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The structural properties of fluids whose molecules interact via potentials with a hard core plus
two piece-wise constant sections of different widths and heights are presented. These follow from
the more general development previously introduced for potentials with a hard core plus n piece-
wise constant sections [A. Santos, S. B. Yuste, and M. Lopez de Haro, Condens. Matter Phys. 15,
23602 (2012)] in which use was made of a semi-analytic rational-function approximation method.
The results of illustrative cases comprising eight different combinations of wells and shoulders are
compared both with simulation data and with those that follow from the numerical solution of the
Percus–Yevick and hypernetted-chain integral equations. It is found that the rational-function ap-
proximation generally predicts a more accurate radial distribution function than the Percus–Yevick
theory and is comparable or even superior to the hypernetted-chain theory. This superiority over both
integral equation theories is lost, however, at high densities, especially as the widths of the wells
and/or the barriers increase. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818601]

I. INTRODUCTION

Due to their relative simplicity, while having at the same
time the ability to adequately account for diverse physical fea-
tures of real fluids, discrete potentials of the form

ϕ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∞, r < σ,

ε1, σ < r < λ1σ,

ε2, λ1σ < r < λ2σ,
...

...
εn, λn−1σ < r < λnσ,

0, r > λnσ,

(1)

have received some attention in the recent literature.1–26 They
comprise a hard core of diameter σ and n steps of “heights” εj

and widths (λj − λj−1)σ , with λ0 = 1, so that λnσ denotes the
total range of ϕ(r). The sign of εj determines whether the jth
step is either a “shoulder” (εj > 0) or a “well” (εj < 0). The
interaction potential at r = λjσ (j = 1, 2, . . . , n) is repulsive if
εj > εj+1 and attractive if εj < εj+1 (with the convention εn+1

= 0). Particular cases of these discrete potentials when n = 1
are the popular square-well and square-shoulder potentials.

The phase diagram and the thermodynamic properties
of discrete-potential fluids have been thoroughly examined
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and are relatively well understood.4–16 On the other hand, al-
though many studies of their structural properties either theo-
retical or from simulation have been also performed,16–26 the
variety of cases that may present justifies further work on this
subject.

In a previous paper,24 following a semi-analytic method-
ology referred to generically as the rational-function ap-
proximation (RFA) that, although approximate, has proven
successful for many other systems,27 we derived the gen-
eral formulae for the structural properties of fluids whose
molecules interact via discrete potentials with a hard core plus
an arbitrary number of piece-wise constant sections of dif-
ferent widths and heights. The theoretical scheme was illus-
trated by comparing it with available computer simulations
results.23

The aim of this paper is to carry out a more systematic
study of the structural properties of fluids characterized by a
discrete potential with a hard core plus different combinations
of a repulsive shoulder and an attractive well. This will be
done by considering the results of Ref. 24 in the case of n
= 2 for various values of the parameters and subsequently
performing a comparison both with simulation results as well
as with those that follow from the numerical solution of the
Ornstein–Zernike (OZ) equation with both the Percus–Yevick
(PY) and hypernetted-chain (HNC) closures. As will be seen,
the performance of the RFA approach, despite its simplicity,
is quite satisfactory.

The paper is organized as follows. In order to make it
self-contained, in Sec. II we introduce the systems to be stud-
ied and sketch the derivation of the results of Ref. 24 for the
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structural properties of such systems when n = 2. We also
include here some details of the simulation and of the numer-
ical solution of the OZ equation with the PY and HNC clo-
sures. This is followed in Sec. III by the comparison between
the outcomes of the three different approaches for the radial
distribution function (RDF). The paper is closed in Sec. IV
with further discussion and some concluding remarks.

II. SYSTEM AND STRUCTURAL PROPERTIES

We consider a fluid of number density ρ and absolute
temperature T in which the intermolecular pair potential is
of the form of Eq. (1) with n = 2. We will take the hard-core
diameter σ as the length unit so all distances will be measured
in units of σ . The two main quantities usually employed to
characterize the structure of fluids in equilibrium are the static
structure factor S(q) and the RDF g(r) which are related by

S(q) = 1 + ρ

∫
dr e−iq·r[g(r) − 1]

= 1 − 2πρ
G(s) − G(−s)

s

∣∣∣∣
s=iq

, (2)

where

G(s) =
∫ ∞

0
dr e−rsrg(r) (3)

is the Laplace transform of rg(r).

