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The fourth virial coefficient of asymmetric nonadditive binary mixtures of hard disks is computed
with a standard Monte Carlo method. Wide ranges of size ratio (0.05 ≤ q ≤ 0.95) and nonadditivity
(−0.5 ≤ � ≤ 0.5) are covered. A comparison is made between the numerical results and those that
follow from some theoretical developments. The possible use of these data in the derivation of new
equations of state for these mixtures is illustrated by considering a rescaled virial expansion truncated
to fourth order. The numerical results obtained using this equation of state are compared with Monte
Carlo simulation data in the case of a size ratio q = 0.7 and two nonadditivities � = ±0.2. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4712035]

I. INTRODUCTION

The key role that hard-core model systems play in liq-
uid state theory is undeniable. This is mostly due to the well-
known fact that in some cases it is possible to derive exact and
approximate analytical results for their thermodynamic and
structural properties.1 Moreover, the structural properties of
real dense fluids depend essentially on the short ranged repul-
sive intermolecular forces, which are adequately accounted
for by hard-core models in which molecules have no inter-
actions at separations larger than a given distance and expe-
rience infinite repulsion if their separation is less than that
distance. While pure one-component hard-core systems lead
to a fluid-solid transition, mixtures may display more com-
plex phase behavior. For the latter, one can either assume that
they are additive, namely that the closest distance of approach
of molecules of two different species is the arithmetic mean
of the distances between like pairs, or nonadditive, in which
the previous condition does not hold. Additive systems have
received most of the attention, but the inclusion of nonaddi-
tivity, which may either be positive or negative, attempts to
incorporate some features of non-hard forces, such as attrac-
tions and soft repulsions, into the description. Amongst other
things, nonadditivity serves to account for homo-coordination
or hetero-coordination in the compositional order of a mixture
and also for fluid-fluid demixing. This makes the nonadditive
hard-core models of mixtures both attractive and rather versa-
tile and so it is not surprising that they have been the subject of
recent attention in the literature. Some examples concerning
nonadditive hard spheres (NAHS) may be found in Refs. 2–5.

As far as mixtures of nonadditive hard disks (NAHD) are
concerned, which are the subject matter of this paper, publi-
cations are less numerous than in the case of NAHS. How-
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ever, interest in these model systems, which dates back at
least to the late 1970s, has recently experienced a revival.
Applications include lipid monolayers spread on air-water
interfaces,6 liquid-liquid demixing in a physisorbed mixture
of argon, krypton, or xenon on graphite,7 a model for ganglio-
side lipid and phospholipid interactions in connection with the
binding of cholera-toxin to a lipid membrane,8 the morphol-
ogy of composite latex particles,9 two-dimensional magnetic
colloid mixtures,10 and the asphaltene flocculation inhibition
phenomenon.11

A binary mixture of NAHD is characterized by the im-
penetrable diameters of the two species σ 11 = σ 1 and σ 22

= σ 2 and by a crossed diameter σ12 = 1
2 (σ1 + σ2)(1 + �),

where the dimensionless parameter � accounts for deviations
of the inter-species interactions from additivity.12 Like in the
NAHS model, the binary mixture shows a tendency to form
hetero-coordinated clusters for negative values of the non-
additivity parameter (� < 0). On the other hand, for pos-
itive non-additivity (� > 0), the system tends to segregate
into two fluid phases, one richer in particles of species 1
and the other richer in particles of species 2, respectively.13

