Fractional Calculus and Morphogen Gradient Formation
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Abstract. Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described
by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subd-
iffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order)
death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen
gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is
constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the
morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to
the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the
morphogens diffuse normally.
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INTRODUCTION

Processes in which the mean square displacement (x?) of a randomly moving particle displays the long time-behavior
(x?) ~ Kyt7, where 7 is the diffusion exponent and Ky is the diffusion coefficient, are surprisingly frequent in Nature
and, in particular, in biological systems. When y = 1, we speak of normal diffusion, if 0 < y < 1, one has subdiffusion,
while for ¥ > 1 there is superdiffusion. A well-known model of subdiffusion is the so-called Continuous Time Random
Walk (CTRW) model where particles move with jumps of finite variance but with time intervals between jumps that
follow a long-tailed (or power-law) waiting time distribution. Interestingly, this microscopic model gives rise to a
subdiffusion equation in terms of fractional derivatives [1]. This fractional subdiffusion equation can be used to tackle
some reaction-diffusion problems, some of them of biological interest, such as the time of localization of a target
protein by a sea of subdiffusively moving ligands in the intracellular environment [2, 3].

In this communication, we shall focus on a reaction-subdiffusion model of morphogen gradient formation. This
process is very important in developmental biology because the location, differentiation and fate of many embryonic
cells is governed by the spatial distribution of special signaling molecules called morphogens [4, 5, 6]. Standard models
of morphogen gradient formation assume that a specific part of the embryo secrets morphogens at a constant rate. These
morphogens then undergo degradation as they disperse through the tissue and a concentration gradient develops.
Different target genes in the embryonic cells are activated above different morphogen concentration thresholds,
implying that the cell response to the local environment will depend on how large the concentration is. Thanks to
this differential response, cells are able to interpret the morphogen gradient and translate it into specific “code” for
their further development via the expression of the relevant genes.

A traditional model of morphogen gradient formation is based on normal diffusion equations with a linear degrada-
tion term. Here, we aim to study how the anomalous subdiffusive character of the morphogenes affects the transient
morphogen gradients and the stationary gradient (if the latter exists).

The paper is organized as follows. We first introduce the classical and fractional reaction diffusion model used
for describing the development of morphogen gradients. Then we study two important cases: in the first one, the
degradation rate (or reactivity) of the morphogens is constant, whereas in the second case the reactivity decays
exponentially with the distance to the morphogen source. In both cases we compare our analytical results with
numerical simulation and find an excellent agreement. We close with some conclusions and remarks.
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THE REACTION-DIFFUSION MODEL WITH LINEAR DEGRADATION

The classical reaction-diffusion equation traditionally used to describe the development of morphogen gradients is

dc(x,1) d%c(x,1)
=K
ot ox?

where c¢(x,t) is the concentration of the morphogens, K; is the normal diffusion coefficient and k(x,) is the linear
degradation term. Despite its simplicity, Eq. (1) together with the boundary condition of a constant flux jy of

morphogens injected at the origin describe surprisingly well the form of morphogen profiles in real systems [6].
The reaction-subdiffusion equation to be considered here can be rigorously derived from a microscopic model in
which the particles evanesce at a given rate k(x,7) while performing a CTRW. The probability distribution y/(z) for the
waiting time between consecutive jumps is assumed to go as =17 for long times. In this case [7, 8, 9, 10, 11, 12, 13]
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with 09,177 being the fractional derivative operator defined by
L Au T3} = 027 M(0), (3)

and where () is the Laplace transform of the function y(r) and .%,~!, {-} denotes the inverse Laplace transform. The
operator o@tlfy is very close to the Riemann-Liouville fractional derivative

1 i/tdt/(f(xvt/)
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)
as 0%, " and oD, " lead to the same result when applied to functions f(r) where lim,_ Jodt'(t =)L) =0
The solution of Eq. (2) with a space dependent rate k(x) and constant flux jy at the origin can conveniently be
written in Laplace space in terms of the Green function or propagator G(x,) of the problem as é(x,u) = joG(x,u)/u.
It is convenient to introduce a new function v(x,¢) defined via the transformation ¥(x,u) = [u+ k(x)]'"YG(x,u). Tt
satisfies the ordinary differential equation
82
[u+k(x)]"5(x,u) — 6(x) = Kyﬁﬁ(x,u). )

In what follows, Eq. (5) is used to investigate the effect of a number of representative reactivity profiles.

SOME EXAMPLES
For the fundamental case of constant reactivity, k(x,t) = k, the solution of Eq. (5) leads to
k)21
el = 2 (”:)f exp [~ (u+ K72/ /K. ©
so that
kY
os(x) = 0 exp [—|x|kY/2 /7 /Ky} %)

2 ﬁ
is the stationary solution. Therefore, we see that steady state profiles exist even in the presence of anomalous diffusion.
This is in contrast to the result found by Hornung et al. [14], albeit for a different anomalous diffusion model. In Fig.
1 we compare these theoretical results with numerical simulations. The agreement is excellent.