A. The rational-function approximation method

We define an auxiliary function F(s) directly related to
G(s) through

G(s) = s
F (s)e−s

1 + 12ηF (s)e−s

=
∞∑

m=1

(−12η)m−1s[F (s)]me−ms. (4)

Here, η = (π /6)ρσ 3 is the packing fraction. Laplace inversion
of Eq. (4) provides a useful representation of g(r), namely,

g(r) = r−1
∞∑

m=1

(−12η)m−1fm(r − m)	(r − m), (5)

where fm(r) is the inverse Laplace transform of s[F(s)]m and
	(r) is the Heaviside step function.

The contact value g(1+) of the RDF is related to F(s)
through g(1+) = f1(0) = lims→∞s2F (s) and it has to be fi-
nite. Further, as seen from Eq. (2), the behavior of G(s) for
small s determines the value of S(0), which must also be
finite. Hence, F(s) must satisfy two conditions24

F (s) ∼ s−2, s → ∞, (6)

F (s) = − 1

12η

(
1 + s + 1

2
s2 + 1 + 2η

12η
s3 + 2 + η

24η
s4

)

+O(s5). (7)

Equations (4)–(7) are exact and valid for any interaction
potential with a hard core at r = σ = 1. Now we particularize

to the potential (1) with n = 2. To reflect the discontinuities
of g(r) at the points r = λ1 and r = λ2, where ϕ(r) is discon-
tinuous, we decompose F(s) as

F (s) = R0(s) + R1(s)e−(λ1−1)s + R2(s)e−(λ2−1)s . (8)

As a consequence,

f1(r) = ξ0(r)	(r) + ξ1(r − λ1 + 1)	(r − λ1 + 1)

+ ξ2(r − λ2 + 1)	(r − λ2 + 1), (9)

where ξ j(r) denotes the inverse Laplace transform of sRj(s).
If, as will be done here, one assumes that λ2 ≤ 2, insertion of
Eq. (9) into Eq. (5) gives the RDF in the shell 1 < r < 2. In
particular,

g(λ−
1 ) = λ−1

1 ξ0(λ1 − 1), (10)

g(λ+
1 ) = λ−1

1 [ξ0(λ1 − 1) + ξ1(0)] , (11)

g(λ−
2 ) = λ−1

2 [ξ0(λ2 − 1) + ξ1(λ2 − λ1)] , (12)

g(λ+
2 ) = λ−1

2 [ξ0(λ2 − 1) + ξ1(λ2 − λ1) + ξ2(0)] . (13)

Now we assume the following rational-function approx-
imation for Rj(s):

Rj (s) = − 1

12η

Aj + Bjs

1 + S1s + S2s2 + S3s3
, j = 0, 1, 2.

(14)
Note that Eq. (14) for R0(s) guarantees the fulfillment of
the physical condition (6). Yet, the approximation (14) con-
tains nine parameters to be determined. The exact expansion
(7) imposes five constraints among those nine parameters,
namely,24

1 = A0 + A1 + A2, (15)

S1 = −1 + B0 − C(1), (16)

S2 = 1

2
− B0 + C(1) + 1

2
C(2), (17)

S3 = −1 + 2η

12η
+ 1

2
B0 − 1

2
C(1) − 1

2
C(2) − 1

6
C(3), (18)

B0 = C(1) + η/2

1 + 2η
(6C(2) + 4C(3) + C(4)) + 1 + η/2

1 + 2η
.

