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We study some of the salient features of the arrival statistics and explo-
ration properties of mortal random walkers, that is, walkers that may
die as they move, or as they wait to move. Such evanescence or death
events have profound consequences for quantities such as the number of
distinct sites visited which are relevant for the computation of encounter-
controlled rates in chemical kinetics. We exploit the observation that
well-known methods developed decades ago for immortal walkers are
widely applicable to mortal walkers. The particular cases of exponential
and power-law evanescence are considered in detail. Finally, we discuss
the relevance of our results to the target problem with mortal traps
and a particular application thereof, namely, the defect diffusion model.
Evanescence of defects is postulated as a possible complementary contri-
bution or perhaps even an alternative to anomalous diffusion to explain
observed stretched exponential relaxation behavior.

1



January 27, 2014 9:50 BC9104 – First-Passage Phenomena and their Applications 01˙Evanescence.finalmods page 2

2 S. B. Yuste, E. Abad and K. Lindenberg

1. Introduction

Random walks play a central role in statistical physics as elementary mod-

els describing stochastic transport in a large variety of experimental sys-

tems [1]. While there is a large body of literature dealing with the first-

passage and exploration behavior of walkers that do not undergo reactions

or transformations, considerably less attention has been devoted to the

corresponding properties of reactive walkers. In particular, work involving

exploration properties of so-called mortal or evanescent walkers, that is,

walkers that die in the course of their motion, is surprisingly scarce de-

spite the ubiquitous occurrence of such death processes in many physical,

chemical, and biological scenarios.

Ad-hoc models for particular experimental situations have previously

been implemented, e.g., to deal with photon scattering and absorption in

a tissue [2]. And yet, with very few exceptions (see e.g. [2, 3] or subsection

3.2.4 in [4]) the observation that the effect of elementary death processes

on the exploration properties of random walkers can be investigated using

arguments similar to those used for immortal walkers seems until recently to

have gone largely unnoticed [5]. The aim of the present work is to introduce

in a pedagogical way an overarching theoretical framework allowing one to

obtain the most interesting properties of mortal walkers. In view of the

completely new physics introduced by death processes in the transport

behavior and its potential relevance for experiments such as for instance

the defect relaxation system discussed in Sec. 4, this endeavor seems very

timely.

In what follows we present in a more general framework some recent

results first given in [5] in a succinct fashion. More specifically, we shall

focus on properties characterizing the arrival statistics of random walkers

in discrete time, such as the average number of distinct sites visited af-

ter a certain number of steps on perfect lattices of all dimensions and other

related quantities. In the continuum time limit one can establish a relation-

ship between these quantities and the number of distinct sites visited up to

a given time (rather than step number), a key quantity for the computation

of reaction rates in chemical kinetics.

Mortal random walkers have a probability of dying as they walk. This

means that their density ρ is not a constant as it is in an ordinary random

walk but is instead a decaying function of time, ρ(t), or of step number,

ρ(n). One can think of this decay as arising from a process that removes

the walkers or transforms them into an inert species This might be the
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result of a spontaneous random process, e.g., a radioactive decay, or of an

interaction with other particles, as is the case, for example, in scavenging

reactions. We will later specify particular decay functions ρ(n) or ρ(t).

The present chapter is organized as follows. In Sec. 2 we show how to

obtain some properties related to the arrival statistics of mortal walkers at

given lattice sites in the framework of the generating function formalism

originally developed by Montroll and Weiss [6] and extended in subsequent

work (see for example chapter 6 in [4] and references therein). Next, in

Sec. 3, we discuss the behavior of some of these quantities for particular

forms of the decay law of the walker density, namely, exponential decay and

power-law decay. We conclude that the behavior in the case of mortal walk-

ers is very different from that observed for immortal walkers. For instance,

as time goes to infinity the number of distinct sites visited tends to infinity

in the latter case, while in the former case it goes to a finite value provided

that the evanescence is sufficiently fast. In Sec. 4 we discuss the implica-

tions of these results for the target problem with mortal traps, in particular,

the possibility that the target survives forever if the traps die sufficiently

rapidly. On the basis of our results, we suggest that the stretched ex-

ponential behavior observed in some relaxational systems driven by defect

diffusion can be ascribed to evanescence without the need to invoke anoma-

lous diffusion. Finally, in Sec. 5 we briefly summarize our main conclusions

and discuss possible extensions of our work. The appendices are devoted to

some technicalities related to the correspondence between the connection of

the master equation for mortal walkers to the continuum reaction-diffusion

equation with a linear reaction term, as well as to the on-lattice kinetics of

mortal walkers and continuum space exploration.

2. Generating function formalism for mortal walkers

2.1. Master equation for mortal walkers

Our starting point is a mortal walker which performs a Pólya walk, i.e., a

symmetric nearest-neighbor walk on a perfect lattice of dimension d. We

introduce the probability P ∗
m,n−m(s|s′) of finding a mortal walker at lattice

site s after having taken n−m steps if the walk started at site s′ at step m.