On the computational side, Dickinson14–16 reported molec-
ular dynamics simulations of NAHD mixtures in which he
computed the compressibility factor, and the radial distribu-
tion functions for a few size ratios and some nonadditivities.
Tenne and Bergmann17 developed a scaled-particle theory
(SPT) for NAHD mixtures which was later corrected by Bear-
man and Mazo18–20 in their study of fluid-fluid phase equi-
libria for positive nonadditivity. The compressibility factors
and part of the coexistence curve arising from the SPT were
compared to molecular dynamics simulations of an equimo-
lar symmetric mixture of NAHD by Ehrenberg et al.21 Singh
and Sinha22 used thermodynamic perturbation theory to com-
pute the Helmholtz free energy per particle, the compress-
ibility factor, and the radial distribution function of binary
NAHD mixtures with both positive and negative nonaddi-
tivity, while Mishra and Sinha23 derived the excess ther-
modynamic properties of binary NAHD mixtures including
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quantum corrections. Nielaba and co-workers24–27 combined
the Gibbs ensemble Monte Carlo (GEMC) method and finite-
size scaling to study demixing of a symmetric NAHD mix-
ture. Hamad and his co-workers28, 29 developed equations of
state for NAHD mixtures and performed molecular dynam-
ics simulations for a variety of size ratios and values of the
nonadditivity. Saija and Giaquinta13 reported Monte Carlo
(MC) results for the thermodynamic and structural proper-
ties of a symmetric NAHD mixture for positive nonadditiv-
ity and studied phase separation for some positive values of
the nonadditivity. Depletion interactions in NAHD mixtures
were considered by Castañeda-Priego et al.,30 who also in-
dicated that this model may mimic the qualitative features
of effective potentials of hard and soft particles. To cope
with large nonadditivities, Buhot31 used a cluster algorithm to
study phase separation of symmetric binary NAHD mixtures,
while Guáqueta32 used a combination of MC techniques to
determine the location of the critical consolute point of asym-
metric NAHD mixtures for a wide range of size ratios and
values of the positive nonadditivity. More recently, Muñoz-
Salazar and Odriozola33 used a semi-grand canonical ensem-
ble Monte Carlo method to obtain the fluid-fluid coexistence
curve for a symmetric mixture of NAHD and a single positive
nonadditivity.

In 2005 three of us34 introduced an approximate equation
of state for nonadditive hard-core systems in d dimensions
and, taking d = 2, compared the results obtained for the cor-
responding compressibility factor with simulation data. Later,
a unified framework for some of the most important theories
(including some generalizations) of the equation of state of d-
dimensional nonadditive hard-core mixtures was presented.35

The framework was used for d = 3 to compare the results of
the different approaches with simulation data for the fourth
virial coefficients that had recently been derived36 and with
simulation data for the compressibility factor. It was also used
to examine the issue of fluid-fluid demixing.

More recently, another of us37 computed the fourth virial
coefficient of symmetric NAHD mixtures over a wide range
of nonadditivity. He also compared the fluid-fluid coexistence
curve derived from two equations of state built using the new
virial coefficients with some simulation results.

One of the major aims of this paper is to present the re-
sults of computations of the fourth virial coefficient of asym-
metric NAHD mixtures, i.e., mixtures such that the size ra-
tio q = σ 2/σ 1 is different from unity. We will explore a wide
range of values of the nonadditivity parameter � and size ratio
q. These results complement the ones already published for
symmetric mixtures37 and will afterwards be used to assess
the merits and limitations of some theoretical approaches.

The paper is organized as follows. In Sec. II we pro-
vide the known analytical results for the second and third
virial coefficients of a NAHD mixture, as well as the graph-
ical representation of the (partial) composition-independent
fourth virial coefficients. The approximate theoretical expres-
sions considered in this paper for the fourth virial coefficients
are presented in Sec. III. This is followed in Sec. IV by the re-
sults of the MC evaluation of the fourth virial coefficients for
a wide range of size ratios and values of the nonadditivity pa-
rameter. A comparison of the theoretical approximations with

these data is also presented. In Sec. V the equation of state re-
sulting from a rescaled virial expansion truncated to fourth
order, as well as the theoretical approximations mentioned
above, are compared with new Monte Carlo simulation data
in the case of two mixtures with negative and positive non-
additivities, respectively. The paper is closed in Sec. VI with
some concluding remarks.