(19)
Here,

C(k) ≡
2∑

j=1

[
Aj (λj − 1)k − kBj (λj − 1)k−1

]
. (20)

Next, since the cavity function y(r) ≡ g(r)eβϕ(r), where
β ≡ 1/kBT (kB being the Boltzmann constant), must be con-
tinuous at r = λ1 and r = λ2, one obtains from Eqs. (10)–(13)
the two conditions24

B1

S3
= [

eβ(ε1−ε2) − 1
] 3∑

ν=1

sνe
(λ1−1)sν

S1 + 2S2sν + 3S3s2
ν

× (A0 + B0sν), (21)
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B2

S3
= (

eβε2 − 1
) 3∑

ν=1

sνe
(λ2−1)sν

S1 + 2S2sν + 3S3s2
ν

× [
A0 + B0sν + (A1 + B1sν)e−(λ1−1)sν

]
, (22)

where sν (ν = 1, 2, 3) are the three roots of the cubic equation

1 + S1sν + S2s
2
ν + S3s

3
ν = 0. (23)

Equations (15)–(19), (21), and (22) still leave two param-
eters undetermined. A simplifying assumption is that the co-
efficients Aj (j = 0, 1, 2) may be fixed at their zero-density
values, namely,

A0 = e−βε1 , A1 = e−βε2 − e−βε1 , A2 = 1 − e−βε2 .

(24)
This closes the problem of determining the nine parameters
in terms of η, λ1, λ2, βε1, and βε2. In fact, Eqs. (16)–(19)
allow us to express S1, S2, S3, and B0 as linear combinations
of B1 and B2, so that in the end one only has to solve (nu-
merically) the two coupled transcendental equations (21) and
(22). Since the dependence of G(s) on s is explicit, we are now
in a position to compute the structural quantities of our sys-
tems. The structure factor S(q) can be directly obtained from
Eq. (2), while the RDF g(r) can be obtained from Eq. (5)
or, more directly, by numerical inverse Laplace transform of
G(s).28

It is worth remarking that, while the choice (24) guar-
antees that the RFA is exact in the limit ρ → 0, it differs
from the exact result to first order in density, as discussed in
Ref. 29 for the square-well potential.

B. The PY and HNC approximations

In the usual integral equation approach to the theory of
liquids, the OZ equation, which may be formally considered
as a definition of the direct correlation function c(r), provides
a link between this direct correlation function and the total
correlation function h(r) ≡ g(r) − 1, the latter being a measure
of the “influence,” either direct or through a third molecule, of
two molecules separated a distance r away. The OZ relation
reads

h(r) = c(r) + ρ

∫
dr′c(r ′)h(|r − r′|)

= c(r) + 2πρ

r

∫ ∞

0
dr ′ r ′c(r ′)

∫ r+r ′

|r−r ′ |
dr ′′ r ′′h(r ′′),

(25)

where in the second equality we have particularized to three-
dimensional systems and used bipolar coordinates.30, 31

Since both h(r) and c(r) are unknown, in order to close
the description one requires an additional equation, known as
the closure relation. A closure can be expressed as a local re-
lationship between the direct correlation function, the Mayer
function f(r) ≡ e−βϕ(r) − 1, and the cavity function y(r), i.e.,

c(r) = C (f (r), y(r)) . (26)

Equivalently, Eq. (26) can be inverted to obtain a local rela-
tionship between the cavity function and the indirect correla-

tion function γ (r) ≡ h(r) − c(r), i.e.,

y(r) = Y (γ (r)) . (27)

Insertion of the closure (26) and (27) into the OZ relation (25)
yields a closed nonlinear integral equation for the cavity func-
tion

y(r) = Y
(

2πρ

r

∫ ∞

0
dr ′ r ′C(f (r ′), y(r ′))

×
∫ r+r ′

|r−r ′ |
dr ′′ r ′′[e−βϕ(r ′′)y(r ′′) − 1]

)
. (28)

As mentioned in Sec. I, we will consider here both the
PY and HNC closures given by

c(r) = h(r) − y(r) + 1 (PY), (29)

c(r) = h(r) − ln y(r) (HNC). (30)

In terms of the functions C(f, y) and Y(γ ), the PY and HNC
closure relations are

C(f, y) = fy, Y(γ ) = 1 + γ (PY), (31)

C(f, y) = (f + 1)y − 1 − ln y, Y(γ ) = eγ (HNC).
(32)

Note that the PY closure can be obtained from the HNC one
by formally linearizing C(f, y) and Y(y) with respect to γ .
In contrast to the RFA, the PY and HNC theories provide the
exact RDF to first order in density.