An asterisk denotes quantities for mortal walkers and the same quantities

without asterisks are for immortal walkers. The probability P ∗ for a mortal
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walker is related to its counterpart P for an immortal walker as follows:

P ∗
m,n−m(s|s′) = ρ(n)

ρ(m)
Pm,n−m(s|s′) = ρ(n)

ρ(m)
Pn−m(s|s′), (1)

where the second equality follows from the fact that in the absence of the

death process the probability does not depend on when the walk started

but only on the number of steps taken by the walker. When m = 0 we can

more simply write

P ∗
n(s|s0) =

ρ(n)

ρ(0)
Pn(s|s0), (2)

where we have simplified the notation, P ∗
0,n(s|s0) ≡ P ∗

n(s|s0). The walker

density ratio ρ(n)/ρ(0) can be interpreted as the survival probability of the

walker up to step n, or as the fraction of surviving walkers if one considers

a statistical ensemble of walkers all with the same initial condition. In what

follows, we set ρ(0) = 1, and consequently P ∗
n(s|s0) = ρ(n)Pn(s|s0). For

simplicity, we also restrict ourselves to the deterministic initial condition

P ∗
0 (s|s0) = δss0 . (3)

From the well-known master equation for the sojourn probabilities for an

immortal walker and the definition (2) one gets the corresponding master

equation for mortal walkers. For instance, in d = 1 one has

Pn+1(s|s0) = 1

2
[Pn(s− 1|s0) + Pn(s+ 1|s0)] (4)

and, as a result of Eq. (2),

P ∗
n+1(s|s0) =

1

2

ρ(n+ 1)

ρ(n)
[P ∗
n(s− 1|s0) + P ∗

n(s+ 1|s0)] . (5)

This equation simply states that the probability that the particle is found

at site s after n+1 time steps is equal to the probability that it was either

on the left neighbor site s−1 or the right neighbor site s+1 at the previous

time step, then chose to jump to s and did not vanish while doing so (the

probability for the particle to survive up to the n + 1-st step given that

it had survived up to the nth step is simply ρ(n + 1)/ρ(n)). As shown in

Appendix A, taking the diffusive limit of (5) yields a continuum reaction-

diffusion equation with a linear reaction term. While the reaction-diffusion

equation is amenable to exact solution, we shall not pursue this route in

what follows, as we are interested in retaining the discrete spatial structure

of the lattice for the sake of studying some aspects of the arrival statistics

of a mortal walker at particular lattice sites.
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2.2. First-passage probabilities and statistics of site

occupation

Next, we introduce the probability F ∗
n(s|s0) that the evanescent walker

arrives at site s for the first time at step n if she started at site s0 at

step n = 0. The first arrival probabilities in the presence and absence of

evanescence are also simply related to one another,

F ∗
n(s|s0) = ρ(n)Fn(s|s0), (6)

and the initial condition is as for immortal walkers,

F ∗
0 (s|s0) = 0. (7)

The probabilities F ∗ and P ∗ are related to one another in the same way as

in a non-evanescent walk,

P ∗
n(s|s0) =

n∑
j=1

F ∗
j (s|s0)P ∗

j,n−j(s|s), n ≥ 1. (8)

In other words, it still holds that the probability that the evanescent walker

is at site s after n steps can be decomposed into the n mutually exclusive

events that the walker first arrived at site s after j steps and returned to

site s in n− j steps.

Later we will also find it convenient to use the generating functions for

these two probabilities,

P ∗(s|s0; ξ) =
∞∑
n=0

P ∗
n(s|s0)ξn =

∞∑
n=0

Pn(s|s0)ρ(n)ξn, (9)

F ∗(s|s0; ξ) =
∞∑
n=0

F ∗
n(s|s0)ξn =

∞∑
n=0

Fn(s|s0)ρ(n)ξn. (10)

2.2.1. Number of distinct sites visited by a mortal walker

We now introduce two additional quantities, namely, the number of distinct

sites visited in an n-step evanescent walk, S∗
n, and the number of new sites

Δn (sites never visited before) visited in the nth step of an evanescent walk.

We follow the convention that the start of the walk counts as a visit to the

starting site s0, i.e., Δ
∗
0 = 1. The following relations are fairly obvious.

The first relates walks with and without evanescence,

〈Δ∗
n〉 = ρ(n) 〈Δn〉, (11)



January 27, 2014 9:50 BC9104 – First-Passage Phenomena and their Applications 01˙Evanescence.finalmods page 6

6 S. B. Yuste, E. Abad and K. Lindenberg

where the brackets denote averages over realizations of the random walk.