An interesting property of the morphogens gradients is their robustness with respect to changes in the incoming flux
Jjo. Proceeding as usual, we characterize the robustness of the stationary profile quantifying its shift when the secreted
flux changes. More specifically, let ¢ be the concentration at the position xy:

Ky K7L jo
=/ —“In| ———=— 8
X ky n <2C>< ‘/K'y ( )
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FIGURE 1. Concentration profiles for jo =1, y = 0.5, Ky = 1/v/9x, k(x) = 1/1000 and increasing times. Symbols: CTRW
simulation results; lines: theoretical predictions [c.f., Eq. (6)]. The thick line corresponds to the stationary profile given by Eq. (7).
There are no free parameters.

Then, the robustness of the profile with respect to changes in j, is defined by
0 > -
Hjy =a joss ©)
. (jo djo

with a being a characteristic length of the problem (e.g. the linear size of a cell). Inserting Eq. (8) into this definition
we find that the robustness of the morphogen gradient depends on the anomalous diffusion exponent Y as

kY

Another interesting case occurs when the reactivity decays exponentially: k(x) = ko e B Then, it is possible to
prove that the stationary morphogen gradient is given by

o (akgﬂe—ﬁv\xw)
&) = Jo~ 73 V72
24,7 (akdl?)
where the I,’s are modified Bessel functions and o = 2/(BY+/Ky). This expression predicts quite different behaviors
for normal and anomalous diffusion. For normal diffusion (Y = 1), one gets a monotonically decreasing profile that

goes from the maximum concentration value at the origin to a finite final value. In contrast, for subdiffusion (y < 1)
we find that the concentration decreases until it reaches a minimum and then it increases without bound (see Fig. 2).

~(r=DBK. (1

CONCLUSIONS AND OUTLOOK

Although subdiffusion is widely present in biological media, subdiffusion processes are rarely taken into account
when the formation of morphogen profiles is considered. We address this issue modeling the formation of a gradient of
subdiffusive morphogens by means of a CTRW model with a superimposed linear death process and a localized source
of particles. This way, the classical reaction-diffusion equations of the morphogen gradient formation are generalized
in the form of fractional reaction-diffusion equations. The formulation of the problem in terms of fractional diffusion
equations is very convenient as this allows us to employ in their solution and analysis some well-studied analytical
techniques of fractional calculus.
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FIGURE 2. Convergence of CTRW simulation results (symbols) to the stationary profile predicted by the formula (11) for jo =1,

y=10.5, Ky = 1/v97 and k(x) = koexp(—p|x|) with kg = 1/200 and 8 = 0.6 (solid line). The simulation results go towards the
stationary solution as time increases, although the convergence for large x is slow. There are no free parameters.

We have considered two particular cases: the case in which the degradation rate is constant and the case where
the degradation rate changes exponentially with the distance to the morphogen source. For the first case, we find
exponentially decaying stationary concentration profiles that are qualitatively similar to the profiles obtained by means
of the normal diffusive model. However, for the second case, we find that the profiles obtained when the morphogens
are subdiffusive are qualitatively different from the profiles obtained when the morphogens diffuse normally. In this
case, the concentration grows without bound for y < 1 (anomalous diffusion) when |x| — oo whereas it goes to a
constant limiting value for Y = 1 (normal diffusion). We have carried out numerical simulations and found and excellent
agreement between numerical and analytical results.

ACKNOWLEDGMENTS

This work was partially supported by the Ministerio de Ciencia y Tecnologia (Spain) through Grant No. FIS2007-
60977, by the Junta de Extremadura (Spain) and FEDER through Grant No. GR10158, and by the National Science
Foundation under grant No. PHY-0855471.

REFERENCES

1. R.Metzler and J. Klafter, Phys. Rep. 339 1 (2000).

2. S.B. Yuste and K. Lindenberg, Phys. Rev. E 76, 051114 (2007).

3.  R.Borrego, S. B. Yuste, and E. Abad, Phys. Rev. E 80, 061121 (2009).

4. M. Ibafies and J. C. Izpista, Molecular Systems Biology 4, 176 (2008).

5. O. Wartlick, A. Kicheva and M. Gonzélez-Gaitan, Cold Spring Harb. Perspect. Biol. 1, 2001255 (2009).

6. SR. Yu, M. Burkhardt, M. Nowak, J. Ries, Z. Petrasék, S. Scholpp, P. Schwille, and M. Brand, Nature 461, pp. 533 (2009).

7. V. Mendez, S. Fedotov, and W. Horsthemke, Reaction-Transport Systems: Mesoscopic Foundation, Fronts, and Spatial
Instabilities, Springer-Verlag, Berlin, 2010.

8. A. Yadav and W. Horsthemke, Phys. Rev. E 74, 066118 (2006).

9. K. Seki, A. 1. Shushin, M. Wojcik, and M. Tachiya, J. Phys.: Condens. Matter 19, 065117 (2007).

10. A. Yadav, S. M. Milu, and W. Horsthemke, Phys. Rev. E 78, 026116 (2008).

11. L. M. Sokolov, M. G. W. Schmidt, and FE. Sagués, Phys. Rev. E 73, 031102 (2006).

12. B. I Henry, T. A. M. Langlands, and S. L. Wearne, Phys. Rev. E 74, 031116 (2006).

13. E. Abad, S. B. Yuste, and K. Lindenberg, Phys. Rev. E (2010).

14. G. Hornung, B. Berkowitz, and N. Barkai, Phys. Rev. E 72, 041916 (2005).

1326