We have solved Eq. (28) numerically in the PY and HNC
cases. First, a discretization scheme y(r) → {ri, yi} with
ri = i�r (i = 1, 2, . . . ,N ) and a cut-off distance rN = N�r

are introduced, so that the integral equation (28) is replaced
by a set of N nonlinear coupled equations

yi = Y

⎛
⎝2πρ

ri

(�r)2
N∑

j=1

rjC(fj , yj )

×
min(i+j,N )∑
k=|i−j |+1

rk

(
e−βϕkyk − 1

)⎞⎠ , i = 1, 2, . . . ,N .

(33)

Next, a coarse-grained solution of Eq. (33) is obtained by
an iteration method. Insertion of the nth order input {y(n,in)

i }
into the right-hand side of Eq. (33) gives the nth order output
{y(n,out)

i } and the subsequent input is constructed as y
(n+1,in)
i

= αy
(n,out)
i + (1 − α)y(n,in)

i , with a convenient choice of the
mixing parameter α. The iterations are continued until the
convergence criterion

max
i

|y(n,out)
i − y

(n,in)
i | < 10−3 (34)

is reached or the number of iterations exceeds 100. Once the
coarse-grained solution has been obtained, a fine-grained so-
lution of the set of N equations (33) is determined with the
help of a computational software program, using the coarse-
grained solution as a seed.32 In the numerical solutions pre-
sented in Sec. III, we have generally used �r = 0.01σ and
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N = 400. As for the mixing parameter α, it was chosen by
trial and error, being necessary to decrease it as the density
increases.33

C. Technical simulation details

The simulation data were computed with a Replica Ex-
change Monte Carlo (REMC) method. The REMC method is
also known as Parallel Tempering and was derived to achieve
good sampling of systems that present a free energy land-
scape with many local minima.34, 35 The REMC method con-
sists of simulating M replicas (copies) of the system at differ-
ent thermodynamic conditions; the attempted MC moves are
accepted or rejected according to the traditional Metropolis
algorithm. Due to these exchanges, a particular replica trav-
els through many temperatures, allowing it to overcome any
barriers to free energy.

The method samples an expanded canonical ensemble,
taking the temperature as the expansion variable. The exis-
tence of this expanded ensemble justifies the introduction of
movements of exchange between replicas. The expanded en-
semble is defined as

Qexpanded =
M∏
i=1

Qi, (35)

where Qi is the partition function of the (NVT) canonical
ensemble of the system (subensemble i) at temperature T,
volume V , and number of particles N. To satisfy the detailed
balance condition, the probability of acceptance of the ex-
change is given by

Pacc = min(1, exp[−(βj − βi)(Uj − Ui)]), (36)

where β j − β i is the difference between the reciprocal tem-
peratures and Uj − Ui is the difference between the potential
energies of the subensembles i and j.

A cubic simulation box of dimensions Lx = Ly = Lz

= 10σ was used and periodic boundary conditions were set
in the three directions. Verlet lists36 were implemented to
improve performance. We have carried out computer exper-
iments for different systems, corresponding to different val-
ues of the parameters of the potentials that will be speci-
fied later. These systems are further characterized by their
reduced density ρ∗ = ρσ 3 and their reduced temperature
T∗ = kBT/ε, where ε = max(|ε1|, |ε2|). The number of repli-
cas M = 12 was chosen to match the number of different
temperatures in which we want to examine the systems. The
highest temperature was set at T∗ = 2, while the other tem-
peratures were established following a decreasing geometric
progression, namely, T ∗

n = 2 × 0.959n−1, n = 1, . . . , 12. The
initial configuration of each system, consisting of a collection
of N = 500 particles randomly arranged in the simulation box
and thus setting the reduced number density of our systems as
ρ∗ = 0.5, was equilibrated by conducting 107 Monte Carlo
simulation steps. The RDF was calculated over additional
4 × 107 configurations.