Clearly, 〈Δn〉 is a number between zero and one that can be interpreted

as the probability to visit a new site at the n-th step. We next relate

evanescent walk quantities to one another as follows,

S∗
n =

n∑
j=0

Δ∗
j ↔ 〈S∗

n〉 =
n∑
j=0

〈Δ∗
j 〉, (12)

〈Δ∗
n〉 = 〈S∗

n〉 − 〈S∗
n−1〉. (13)

Let us further introduce the two generating functions associated with these

two quantities, namely,

S∗(ξ) =
∞∑
n=0

〈S∗
n〉ξn (14)

and

Δ∗(ξ) =
∞∑
n=0

〈Δ∗
n〉ξn. (15)

It is useful to establish relations between some of the generating func-

tions. First, multiplying the left equation in Eq. (12) by ξn, summing over

n, and changing the order of summations leads to

S∗(ξ) =
Δ∗(ξ)
1− ξ

. (16)

Next, note that

〈Δ∗
j 〉 = Pr(Δ∗

j = 1) =
∑
s�=s0

F ∗
j (s|s0), j �= 0. (17)

Again multiplying by ξj , summing over j, and reversing the order of sum-

mation leads to

Δ∗(ξ) = 1 +
∑
s�=s0

F ∗(s|s0; ξ). (18)

We now follow with the important observation that Eq. (12) with (11)

allows one to calculate the average number of distinct sites visited by a

mortal walker up to step n in terms of non-evanescent walk properties,

〈S∗
n〉 =

n∑
j=0

ρ(j)〈Δj〉. (19)
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On the other hand, it is well-known from the theory for immortal walkers

that the 〈Δj〉’s fulfil the recursion relation (see e.g. [4], pp. 324-25)

〈Δj〉 = 1−
j∑

k=1

Pk(0)〈Δj−k〉 , with j ≥ 1, 〈Δ0〉 = 1, (20)

where the sojourn probabilities Pk(0) ≡ Pk(s0|s0) are known for many

lattices in arbitrary dimension. The calculation of 〈S∗
n〉 as given in Eq. (19)

can now be carried out for any prescribed form of ρ(n). For large values of

n, this procedure becomes cumbersome and can be bypassed by the direct

use of the generating function S∗(ξ). Indeed, the behavior of this quantity

in the limit ξ → 1− yields the large n behavior of 〈S∗
n〉 via a discrete

Tauberian theorem (see p. 118 in [4]).

The remainder of the present section deals with additional quantities

of interest related to the arrival statistics of a mortal walker which can be

straightforwardly computed in the framework of the generating function

formalism.

2.2.2. Expected number of sites visited at least a given number of

times

Let us define 〈S∗(r)
n 〉 as the average number of sites visited at least r times

in an n-step evanescent walk. Obviously, it is not possible to visit any

given site r ≥ 2 times if no steps have been taken. We may therefore write

〈S∗(r)
0 〉 = δ1r.

Following the lines of the theory for immortal walkers we arrive at the

relation

〈S∗(r)
n 〉 =

n∑
j=0

F
∗(r−1)
j (s0|s0) +

∑
s�=s0

n∑
j=0

F
∗(r)
j (s|s0), (21)

where F
∗(r)
n (s|s0) is the probability that a mortal walker visits site s for the

r-th time when performing her n-th step given that she started the walk

at s0. We adopt the convention followed by Hughesa [see text below and

formula (6.229) in [4]], according to which the start of the walk is regarded

as the zeroth visit to site s0, so that F
∗(r)
0 (s0|s0) = δ0r and F

∗(0)
j (s0|s0) = 0

aThis convention differs from the one followed by Montroll and Weiss [6] in that in the
latter the start of the walk at s0 is counted as the first visit to site s0.
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for j �= 0. The generating function of 〈S∗(r)
n 〉 is defined in the usual way:

S∗(r)(ξ) =
∞∑
n=0

〈S∗(r)
n 〉ξn = δ1r +

∞∑
n=1

〈S∗(r)
n 〉ξn. (22)

Introducing the corresponding generating function

F ∗(r)(s|s0; ξ) =
∞∑
j=0

F
∗(r)
j (s|s0)ξj , (23)

one easily gets from (21) and (22) the following relation,

S∗(r)(ξ) =
1

1− ξ

⎧⎨
⎩F ∗(r−1)(s0|s0; ξ) +

∑
s�=s0

F ∗(r)(s|s0; ξ)
⎫⎬
⎭ . (24)

Knowledge of this quantity also allows one to infer the behavior of the

number of sites V
∗(r)
n visited exactly a given number of times r in an n-step

evanescent walk. Clearly,

〈V ∗(r)
n 〉 = 〈S∗(r)

n 〉 − 〈S∗(r+1)
n 〉, (25)

implying

V ∗(r)(ξ) =
∞∑
n=0

〈V ∗(r)
n 〉ξn = S∗(r)(ξ) − S∗(r+1)(ξ). (26)

2.2.3. Repeated visits to a given lattice site

Let β
∗(r)
n (s|s0) be the probability that site s is visited exactly r times in

the first n steps of the walk. Since
∑n

j=1 F
∗(r)
j (s|s0) is the probability that

site s has been visited at least r times, one clearly has

β∗(r)
n (s|s0) =

n∑
j=1

[
F

∗(r)
j (s|s0)− F

∗(r+1)
j (s|s0)

]
, (27)

and the corresponding generating function reads

β∗(r)(s|s0; ξ) =
∞∑
n=1

β∗(r)
n (s|s0)ξn =

1

1− ξ

[
F ∗(r)(s|s0; ξ)− F ∗(r+1)(s|s0; ξ)

]
.