II. VIRIAL COEFFICIENTS

The virial expansion can be written as

βP = ρ + Bρ2 + Cρ3 + Dρ4 + · · · , (1)

where P is the pressure, β is the inverse temperature in units
of the Boltzmann constant, and ρ = ρ1 + ρ2 is the total num-
ber density, ρ i being the partial number density of species i. In
a mixture, at variance with the one-component case, the virial
coefficients B, C, D, . . . do also depend on the relative con-
centration of the two species and on the hard-core diameters.
The coefficients B and C are exact and well known (see, for
instance, Refs. 28 and 34). They are given by

B = B11x
2
1 + 2B12x1x2 + B22x

2
2 , (2)

C = C111x
3
1 + 3C112x

2
1x2 + 3C122x1x

2
2 + C222x

3
2 , (3)

where x1 = ρ1/ρ and x2 = ρ2/ρ = 1 − x1 are the mole frac-
tions of species 1 and 2, respectively. The other quantities read

Bij = π

2
σ 2

ij , (4)

C111 = π2

16
b3σ

4
1 , (5)

C112 = π2

16
b3σ

4
1 F

(
σ12

σ1

)
, (6)

C122 = π2

16
b3σ

4
2 F

(
σ12

σ2

)
, (7)

C222 = π2

16
b3σ

4
2 , (8)

where b3 = 16
3 − 4

√
3

π
� 3.12802 and the function F(x) is

given by

F (x) = 1

3
G(x) + 2

3
x2H (x) (9)

with

G(x) = 4

πb3

(
4x2 cos−1 1

2x
−

√
4x2 − 1

)
, (10)

H (x) = 4

πb3

[
2πx2 − 2(2x2 − 1) cos−1 1

2x
−

√
4x2 − 1

]
(11)

for x ≥ 1
2 and

G(x) = 0, H (x) = 8

b3
x2 (12)

for 0 ≤ x ≤ 1
2 .
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In turn, the fourth-order virial coefficient reads

D = D1111x
4
1 + 4D1112x

3
1x2 + 6D1122x

2
1x2

2

+ 4D1222x1x
3
2 + D2222x

4
2 , (13)

and its partial contributions have to be evaluated numeri-
cally. The terms D1111 and D2222 can be calculated through
the expression of the fourth virial coefficient for a monodis-
perse fluid of particles with diameter σ 1 or σ 2, respectively,
i.e.,

D1111 = π3

64
b4σ

6
1 , (14)

D2222 = π3

64
b4σ

6
2 , (15)

where b4 = 8(2 + 10/π2 − 9
√

3/2π ) � 4.25785. On the
other hand, the coefficients D1112 and D1122 are cluster inte-
grals which are represented by the following four-point color
graphs:

D1112 = −1

8
3 + 3 + 3

+ ,
(16)

D1122 = −1

8
2 + + 4

+ + + .

(17)

The open and solid circles in each graph identify particles
belonging to species 1 and 2, respectively. Each bond con-
tributes a factor to the integrand in the form of a Mayer
step function. Space integration is carried out over all the
vertices of the graph. Of course, the coefficient D1222 is
obtained from Eq. (16) by exchanging the open and solid
circles.

For later use, let gij(ρ) be the values of the radial distribu-
tion functions at contact of the NAHD mixture. This quantity
is related to the pressure via the virial equation of state38

βP = ρ + π

2
ρ2

2∑
i,j=1

xixjσ
2
ij gij (ρ). (18)

No general expression is known for gij(ρ), but it may formally
be expanded in a power series in density as

gij (ρ) = 1 + π

4
ρ

2∑
k=1

xkck;ij + π2

16
ρ2

2∑
k,�=1

xkx�dk�;ij + · · · ,

(19)

where the coefficients ck; ij, dk�; ij, . . . are independent of the
mole fractions but in general depend in a non-trivial way
on the set of diameters {σ ij}. Only the coefficients linear in
ρ (i.e., ck; ij) are known analytically (cf. Refs. 28 and 34),
namely

c1;11 = b3

2
σ 2

1 , (20)

c2;11 = b3

2
σ 2

1 G

(
σ12

σ1

)
, c1;12 = b3

2
σ 2

1 H

(
σ12

σ1

)
. (21)

Other combinations of indices follow from the exchange of in-
dices 1 and 2 in the above results. We recall that the functions
G(x) and H(x) are given by Eqs. (10)–(12). In fact, insertion
of Eq. (19) into Eq. (18) yields

Cijk = π2

24

(
ck;ij σ

2
ij + cj ;ikσ

2
ik + ci;jkσ

2
jk

)
, (22)

so that Eqs. (5)–(8) are recovered from Eqs. (20) and (21)

III. APPROXIMATE THEORETICAL APPROACHES

Before we evaluate numerically the partial fourth virial
coefficients, let us recall the approximate results derived for
them with different theoretical approaches. These were pre-
sented in a unified framework within the description of gen-
eral multi-component nonadditive hard-sphere mixtures in d
dimensions. We will consider here the particular case of a bi-
nary mixture in two dimensions, only quote the relevant re-
sults, and refer the interested reader to Ref. 35 for details.