III. RESULTS

For convenience and in order to try to be systematic,
we now first fix the values of λ1 and λ2 to be λ1 = 1.25
and λ2 = 1.5. As for the values of ε1 and ε2, we have con-
sidered eight representative cases. Since, as already stated,
ε = max(|ε1|, |ε2|), at least one of the |εi| must be equal to
ε. The other energy level has been chosen as 0, ±ε, or ± 1

2ε

with the following conditions. First, the cases having ε1 = ε2

have not been considered since they correspond to having just
one step. The same can be said about the cases with ε2 = 0.
Finally, if ε1 and ε2 have opposite signs, then we have taken
|ε1| = |ε2| = ε. The potentials of the different cases (from A
to H) are represented graphically in Fig. 1. We observe that
system A corresponds to a purely repulsive potential. In the
cases B–D, the potential is repulsive at r/σ = λ2 and attrac-
tive at r/σ = λ1, with increasing attraction when going from
B to D. System E presents a purely attractive tail beyond the
hard core. As for systems F–H, the potential is attractive at
r/σ = λ2 and repulsive at r/σ = λ1, with increasing repulsion
when going from F to H. The cases A and F–H are examples
of core-softened potentials.

As an illustration of the results of our calculations, and
in accordance with the simulation experiments mentioned
above, we fix the reduced density to be ρ∗ = 0.5 and consider
the lowest reduced temperature T∗ = 1.26193 (correspond-
ing to n = M = 12) in all cases, although, as said before,

(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIG. 1. Diagrams of the surveyed potentials, labeled from A to H.
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FIG. 2. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case A (λ1 = 1.25, λ2 = 1.5, ε1 = ε,
ε2 = ε/2) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.

we obtained simulation data for the whole temperature range
1.26193 ≤ T∗ ≤ 2. The results for the RDF are displayed in
Figs. 2–9 for cases A–H, respectively. In order to assess the
influence of ε1 and ε2 on g(r) at fixed (reduced) temperature
and density, common horizontal and vertical scales have been
chosen in Figs. 2–9. In the case of the purely repulsive system
A, there exists a local accumulation of particles at the external
edge (λ+

i ) of each repulsive step, followed by a local depletion
at the internal edge (λ−

i ). For systems B–D, where the poten-
tial is repulsive at r/σ = λ2 but attractive at r/σ = λ1, the
population of particles (as seen by a reference particle at the
origin) is depleted in the region λ1 < r/σ < λ2 and increases

FIG. 3. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case B (λ1 = 1.25, λ2 = 1.5, ε1 = ε/2,
ε2 = ε) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.

FIG. 4. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case C (λ1 = 1.25, λ2 = 1.5, ε1 = 0,
ε2 = ε) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.

when going from λ+
1 to λ−

1 , as expected. These effects are en-
hanced as the depth of the inner well increases. In the case of
system E, the potential outside the hard core is purely attrac-
tive, what is reflected in an increase of g(r) from the external
edge λ+

i to the internal edge λ−
i . Finally, systems F–H are the

counterparts of systems B–D. Now the attraction at r/σ = λ2

produces an increase of particles in the region λ1 < r/σ < λ2,
this effect being enhanced as the inner barrier becomes more
repulsive.

Let us comment now on the theoretical predictions. It fol-
lows that, as already pointed out in Ref. 24, the RFA approach
certainly outperforms the PY approximation in all the cases.

FIG. 5. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case D (λ1 = 1.25, λ2 = 1.5, ε1 = −ε,
ε2 = ε) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.
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FIG. 6. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case E (λ1 = 1.25, λ2 = 1.5, ε1 = −ε,
ε2 = −ε/2) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.

This is noteworthy because, while the RFA reduces to the PY
solution for hard spheres,24 it is much simpler than the PY in-
tegral equation theory for two-step potentials. As for the HNC
integral equation theory, it presents the best agreement in the
region 1 < r/σ < λ1 in the cases A–C, i.e., when ε1 ≥ 0 and
ε2 > 0. Even in those cases, however, the RFA is as accu-
rate as or more accurate than the HNC theory in the region
λ1 < r/σ < λ2. For larger distances, the RFA and HNC pre-
dictions are almost indistinguishable. In the rest of the cases
(D–H), the PY and HNC curves are generally very similar, the
best global performance being obtained with the RFA.

FIG. 7. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case F (λ1 = 1.25, λ2 = 1.5, ε1 = −ε/2,
ε2 = −ε) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.