(28)

An associated quantity is the mean number 〈μ∗
n(s)〉 of visits to site s during

the first n steps of the walk,

〈μ∗
n(s)〉 =

∞∑
r=1

r β∗(r)
n (s|s0), (29)
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and its generating function

μ∗(s; ξ) =
∞∑
n=1

〈μ∗
n(s)〉ξn =

∞∑
n=1

ξn
∞∑
r=1

r β∗(r)
n (s|s0) =

∞∑
r=1

rβ∗(r)(s|s0; ξ).

(30)

3. Results for specific decay laws

3.1. Exponential evanescence

We now proceed to implement our results for the particular case of expo-

nentially evanescent walkers, a case that allows explicit analytic calculation

via the standard generating function formalism. Exponential evanescence

is described by the exponentially decaying density ρ(n) ∝ exp(−λn), where
λ is the decay rate constant. It is immediately evident that only for this

step number dependence is the ratio ρ(n)/ρ(m) a function of the differ-

ence n − m, ρ(n)/ρ(m) = ρ(n − m) ∝ exp[−λ(n − m)]. From Eq. (1)

it then follows that P ∗ does not depend on the starting step m, that is,

P ∗
m,n−m(s|s′) = P ∗

n−m(s|s′). This greatly facilitates the subsequent calcula-

tions. We note also that the model is equivalent to considering an immortal

walker stepping on a lattice where each site is an imperfect trap whose (con-

stant) absorption probability is 1− e−λ. A related model for a finite lattice

has received some attention in Sec. 5 of [7], where the length of a walk of

a random walker moving on an N -site lattice with N − 1 imperfect traps

and a single perfectly absorbing trap was calculated.

3.1.1. Number of distinct sites visited

We start with Eq. (16) together with Eq. (18),

S∗(ξ) =
1

1− ξ

⎡
⎣1 + ∑

s�=s0
F ∗(s|s0; ξ)

⎤
⎦ . (31)

Next we focus on Eq. (8), where we now take advantage of the independence

of P ∗ of the starting moment of the walk, so that

P ∗
n(s|s0) =

n∑
j=1

F ∗
j (s|s0)P ∗

n−j(s|s), n ≥ 1. (32)

This relation is now identical in form to that of a walk on a perfect lattice

with non-evanescent walkers. This means that we can follow the standard
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steps such as presented in chapter 3 of [4] to “turn the relation around”

and arrive at

F ∗(s|s0; ξ) = P ∗(s|s0; ξ)− δss0
P ∗(s0|s0; ξ) . (33)

This expression in Eq. (31) and recognition of the easily proved consequence

of normalization,

∑
s

P ∗(s|s0; ξ) =
∞∑
n=0

ρ(n) ξn ≡ ρ(ξ), (34)

leads to the result

S∗(ξ) =
1

1− ξ

ρ(ξ)

P ∗(s0|s0; ξ) . (35)

In Eq. (34) we have introduced the generating function ρ(ξ) for the decay

function ρ(n).

We can finally simplify our expression further by noting that for expo-

nential evanescence the generating function is just

ρ(ξ) =

∞∑
n=0

e−λnξn =

∞∑
n=0

ξ̂n =
1

1− ξ̂
, (36)

where ξ̂ = e−λξ. Furthermore, for exponential evanescence we also have a

simple relation between the generating functions for return to the starting

site with and without evanescence,

P ∗(s|s0; ξ) =
∞∑
n=0

P ∗
n(s|s0)ξn =

∞∑
n=0

Pn(s|s0)ρ(n)ξn

= P (s|s0; e−λξ) ≡ P (s|s0; ξ̂). (37)

With this notation we can finally write

S∗(ξ) =
1

1− ξ

1

1− ξ̂

1

P (0; ξ̂)
, (38)

and all we need to know in order to calculate this generating function is

the generating function for returning to the site of origin in the absence

of evanescence. We have explicitly recognized independence of the specific

starting site by writing

P ∗(s0|s0; ξ) ≡ P ∗(0; ξ) = P (0; ξ̂). (39)