A. MIX1 approximation

In the so-called MIX1 theory for NAHD mixtures, which
we will label with a superscript M, the fourth virial coeffi-
cients are given by

DM
ijk� = π3

192

[(
σi + σj

2

)2

dadd
k�;ij

(
1 + 3Y M

ij

)

+
(

σi + σk

2

)2

dadd
j�;ik

(
1 + 3Y M

ik

)

+
(

σi + σ�

2

)2

dadd
jk;i�

(
1 + 3Y M

i�

)

+
(

σj + σk

2

)2

dadd
i�;jk

(
1 + 3Y M

jk

)

+
(

σj + σ�

2

)2

dadd
ik;j�

(
1 + 3Y M

j�

)

+
(

σk + σ�

2

)2

dadd
ij ;k�

(
1 + 3Y M

k�

)]
. (23)

In Eq. (23), dadd
k�;ij are the second-order coefficients defined in

Eq. (19), particularized to the additive case (� = 0). Here we
adopt the approximation39–41

dadd
k�;ij = σ 2

k σ 2
�

[
1 +

(
b4

2
− 1

)
σiσj

σi + σj

σk + σ�

σkσ�

]
. (24)
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Moreover, in Eq. (23),

Y M
ij ≡ 2�(1 − δij ), (25)

where δij is the Kronecker delta.

B. Paricaud’s modified MIX1 theory (mMIX1)

In the generalization of Paricaud’s approximation that
was made in Ref. 35, which will be identified with the su-
perscript mM, and restricting the result to two-dimensional
binary mixtures, the partial composition-independent fourth
virial coefficients have the same form as in the MIX1 approx-
imation but one has to replace Y M

ij with Y mM
ij , where the latter

is given by

Y mM
ij ≡ �(2 + �)(1 − δij ). (26)

C. Hamad’s proposal

In the work of Hamad and co-workers,28, 29 denoted here
by the superscript H, the fourth virial coefficients are given by

DH
ijk� = π3b4

96b2
3

(
σ 2

ij ck;ij c�;ij + σ 2
ikcj ;ikc�;ik + σ 2

i�cj ;i�ck;i�

+ σ 2
jkci;jkc�;jk + σ 2

j�ci;j�ck;j� + σ 2
k�ci;k�cj ;k�

)
.

(27)

D. The Santos-López de Haro-Yuste proposal

In the proposal made in 2005 by three of us,34 here-
after denoted by the superscript SHY, the fourth virial coef-
ficients are expressed in terms of the partial second and third
composition-independent virial coefficients and of b3 and b4.
Written for d = 2 they read

DSHY
ijk� = π (b4 − 2)

16(b3 − 2)

(
σ 2

i Cjk� + σ 2
j Cik� + σ 2

k Cij� + σ 2
� Cijk

)

− π2(b4 − b3)

96(b3 − 2)

(
σ 2

i σ 2
j Bk� + σ 2

i σ 2
k Bj� + σ 2

i σ 2
� Bjk

+ σ 2
j σ 2

k Bi� + σ 2
j σ 2

� Bik + σ 2
k σ 2

� Bij

)
. (28)

IV. RESULTS

In this section we report the results of our calculations.
In order to evaluate the irreducible cluster integrals which en-
ter the expression of the composition-independent coefficients
Dijk� (see Eqs. (16) and (17)), we used a standard MC integra-
tion procedure. The algorithm produces a significant set of
configurations which are compatible with the Mayer graph
one wants to evaluate. We first fix particle 1 of species i at
the origin and sequentially deposit the remaining three parti-
cles at random but in such a way that particle α + 1 overlaps
with particle α (where α = 0, 1, 2, 3). This procedure gen-
erates an open chain of overlapping particles which is taken
as a “trial configuration”. A “successful configuration” is a
closed-chain configuration (i.e., a configuration in which par-
ticle 1 further overlaps with particle 4) where, moreover, the
residual cross-linked “bonds” which are present in the Mayer
graph that is being calculated are also retrieved. The ratio of