FIG. 8. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case G (λ1 = 1.25, λ2 = 1.5, ε1 = 0,
ε2 = −ε) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.

An additional advantage of the RFA over the numerical
solutions of integral equations is that, since the s-dependence
of the Laplace transform G(s) is fully explicit, the correlation
length of the system can be straightforwardly obtained. This
relies upon the search for the pole (or conjugate pair of poles)
s = −κ ± iω of G(s) − s−2 with the negative real part −κ

closest to the origin. As a consequence, the asymptotic be-
havior of h(r) is given by

h(r) ∼ e−κr

r
cos(ωr + φ), (37)

FIG. 9. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case H (λ1 = 1.25, λ2 = 1.5, ε1 = ε,
ε2 = −ε) at ρ∗ = 0.5 and T∗ = 1.26193 with simulation results. Solid line:
RFA; dashed line: HNC; dotted-dashed line: PY; symbols: REMC data. The
inset shows the interaction potential and the temperature value.
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where κ is the inverse correlation length and 2π /ω is the
wavelength of the oscillations. At the common thermody-
namic state ρ∗ = 0.5 and T∗ = 1.26193, we have found (κ ,
ω) = (1.503, 5.128), (1.827, 4.424), (1.704, 7.116), (1.378,
6.990), (1.327, 6.225), (1.059, 5.856), (0.955, 5.738), and
(0.754, 5.632) for systems A–H, respectively. Therefore, the
smallest correlation length κ−1 
 0.55 corresponds to case B
and it monotonically increases from system B to system H,
where in the latter case one has κ−1 
 1.33. Case A, with κ−1


 0.67, lies in between cases C and D. The wavelength has
a less systematic behavior, ranging from 2π /ω 
 0.88 (case
C) to 2π /ω 
 1.42 (case B). Interestingly enough, although
Eq. (37) applies to the asymptotic regime r → ∞ only, the
increase of the correlation length when going from B to H
agrees with what is observed in Figs. 3–9, where the distance
beyond which |g(r) − 1| ≤ 0.03 turns out to be 2.1, 2.45, 2.49,
2.54, 2.76, 3.01, 3.08, and 3.71 for systems A–H, respectively.

As a final illustration, we present in Figs. 10 and 11 a
comparison of the results we have obtained with the different
theoretical approaches with those of MC simulations22 of two
systems with an intermolecular potential of the type of case
D (square well + square barrier), but this time having the fol-
lowing values of the parameters: λ1 = 1.5, λ2 = 2, ε1 = −ε,
ε2 = ε/5 (system D′) and λ1 = 1.5, λ2 = 2, ε1 = −ε,
ε2 = 2ε/5 (system D′′), respectively. For those systems, we
have considered a fixed temperature T∗ = 2 and the three re-
duced densities ρ∗ = 0.2, ρ∗ = 0.4, and ρ∗ = 0.75.37 At the
lowest density (ρ∗ = 0.2), the three theoretical approaches
provide excellent results, with a slight superiority of PY and
HNC. This phenomenon is a reflection of the fact that, as said
above, the PY and HNC approximations are exact to order ρ

while the RFA is not. At the intermediate density (ρ∗ = 0.4),
however, the RFA beats the PY and HNC results (which are
practically indistinguishable from each other). Finally, at the
highest density (ρ∗ = 0.75), the RFA becomes clearly worse
than the PY and HNC predictions (which are again hardly
distinguishable), especially in the case of the higher barrier
(case D′′). The shortcomings of the RFA as the density and the
widths of the potential sections increase have been reported
for the square-well case in Ref. 29.

IV. CONCLUDING REMARKS

In this paper, we have presented a rather systematic study
of the RDF of fluids whose molecules interact via a potential
with a hard core plus two piece-wise constant sections of the
same width and different heights (either wells or shoulders),
which include the RFA approach, our REMC numerical ex-
periments, and the numerical solution of the PY and HNC
integral equations. We have considered eight representative
classes of systems (see Fig. 1) which cover all the possible
topologies of hard core plus two-step potentials. They include
a purely repulsive potential (system A), potentials with an
outer repulsive barrier and an inner attractive well (systems
B–D), a purely attractive part outside the hard core (system
E), and potentials with an outer attractive well and an inner
repulsive barrier (systems F–H). Four of these systems (A and
F–H) belong to the class of core-softened potentials.