Equation (38) is the highlight of this subsection. Lattice Green functions

P (0; ξ) are well known for the most common d-dimensional lattices (see for
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instance [4, 8]). The corresponding Green function in Eq. (38) allows one to

obtain a large number of results for S∗
n. For example, identifying the n-th

coefficient of the power series expansion of S∗(ξ) one gets 〈S∗
n〉. Besides,

from Eq. (38) one immediately realizes that, in contrast to the classical

case of immortal walkers, the average number of sites visited by a mortal

Pólya walker with exponential evanescence as n goes to infinity is a finite

quantity given by

〈S∗
∞〉 = 1

1− e−λ
1

P (0; e−λ)
. (40)

For an infinite one-dimensional lattice one has P (0; ξ) = (1− ξ2)−1/2. Em-

ploying this in Eq. (40) yields

〈S∗
∞〉 = [(1 + e−λ)/(1− e−λ)]1/2. (41)

Expanding Eq. (35) in Taylor series, first around ξ̂ = 1 and next around

ξ = 0, one finds

〈S∗
∞〉 − 〈S∗

n〉 =
∞∑
k=0

21/2−k
(
k − 3/2

k

) ∞∑
m=n+1

e−λm
(
m− k − 1/2

m

)
. (42)

Keeping the first term (k = 0), the large n behavior can be shown to be

given by the formula

〈S∗
n〉 ≈ 〈S∗

∞〉 −
√
2
Ie−λ (n+ 1, 1/2)

(1− e−λ)1/2
(43)

where Ix(a, b) stands for the regularized beta function. As seen in Fig. 1,

this formula is in excellent agreement with numerical simulations.

For two-dimensional regular lattices the generic form of the generating

function is P (0; ξ) ∼ A/π ln[B/(1 − ξ)] for ξ → 1− where A and B are

constants which depend on the details of the lattice geometry [4]. From

Eq. (40) we find

〈S∗
∞〉 ∼ π

λA log(B/λ)
, λ→ 0. (44)

In particular, one has e.g. A = 1 and B = 8 for a square lattice and

A =
√
3/2 and B = 12 for a triangular lattice.

It is well-known that the probability R of return to the origin for an

immortal walker in d ≥ 3 is intimately related to the generating function

P (0; ξ) evaluated at ξ = 1, i.e., R = 1−1/P (0; 1). Equation (40) then yields

〈S∗
∞〉 ∼ (1 − R)λ−1 as λ → 0. It is interesting to note that for d ≥ 2 the

value of 〈S∗
∞〉 as λ→ 0 can also be obtained from the main asymptotic term
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Fig. 1. 〈S∗
n〉 vs. n for a 1d lattice and, from top to bottom, λ = 0.001, 0.005, 0.01, 0.02

and 0.05. Solid lines, Eq. (43); broken lines give the values obtained from Eq. (41);
circles, simulation values; squares, exact values obtained by identifying the first 100
coefficients in the ξ power expansion of S∗(ξ).

of 〈Sn〉 by replacing the number of steps n by the average number of steps

taken by the walker before it disappears, i.e, by 1/λ. This hand-waving

approximation does not work for d = 1 as, in this case, 〈S∗
∞〉 ∼ √

2/λ

whereas 〈S1/λ〉 ∼
√
8/(πλ).

3.1.2. Repeated visits to a given lattice site

Taking Eq. (24) as a starting point and following the procedure of Montroll

and Weiss [6], one easily finds that the generating function for the average

number of sites visited at least r times, 〈S∗(r)
n 〉, is

S∗(r)(ξ) =

[
1− 1

P (0; ξ̂)

]r−1

S∗(ξ). (45)

From here one finds formulas [6] for 〈S∗(r)
n 〉 in terms of 〈S∗

n〉 . For

instance, in dimension d = 1 one obtains 〈S∗(2)
n 〉 = 〈S∗

n〉 − 1 − e−λ,
〈S∗(3)
n 〉 = 2〈S∗

n〉 − e−2λ〈S∗
n〉 − 2 − 2e−λ, etc. For the average number

of visits to site s after n steps, 〈μ∗
n(s)〉, one finds the generating func-

tion μ∗(s; ξ) = (1 − ξ)−1P (s|s0; ξ̂) for s �= s0, whereas for the aver-

age number of returns to the origin after n steps, 〈μ∗
n(s0)〉, one finds

μ∗(s0; ξ) = (1 − ξ)−1[P (0; ξ̂)− 1]. (We follow the convention of not count-

ing the initial occupancy of the origin by the walker at step zero as the

first return [4]). We find that the asymptotic average number of revisits to

the origin in any dimension is given by 〈μ∗
∞(s0)〉 = [(1− e−λ)〈S∗

∞〉]−1 − 1,
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while the average number of visits to a site s other than the origin is given

by 〈μ∗
∞(s)〉 = P (s|s0; e−λ), one of the few previously known results for

exponentially evanescent walkers (see subsection 3.2.4 in [4]). The average

number of sites visited r times before the walker dies is in any dimension

given by

〈S∗(r)
∞ 〉 = [(1− e−λ)〈μ∗

∞(s0)〉]r−1 (〈S∗
∞〉)r . (46)

This result has been tested with numerical simulations for different values of

r and of λ, and extremely good agreement between simulations and theory

has been found (cf. Fig. 2).

