapman-Enskog (CE) theory

Knudsen Number Definitions

Three Knudsen numbers for Fourier-Couette flow

- System: thickness of Knudsen layers, wall effects
- Heat-flux, shear-stress: local, finite gradient over λ

Constraints on Kn_L , Kn_q , Kn_τ

- CE, MH normal solutions: $Kn_L \ll 1$
- CE (additional): $\operatorname{Kn}_q \ll 1$, $\operatorname{Kn}_\tau \ll 1$
- DSMC: computational intensity grows as $Kn \rightarrow 0$

Chapman-Enskog Theory

$f = f^{(0)}(1 + \Phi^{(1)} + \Psi^{(1)}) \qquad \Phi^{(1)} = -(8/5)\tilde{A}[\tilde{c}](\tilde{c} \cdot \tilde{q}) \qquad \Psi^{(1)} = -2\tilde{B}[\tilde{c}](\tilde{c}^{\circ}\tilde{c} : \tilde{\tau})$ $S_{j}^{(k)}[x] = \sum_{i=0}^{k} \frac{(j+k)!(-x)^{i}}{(j+i)!i!(k-i)!} \qquad \tilde{A}[\tilde{c}] = \sum_{k=1}^{\infty} (a_{k}/a_{1})S_{3/2}^{(k)}[\tilde{c}^{2}] \qquad \tilde{B}[\tilde{c}] = \sum_{k=1}^{\infty} (b_{k}/b_{1})S_{5/2}^{(k-1)}[\tilde{c}^{2}]$ $K_{\text{ref}} = \frac{K_{\infty}}{K_{1}} \frac{\mu_{1}}{\mu_{\infty}} \frac{15k_{B}}{4m} \mu_{\text{ref}} \qquad q = -K\nabla T \qquad \tau = \mu \left\{ (\nabla \mathbf{V} + \nabla \mathbf{V}^{\mathrm{T}}) - (2/3)(\nabla \cdot \mathbf{V})\mathbf{I} \right\}$

Chapman-Enskog (CE) velocity distribution function

- Normal solution (outside Knudsen layers)
- Expansion for small heat flux q and shear stress τ (relative to molecular quantities)
- **CE** values for IPL molecules (inverse-power-law)
 - Thermal conductivity and viscosity: *K* and μ
 - Sonine-polynomial coefficients: a_k/a_1 and b_k/b_1
 - Applicable when $\operatorname{Kn}_L << 1$, $\operatorname{Kn}_q << 1$, $\operatorname{Kn}_\tau << 1$

Moment-Hierarchy (MH) normal solution

- MH solution extends CE solution to finite Kn_q and Kn_τ
- Solve Boltzmann eqn recursively for Maxwell molecules
- Collision-term moments bilinear in distribution moments
- Tij, Santos, and co-workers: theory, computer algebra

Compare MH and DSMC for Maxwell molecules

- Differences between IPL, VSS, VHS Maxwell molecules
- Dependence of $K_{\rm eff}$, $\mu_{\rm eff}$, a_k/a_1 , b_k/b_1 on ${\rm Kn}_q$ and ${\rm Kn}_\tau$

DSMC moments of velocity distribution function

- Temperature T, velocity V
- Heat flux q, shear stress τ
- Higher-order moments

DSMC values for **VSS** molecules (variable-soft-sphere)

- Thermal conductivity and viscosity: $K_{\rm eff}$ and $\mu_{\rm eff}$
- Sonine-polynomial coefficients: a_k/a_1 and b_k/b_1
- Applicable for arbitrary Kn_L , Kn_q , Kn_τ

Temperature and Velocity Profiles

Low heat flux and shear stress: $Kn_q = 0.006$, $Kn_\tau = 0.003$ Small temperature jumps, velocity slips

- Argon-like: initial T = 273.15 K, p = 266.644 Pa, $\lambda = 24$ μ m
- Walls: $L = 1 \text{ mm} = 42\lambda$, $\Delta T = 70 \text{ K}$, $\Delta V = 100 \text{ m/s}$
- $-N_{\rm c} = 120$, $\Delta t = 7$ ns, $\Delta x = 2.5 \ \mu m$, ~10⁹ samples/cell, 32 runs

Low heat flux, low shear stress: $Kn_q = 0.006$, $Kn_\tau = 0.003$ Thermal conductivity *K* and viscosity μ

- CE and DSMC agree in central region: normal solution
- Knudsen layers at walls: ~10% of domain each

Maxwell Sonine-Coefficient Profiles

Low heat flux, low shear stress: $Kn_q = 0.006$, $Kn_\tau = 0.003$ Maxwell Sonine-polynomial coefficients a_k/a_1 , b_k/b_1

- CE and DSMC agree in central region: normal solution
- Knudsen layers at walls: ~10% of domain each

EMADURE

3

Hard-Sphere Sonine-Coefficient Profiles

Low heat flux, low shear stress: $\text{Kn}_q = 0.006$, $\text{Kn}_{\tau} = 0.003$ Hard-sphere Sonine-polynomial coefficients a_k/a_1 , b_k/b_1