FIG. 10. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case D′ (λ1 = 1.5, λ2 = 2, ε1 = −ε,
ε2 = ε/5) at T∗ = 2 and (a) ρ∗ = 0.2, (b) ρ∗ = 0.4, and (c) ρ∗ = 0.75 with
simulation results. Solid line: RFA; dashed line: HNC; dotted-dashed line:
PY; symbols: MC data.22 The inset shows the interaction potential and the
temperature value.

As Figs. 2–9 show, it is fair to state that for the fixed
number density ρ∗ = 0.5 the agreement between the results
of our RFA formulation and those of the REMC experiments
is very satisfactory in all instances. This is specially reward-
ing in view of the fact that the reduced temperature we have
chosen to illustrate our findings (T∗ = 1.26193) is rather low
and represents a stringent test of our theory.
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FIG. 11. Comparison of the different theoretical approaches to compute the
RDF of the system corresponding to case D′′ (λ1 = 1.5, λ2 = 2, ε1 = −ε,
ε2 = 2ε/5) at T∗ = 2 and (a) ρ∗ = 0.2, (b) ρ∗ = 0.4, and (c) ρ∗ = 0.75 with
simulation results. Solid line: RFA; dashed line: HNC; dotted-dashed line:
PY; symbols: MC data.22 The inset shows the interaction potential and the
temperature value.

A specially relevant point is the capability of the RFA to
provide the correlation length from the pole of the Laplace
transform G(s) with the negative real part closest to the ori-
gin. The fact that, at the given state point, the potential H has
the largest correlation length (larger than 1.3) is consistent
with the results of Ref. 38 for a similar (continuous) poten-
tial, where the (anomalous) thermodynamic behavior of the

system was shown to be determined by the contribution to the
RDF coming from up to the fourth coordination shell.

We have complemented our study with the comparison
of the results we get and the MC data of Ref. 22 for two cases
(labeled here as D′ and D′′) in which the potential is of the
form of the one of case D but with a wider width, a lower
outer barrier, and a fixed reduced temperature T∗ = 2. Again,
as observed from Figs. 10 and 11, the performance of the RFA
approach is rather satisfactory, except at the highest density ρ∗

= 0.75. The tendency of the RFA to fail at high densities and
wide potentials widths was already documented in the case of
the pure square-well potential (with ε2 = 0).29

Concerning the comparison between our present ap-
proach and the usual integral equation approach in the theory
of liquids, we have seen that the RFA is rather simple, requires
much less numerical labor (in these cases only the solution
of two coupled transcendental equations), captures correctly
all the oscillations of the RDF, and is reasonably accurate. In
fact, it is always superior to the PY equation [except for the
cases of Figs. 10(c) and 11(c)] and in most of the instances it
is of comparable accuracy or better than the HNC equation.
Hence, this constitutes further evidence of the usefulness of
the RFA methodology that we have used for the computation
of the structural properties of different hard-core fluids.27

All the calculations that we have presented have been
made at temperatures higher than those of the possible
vapor-liquid and liquid-liquid phase transitions in these
systems.6–8, 19 An interesting problem is the description of
the structure of such systems in the vicinity of these transi-
tions. The availability of the analytical results for the struc-
tural properties in Laplace and Fourier spaces as obtained
from the RFA approach allows one to tackle this problem us-
ing the same procedure that was applied in the case of the
critical point of the square-well fluid.39 Also of interest in
connection not only with these phase transitions but in a more
general perspective is the study of the thermodynamic proper-
ties of the systems, in particular the equation of state, through
the virial, energy, and compressibility routes. Again the RFA
approach permits such a determination. Work along these two
lines is in progress and will be reported elsewhere.

As a final point, we want to stress that the results of this
paper, together with the earlier ones,24 encourage us to con-
sider the problem in which the number of steps in the potential
is much greater, leading in the limit n → ∞ to the very inter-
esting case of the structure in a fluid whose molecules interact
via, for instance, a Jagla potential. We plan to undertake such
a task in the future.
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