FIG. 1. Plot of the composition-independent fourth virial coefficients D1112,
D1122, and D1222 versus the size ratio q = σ 2/σ 1 for a nonadditivity parameter
� = −0.1. The dotted (green) lines correspond to the original MIX1 theory,
Eq. (23), the dash-dot (pink) lines correspond to the mMIX1 theory, Eq. (23),
with Y M

ij → Y mM
ij , the dashed (blue) lines correspond to Hamad’s proposal,

Eq. (27), and the solid (red) lines correspond to the SHY proposal, Eq. (28).
The symbols are our MC data.

the number of successful configurations (Ns) to the total num-
ber of trial configurations (Nt) yields asymptotically the value
of the cluster integral relative to that of the open-chain graph
which, in turn, is trivially related to a product of the partial
second-order virial coefficients Bij.42, 43 The numerical accu-
racy of the MC results obviously depends on the total number
of trial configurations. The error on the cluster integral J is
estimated as44

error =
[
J (J − 1)

Nt

]1/2

. (29)
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FIG. 2. Same as in Fig. 1, but for � = −0.3.

However, as a result of the accumulation of statistically in-
dependent errors, the global uncertainty affecting the partial
virial coefficients is higher than the error estimated for each
cluster integral that enters the expression of Dijk�. A typical
MC run consisted of 4 × 109 independent moves. The error
on each cluster integral, as estimated through Eq. (29), turned
out to be systematically less than 0.05%, with a cumulative
uncertainty on the partial virial coefficients lower than 0.5%.

The numerical values of D1112/σ
6
1 , D1122/σ

6
1 , and

D1222/σ
6
1 for � = ±0.05, ±0.1, ±0.2, ±0.3, ±0, 4, and ±0.5

and q = 0.05, 0.10, . . . , 0.90, 0.95 are presented in tabular
form in the supplementary material to this paper.45

Now we proceed to assess the merits of the different
theoretical formulae for the composition-independent partial
fourth virial coefficients that we presented in Sec. III. For that
purpose, although we have made an exhaustive analysis, in
Figs. 1–6 we present only some illustrative cases in which

FIG. 3. Same as in Fig. 1, but for � = −0.5.

we compare the performance of the different approximations
against the MC data. The graphs corresponding to the other
values of � that appear in the tables of the supplementary
material to this paper45 are available upon request.

From these figures it is clear that, overall, the proposal by
Hamad,28 Eq. (27), is very good for D1112 and D1222 but rather
bad for D1122 if |�| > 0.1, irrespective of the value (positive
or negative) of �. None of the theories shows a good per-
formance in the case of D1122 but at least the SHY proposal
leads to reasonable quantitative agreement in the positive re-
gion of this coefficient, being particularly superior to all other
approximations for negative values of �.

V. EQUATION OF STATE

Since the convergence of the virial expansion is unknown
and truncating the series after the first four terms would not
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FIG. 4. Same as in Fig. 1, but for � = 0.1.

guarantee a satisfactory outcome, in this section we will use
the knowledge of the first four virial coefficients to illus-
trate the performance of a well established approach to the
equation of state of fluids that incorporates such knowledge.
Hence we will consider the rescaled virial expansion (RVE)
proposed by Baus and Colot46, 47 to obtain an (approximate)
equation of state for an asymmetric NAHD mixture. The RVE
equation of state truncated to the fourth order has the follow-
ing form:

Z ≡ βP

ρ
= 1 + c1η + c2η

2 + c3η
3

(1 − η)2
, (30)

where Z is the compressibility factor, η = ρξ , with
ξ ≡ (π/4)(x1σ

2
1 + x2σ

2
2 ), is the total packing fraction, and the

coefficients c1, c2, and c3 are obtained by identification with
the corresponding coefficients which show up in the virial

FIG. 5. Same as in Fig. 1, but for � = 0.3.

series. Specifically, in the present case one has

c1 = B

ξ
− 2, c2 = C

ξ 2
− 2

B

ξ
+ 1, c3 = D

ξ 3
− 2

C

ξ 2
+B

ξ
.