Fig. 2. 〈S∗∞〉/〈S∗(r)
∞ 〉 vs 1/[1− (1 − e−λ)〈S∗∞〉] for several values of r and λ and three

different lattices. Symbols: numerical simulations for d = 1 (triangles), d = 2 (square

lattice, circles), and d = 3 (cubic lattice, squares) for 105 runs. The values of 〈S∗(r)
∞ 〉 are

obtained from the simulation of 〈S∗(r)
n 〉 with n sufficiently large to observe no change in

at least three significant figures. From left to right: λ = 0.1, 0.05, 0.03, 0.01, 0.05, 0.001,
with from top to bottom r = 2, 3, 4, 5. The straight lines of slope (r − 1) through the
origin are the theoretical predictions.

3.2. Power-law evanescence

In what follows we consider power-law evanescence, i.e., a decay law

of the form ρ(n) = (1 + λn)−β with λ > 0 and β > 0. We di-

rectly use 〈S∗
n〉 =

∑n
m=0 ρ(n)〈Δn〉 and rely on our knowledge of 〈Δn〉

for large and small n for the most common lattices [4, 6]. For example,

〈Δn〉 ∼ (1 − R)λ−βn−β (1 + C n−1/2 + · · · ) for three-dimensional lattices

and large n, where C is a constant. Because ρ(n) ∼ (λn)−β for large

n, one sees immediately that 〈S∗
∞〉 is finite for β > 1. For the case of
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slow evanescence (λ → 0) it is not difficult to find that this finite value

is 〈S∗
∞〉 ∼ (1 − R)/[(β − 1)λ]. However, for β < 1 the result for slow

evanescence is quite different:

〈S∗
n〉 ∼

1−R
1− β

λ−β n1−β (47)

for large n. For β = 0 (no evanescence) one recovers the classical result [4].

For the marginal case β = 1 one obtains

〈S∗
n〉 ∼ (1 −R)λ−1 logn. (48)

This way we discover that the average number of distinct sites visited by

a mortal walker before it dies is infinite for β ≥ 1, whereas this quantity

is finite for β < 1. This is also true for two-dimensional lattices, and for

d-dimensional lattices with d ≥ 4. However, for the one-dimensional lattice

the critical value is β = 1/2.

4. The target problem with evanescent traps

4.1. Discrete-time problem

The quantities we have presented so far deal with mortal walkers in a per-

fect lattice, but there are many situations in which the lattice includes an

imperfection of some sort. In particular, one can consider a collection of

initially randomly distributed, independently moving walkers (“the traps”)

distributed on a lattice with a target placed at a given site (the imper-

fection). The target is instantaneously killed as soon as any of the traps

steps on the target site, and one may wish to know the survival probability

Q∗
T (n) of the target up to a given step n. This is the discrete version of the

so- called target problem, but it differs from the typical setting in that our

traps are now mortal. The target problem is clearly a first-passage problem,

as Q∗
T (n) is the probability that none of the traps has visited the target site

up to time step n. Since we are not interested in the fate of the trap that

kills the target after it has “accomplished its goal”, for practical purposes

we can consider the target site as an absorbing site that terminates the

trap’s trajectory.

Now, it is well known that in the case of immortal traps the survival

probability of the target, QT (n), is related to 〈Sn〉, the average number of

distinct sites visited by a single trap in the corresponding perfect lattice,

i.e., a lattice where the absorbing site is replaced by a regular site. One
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then has the equality

QT (n) = exp [−c0(〈Sn〉 − 1)] . (49)

Here c0 is the (constant) number density of traps, that is, the fraction

of lattice sites initially occupied by traps. This relation is very useful,

since knowledge of 〈Sn〉, a quantity calculated for a perfect lattice, leads

to the determination of QT (n) for a defect lattice and the corresponding

reaction rate [9]. In this case, the target eventually dies with certainty,

since 〈Sn〉 → ∞ as n→ ∞ in all dimensions. Since the link between QT (n)

and 〈Sn〉 is purely geometric, one can thus conjecture that a similar relation

also holds in the case of mortal traps,

Q∗
T (n) = exp [−c0(〈S∗

n〉 − 1)] , (50)

where c0 is the initial value of the number density of traps; this number now

decreases in time. This relation can indeed be rigorously proven. According

to the results displayed in the previous section, for exponential evanescence

Q∗
T (n) goes to a finite value given by Eq. (40) as n → ∞. Hence, the

target has a non-zero chance of survival in all dimensions, as opposed to

the classic case with immortal traps. In contrast, when one has power-law

evanescence, the target may or may not survive depending on the value of

the decay exponent β (see subsection 3.2).