- CE and DSMC agree in central region: normal solution
- Knudsen layers at walls: ~10% of domain each

REMADURA

-

Maxwell Sonine-Coefficient Profiles

Finite heat flux, low shear stress: $\text{Kn}_q \sim 0.017$, $\text{Kn}_{\tau} = 0.003$ Maxwell Sonine-polynomial coefficients a_k/a_1 , b_k/b_1

- CE and DSMC differ in central region: Kn_q not small
- Normal solution is nonuniform: $\operatorname{Kn}_q \sim T^{-1/2}$ and T = T[x]Plot DSMC values vs. Kn_q from central region

3

Maxwell Sonine Coefficients

Maxwell normal solutions for a_k/a_1 and b_k/b_1 MH VSS-Maxwell and DSMC VSS-Maxwell agree

- Four DSMC simulations: $\Delta T = 70, 200, 300, 400$ K
- VHS-Maxwell and VSS-Maxwell are almost identical
- VSS-Maxwell and IPL-Maxwell differ noticeably

Hard-Sphere Sonine Coefficients

Hard-sphere normal solutions for a_k/a_1 and b_k/b_1

DSMC hard-sphere and VSS-Maxwell have same trends

- Four DSMC simulations at same conditions as Maxwell
- No exact results available: MH does not apply
- Even-*k* terms decrease, odd-*k* terms increase

EMADURA

3

Maxwell Transport Coefficients 1.01 1.01 Maxwell Maxwell 1.00 1.00 ¥∕_∎ ✓ 0.99 1/^{ще}и 0.99 $Kn_{z} = \tau/(mnc_{m}^{2})$ $Kn_{r} = \tau/(mnc_{m}^{2})$ 0.98 0.98 SMC: Kn_ = 0 DSMC: Kn_ < 0.005 DSMC: Kn_ < 0.005 DSMC: Kn < 0.010 DSMC: Kn < 0.010 CE. MH: Kn. = 0

0.97

0.00

0.01

0.02

0.03

0.04

0.05

$Kn_q = q/(mnc_m^3)$ Maxwell normal solutions for K and μ

0.04

CE, MH: Kn₂ = 0

0.01

0.02

 $Kn_{q} = q/(mnc_{m}^{3})$

0.03

0.97

0.00

Maxwell transport coefficients are flux-independent

0.05

- MH values for $Kn_{\tau} = 0$ are independent of Kn_{a}
- DSMC values approach MH values as $Kn_{\tau} \rightarrow 0$
- Difference is within discretization error

Hard-Sphere Transport Coefficients

Hard-sphere normal solution for *K* and μ

Hard-sphere gas is "flux-insulating" and "flux-thinning"

- No exact theoretical results available
- DSMC values decrease slightly with Kn_g
- Marginally greater than discretization error

Maxwell normal solutions for *K* and μ

MH and DSMC agree to within discretization error

- Eight DSMC simulations: $\Delta V = 100, ..., 800$ m/s
- Thermal conductivity from viscous heating, larger errors
- Offset MH to account for DSMC discretization error

Hard-Sphere Transport Coefficients

DSMC hard-sphere normal solution for *K* and μ

- Finite Kn_{τ} (shear stress), low Kn_{q} (heat flux)
- No exact results available: MH does not apply
- DSMC values decrease with Kn_{τ} (like Maxwell)

Hard-sphere gas: "shear-insulating" and "shear-thinning"

MH and DSMC have been applied to canonical gas flows

- Fourier flow: one-dimensional steady heat flux
- Couette flow: one-dimensional steady shear stress

MH and DSMC are in excellent agreement

- Chapman-Enskog at small heat flux, shear stress
- Maxwell molecules at finite heat flux, shear stress

Transport properties depend on heat flux, shear stress

- Maxwell: flux-independent, shear-insulating/thinning
- Hard-sphere: flux/shear-insulating/thinning

Backup Slides

IPL and VSS Molecules

Best VSS ω , α to match IPL ω by equating diffusivities

- Identical match only for hard-sphere
- VSS-Maxwell ≠ IPL-Maxwell (they are very similar)

Infinite-approximation CE changes *K* and μ by O(0.03)

– Affects reference diameter d_{ref} very slightly

3

Thermal conductivity and viscosity for IPL molecules

0.6

0.5

0.7

0.8

ω

0.9

1.0

- Intermolecular force: hard-sphere through Maxwell
- Stochastic and discretization errors: ±0.002 each

1.0

- CE infinite-to-first-approximation difference: O(0.03)

Excellent agreement between DSMC and CE

0.6

0.5

0.7

0.8

ω

0.9

Sonine Coefficients

Sonine coefficients a_k/a_1 and b_k/b_1 for IPL molecules

- Intermolecular force: hard-sphere through Maxwell
- Stochastic, discretization errors: smaller than symbols

Good agreement between DSMC and CE

- Higher-*k* coefficients have similar agreement
- Slight difference for k = 3, Kn_q not small enough