(31)

In Fig. 7 we present an illustrative comparison between
the results for the compressibility factor of two binary NAHD
mixtures as a function of the packing fraction as derived from
the RVE, Eq. (30), and those obtained by MC simulation.48

In both mixtures the size ratio is q = 0.7 and a negative non-
additivity � = −0.2 (with x1 = 0.5) and a positive nonad-
ditivity � = 0.2 (with x1 = 0.4) have been considered. For
comparison, the results stemming out of the compressibility
factors corresponding to the different theoretical approxima-
tions mentioned in Sec. III are also included in this figure.
As discussed in Ref. 35, for the actual calculations using the
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FIG. 6. Same as in Fig. 1, but for � = 0.5.

compressibility factors corresponding to the different theoret-
ical approaches, one needs to specify the contact values of
the one-component system for the Hamad and the SHY ap-
proaches and those of an additive hard-disk mixture in the
MIX1 and mMIX theories. For the former we have used an
accurate proposal by Luding,49, 50 while for the latter we have
considered the quadratic approximation proposed in Ref. 51,
complemented with Luding’s one-component value.50

It is clear that in the case of the mixture with negative
nonadditivity, the best agreement is provided by both the
RVE and the Hamad compressibility factor, followed by
the SHY compressibility factor. In fact, the former two
are hardly distinguishable. On the other hand, for positive
nonadditivity it is the SHY compressibility factor the one
that provides the best agreement, followed by both the RVE

FIG. 7. Plot of the compressibility factor Z versus the total packing fraction
η for NAHD mixtures with � = −0.2, σ 2/σ 1 = 0.7, x1 = 0.5 (top panel)
and � = 0.2, σ 2/σ 1 = 0.7, x1 = 0.4 (bottom panel). The dotted (green) lines
correspond to the original MIX1 theory, the dash-dot (pink) lines correspond
to the mMIX1 theory, the dashed (blue) lines correspond to Hamad’s pro-
posal, the thick solid (red) lines correspond to the SHY proposal, and the
thin solid (black) lines correspond to the RVE, Eq. (30). The symbols are our
MC data.48 Note that the RVE and the Hamad curves are practically indistin-
guishable in the top panel, while the RVE and the MIX1 curves are practically
indistinguishable in the bottom panel.

and the MIX1 compressibility factor. These latter two are
virtually indistinguishable.

VI. CONCLUDING REMARKS

In this paper we have reported MC calculations of the
fourth virial coefficients of asymmetric NAHD mixtures over
a rather wide range of size ratios q and values of the nonaddi-
tivity parameter �. These results complement those reported
earlier37 for symmetric mixtures (q = 1) and, as illustrated in
the case of the RVE and the mixtures discussed in Sec. V, may
prove useful for the development of new equations of state for
NAHD mixtures. In particular, one could also consider using
the availability of the fourth virial coefficients provided in this
paper to derive another approximation to the compressibil-
ity factor of asymmetric NAHD mixtures via the y-expansion
proposed by Barboy and Gelbart.52, 53 Here we have mainly
used the data to assess the merits of different theoretical ap-
proaches leading to the thermodynamic properties of NAHD
mixtures with respect to their performance in the prediction
of the values of the fourth virial coefficients.
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One immediate conclusion is that none of the existing
theories can account for all the features observed in the MC
data. In contrast with what happened in NAHS mixtures,35

here the theoretical approach by Hamad28 outperforms all the
rest. In this regard, it is somewhat striking that its very good
performance concerning D1112 and D1222 is not also found for
D1122, where the SHY proposal does the best overall job. In
any case, the comparison we have presented is only indica-
tive of the performance with respect to the fourth virial coef-
ficients, but the full assessment will have to do with the com-
pressibility factor and with the issue of fluid-fluid demixing.
We plan to address these points in the near future.
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