4.2. Continuous space and time

The target problem can also be formulated in continuous rather than dis-

crete space and time. For this purpose, it is convenient to consider the

relation between 〈Sn〉 and the mean volume explored by an immortal trap

in continuous space up to a given time, 〈v〉t (we are here adopting standard

notation). The latter is defined in terms of the Wiener sausage generated

by a spherical walker of radius R in time t. When there is no evanescence,

this relation is well known and in the long time limit it reads as follows: [10]

〈v〉t ∼ B�d〈Sn〉, (51)

where � is the lattice constant in the discrete lattice and d is the dimen-

sionality. The constant prefactor B depends on R, �, dimensionality and

the specific lattice structure. The relation is based on the correspondence

n = 2dDt/�2 when n� 1 and R � � (see appendix B). For mortal walkers,

the relation between the number of distinct sites visited and the explored

volume does not change, i.e., 〈Sn〉 and 〈v〉t are respectively replaced by

〈S∗
n〉 and 〈v∗〉t in Eq. (51). Explicit results in continuous space for the
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survival probability Q∗
T (t) can be found in [9] for both diffusive and subd-

iffusive walkers.

We have recently suggested [5] that trap evanescence may provide an

alternative explanation for the behavior of certain defect-mediated relax-

ation processes, as in the celebrated model of dielectric relaxation first

introduced by Glarum [11] in one dimension and later refined by Bordewijk

to account for many-body effects both in one and three dimensions [12].

In such a setting, the relaxation function of a given configuration of a tar-

get molecule displays stretched exponential behavior (so-called Kohlrausch-

Williams-Watts behavior) when the molecule is subject to a flux of diffusing

defects. The identification of these defects (i.e., carriers of free volume or

occurrences of elementary relaxation events) as the traps is the basis of the

defect diffusion model to explain the observed behavior of the survival prob-

ability QT (t) ∼ exp(−c0〈v〉t) of the molecular configuration, where c0 is the

defect concentration. The observed experimental behavior is lnQT (t) ∼ tθ,

where θ may take a wide range of values. However, only the values θ = 1/2

or θ = 1 are possible for normal diffusive defects because 〈Sn〉 ∝ 〈v〉t ∝ t1/2

for d = 1 and (and then θ = 1/2) and 〈Sn〉 ∝ 〈v〉t ∝ t for d ≥ 2 (and

then θ = 1). The Glarum-Bordewijk model was extended by Shlesinger

and Montroll [13] by assuming that the movement of the defects may be

described by a CTRW model with a power-law waiting time distribution

∼ t−1−γ , 0 < γ < 1, which leads to θ = γ/2 for d = 1 and θ = γ for

d �= 1 [14]. Thus, the stretched exponential relaxation with θ �= 1/2 is

explained by assuming the diffusion of the defects to be anomalous with

anomalous diffusion exponent γ.

Our results suggest that it may not be necessary to invoke anomalous

diffusion to explain stretched exponential behavior, as evanescence of de-

fects may lead to a similar qualitative behavior even when defect diffusion

is normal. Such evanescence events have indeed been observed in exper-

iments [15, 16]. As we have shown, different types of evanescence lead

to different kinds of relaxation; for example, from Eq. (47) we see that

〈v∗〉t ∝ t1−β for β < 1 for d ≥ 3, so that one can get stretched exponential

relaxation with exponent θ = 1−β when the concentration of defects decays

as a power law. Moreover, when β = 1, implying that the concentration c of

defects decays as ρ(t) ∼ 1/t for large t (a decay found in some bimolecular

reactions in condensed media), one gets from (48) that 〈v∗〉t ∝ ln t, which

in turn leads to algebraic relaxation [17–19]. This leads one to hypothesize

that a situation where the interaction with the target is delayed because

of the disappearance of the traps might become experimentally indistin-
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guishable from a scenario where such a delay is caused by the subdiffusive

motion of the traps.

Finally, it is worth recalling that the survival probability of the target in

the target problem can be considered as a first approximation (Rosenstock

approximation) to the survival probability of the target in the so-called

trapping problem, in which the target diffuses and the mortal walkers be-

come immobile traps. Our results can also be applied to this fundamental

problem when the concentration of traps decreases with time. For the con-

tinuous time version of the trapping problem, Den Hollander and Shuler

calculated the survival probability of the target in the regime of validity

of the Rosenstock approximation [20]. It is worth pointing out that their

result for the survival probability is a consequence of the behavior of 〈v∗〉t
in the long time regime.

5. Conclusions and outlook

We have reviewed some recent results for the arrival statistics of mortal

walkers, a problem which has received very little treatment in the literature.

A posteriori, the approach used seems straightforward, yet the underlying

physics is very different from the case of immortal walkers, thus making

this problem a very interesting one. Remarkably enough, the profound

modifications introduced by the evanescence reaction in the behavior of

evanescent walkers can be studied using the generating function formalism

originally developed for immortal walkers. As we have seen, the evanescence

reaction dramatically changes the behavior of a number of characteristic

quantities, e.g., the distinct number of sites visited as a function of time,

or the survival probability of a target surrounded by randomly moving

traps. For instance, the average number of distinct sites visited by an

immortal walker goes to infinity as n→ ∞, while (depending on the speed

of evanescence) it may be finite for an evanescent walker. Consequently,

the survival probability of an immobile target in the presence of mobile

traps is zero if the traps are immortal; however, if the traps evanesce at a

sufficiently rapid rate, the target has a chance of survival.

Our results concerning the target problem also provide an alternative

explanation to the stretched exponential relaxation observed in the defect

diffusion model. In previous work, the possibility of anomalous diffusion

induced by long-tailed waiting time distributions was invoked to explain

the observed behavior, but we have seen that the same behavior is ob-

tained with normally diffusive defects provided that these disappear at a
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sufficiently slow rate. Indeed, there is evidence for a decrease in the con-

centration of defects in time due to different processes such as, for instance,

defect coalescence or annihilation at sinks. However, since subdiffusion and

evanescence do not exclude each other, both of them could play a role in

conjunction and should therefore both be taken into account for quantita-

tive studies.

Finally, the aspects studied here by no means exhaust the family of

problems related to explored territory (or distinct sites visited) by mor-

tal walkers. Studies for the case of biased walks, continuous-time random

walks, walks in confined spaces, and Lévy flights and walks are underway

and will be presented elsewhere.
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Appendix A. Derivation of a continuum reaction-diffusion

equation from the master equation for mortal walkers

We start from the fundamental equation (5) and introduce the probabil-

ity density function or “concentration” c via the definition P ∗
n(s|s0) =

Δx c(sΔx, nΔt|s0Δx), where Δx is the lattice constant. Employing this

definition in (5) we get

c(x, t+Δt|x0) = 1

2
[c(x−Δx, nΔt|x0) + c(x+Δx, t|x0)] ρ(t+Δt)

ρ(t)
, (A.1)

where the notation x = sΔx, x0 = s0Δx and t = nΔt has been used. We

now perform the usual Taylor expansion in terms of Δx and Δt as follows:

c(x, t+Δt|x0) ≈ c(x, t|x0) + Δt ∂tc(x, t), (A.2a)

c(x+Δx, t|x0) ≈ c(x, t|x0) + Δx∂tp(x, t) +
(Δx)2

2
∂2xc(x, t), (A.2b)

ρ(t+Δt) ≈ ρ(t) + Δt ρ̇(t). (A.2c)

Inserting these expressions into (A.1), dividing the resulting equation by

Δt and letting Δt and Δx simultaneously go to zero while keeping the ratio
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(Δx)2/Δt fixed, we get the following continuum reaction-diffusion equation:

∂tc(x, t|x0) = D∂2xc(x, t|x0)− λ̂(t) c(x, t|x0), (A.3)

where the diffusion coefficient is taken to be D ≡ limΔx,Δt→0(Δx)
2/2Δt

and the negative logarithmic derivative λ̂(t) = −ρ̇/ρ is a time-dependent

rate constant. The latter is assumed to be small in absolute value so that

it makes sense to take the diffusion limit (this limit implies that, on av-

erage, a sufficient number of time steps n � 1 must have been taken

before reaction takes place). The particular case of exponential evanes-

cence ρ(t) = ρ0 exp (−λ̂ t) leads to a time-independent rate constant λ̂.

The above derivation can be straightforwardly generalized for non-nearest

neighbor walks or walks in higher dimensions.

Appendix B. Time-discretization of the walker density

The mortal walker performs steps on the d-dimensional lattice at regular

time intervals Δt, hence the stepping times are tn = nΔt. In the case of

an exponential evanescence process, its density decay is given by

ρ(t) = e−λ̂t → ρ(tn) ≡ ρ(n) = ρ(0)e−λ̂tn , (B.1)

i.e.,

ρ(n) = ρ(0) e−λn, (B.2)

where we have introduced λ ≡ λ̂Δt.

One can proceed in a similar way with a power law decay. One has

ρ(t) =
ρ0

(1 + λ̂t)β
→ ρ(n) =

ρ(0)

(1 + λn)β
(B.3)

ρ(n) =
ρ(0)

(1 + nλ̂Δt)β
. (B.4)

Alternatively, the relation between λ and λ̂ can be expressed in terms of

the diffusion coefficient

D =
1

2d

�2

Δt
, (B.5)

where �2 is the variance of the step length distribution. Using the resulting

expression for Δt, one gets

λ = λ̂Δt = λ̂
�2

2dD
. (B.6)
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Conversely, to obtain the continuum limit one must perform the following

replacements

tn → t and n =
tn
Δt

→ t
2dD

�2
. (B.7)

We make use of this correspondence in Sec. 4.2.
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