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Abstract.

We will study analytical and numerically the two dimensional random phase sine Gordon model.

The importance of this model relies on that it describes the growth of surfaces on disordered sub-

strates and 
ux lines in Type II superconductors in presence of impurities. In particular we will focus

the discussion on low temperature properties, showing that the low temperature phase is super-rough.

1. Introduction. The study of the in
uence of the disorder in materials is a very

interesting subject because the samples used in the experiments are not completely

pure and also because the properties of the system can change radically.

Theoretically we can use the Harris criteria [1] to study if the disorder changes

or not the universality class of the model (i.e. the properties are completely di�erent

from the original pure model). In some cases the model is marginal with respect to the

Harris criteria (for instance, the Ising model in two and four dimensions with quenched

dilution) and we must do numerical simulations or try to solve the model (using,

for example, the renormalization group) in order to understand if the universality

properties of the model change or not.

The 
ux lines appear in the Type II superconductors in the so-called mixed phase.

Until a strength of the magnetic �eld (H

1

) the Meissner e�ect holds (i.e. the super-

conductivity holds) but for H > H

1

the magnetic �eld penetrates in the bulk of the

superconductor in small regions (the 
ux lines). Finally if H > H

2

the magnetic �eld

penetrates completely in the bulk of the superconductor destroying the superconduc-

tivity properties. Inside the region H

1

< H < H

2

the superconductor properties in

principle hold, but unfortunately if one applies a potential to the superconductor the

electrons that are con�ned in the 
ux lines (and that are not bound in Cooper pairs)

move and dissipate, and consequently the material lacks its superconductor properties

[6].

If we produce defects (for instance oxygen vacancies in the material), these im-

purities pin the 
ux lines and so the material recover its superconductor properties

[6]. The technological importance is very high because the Type II superconductors

present higher values of H

2

than the Type I superconductors (for instance B

c

in Type

I is roughly some Gauss whereas that B

2

in Type II superconductor is of the order of

some Teslas).

The sine Gordon model with random phases describes this physical situation [3]

(see also the review [7]), in particular, 
ux lines in a superconducting �lm subject to

random pinning and parallel magnetic �eld [3]. Moreover it can describe crystalline

surface with disordered substrate [2]. The model has been studied, both numerical

and theoretically [2, 4, 3, 5, 16, 1, 9, 13, 14, 17, 19, 18, 20] and in neither area is there

agreement on the details of the low temperature phase.
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In this paper we will shown the results that we have obtained in the last years in

order to solve the previous controversy. We refer to the interesting reader to references

[10, 11, 12] where more detailed studies can be found.

2. De�nitions and Analytical results. In this section we �x the notation and

write down the di�erent analytical predictions for the observables.

The Hamiltonian for the Laplacian growth of surfaces on disordered substrate is

H[�] �

�

2

X

<ij>

(�

i

� �

j

)

2

; �

i

� d

i

+ �

i

;(1)

where d

i

are integral numbers. For the sine Gordon model

H[�] �

�

2

X

<ij>

(�

i

� �

j

)

2

� �

X

i

cos (2�(�

i

� �

i

)) :(2)

In both cases � is a quenched noise uniformly distributed in the interval [�

1

2

;

1

2

].

We can relate both models by means of the Poisson summation formula. Another

easy method is to take the limit �!1 in the continuum model (sine Gordon model).

We can compute the probability distribution to have a given di�erence of the

�elds

P [�(r); T ] � h� [�(r) � (�(r

0

)� �(r

0

+ r))]i :(3)

Where h(� � �)i denotes thermodynamical average at �xed disorder and (� � �) denotes

the average over the quenched disorder.

The second moment of (3) is the correlation function (or propagator) of the �elds

(or heights in the terminology of the surfaces)

C(r; T ) � h(�(r

0

)� �(r

0

+ r))

2

i ;(4)

and the fourth cumulant (or four point function) is

D(r; T ) � 3

�

h�

2

(r)i

�

2

� h�

4

(r)i :(5)

At this point we can compute the Binder cumulant

B(r; T ) �

1

2

 

3�

h�

4

(r)i

(h�

2

(r)i)

2

!

:(6)

If the probability distribution is Gaussian (i.e. the underlying e�ective Hamiltonian

is Gaussian) then C(r) will grow logarithmically and both D and B should be zero.

In the next paragraphs we will describe the analytical prediction for the observ-

ables de�ned above using the Renormalization Group approach (RG) and a variational

computation.

The starting point for the analytical studies is the average of the replicated Hamil-

tonian in the limit of zero replicas (the replica trick, see [1] for more details). The

model in the high-T region is Gaussian. The sine-term (< 1) does not a�ect to the

kinetic term and so the theory is completely free. The propagator is (for T > T

c

)

C

T>T

c

(r; T ) '

T

��

log r :(7)
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The discrepancies arise in the study of the low temperature properties of the

model. For instance the RG predicts (for T < T

c

)[2, 1, 16, 4, 3]

C

RG

T<T

c

(r; T ) ' a log r + b log

2

r ; b =

2

�

2

�

T

c

� T

T

c

�

2

;(8)

whereas a variational computation show [9, 13, 14]

1

C

VAR

T<T

c

(r; T ) '

T

c

��

log r ;(12)

In the both cases the critical temperature is the same: T

c

= �=�. It is easy to

show, for instance using the Harris criteria, that the critical temperature is indepen-

dent of the value of �.

In the framework of the RG it is possible to compute higher moments of the

probability distribution. For instance the fourth momenta reads [12]

h(�(r) � �(0))

4

i = 3

�

4�

�

�

log r +

�

�g

�

2

(log r)

2

�

2

� 48d

�

log r ;(13)

where �

�

; �

�g

and d

�

are constants. The function D is given by [12]

D

RG

T<T

c

(r; T ) = 48d

�

log r ;(14)

and �nally the Binder cumulant reads [12]

B

RG

T<T

c

(r; T ) =

24d

�

log r

(

4�

�

�

log r +

�

g�

�

2

(log r)

2

)

2

'

r�1

24d

�

�

2

�

�

g

log

3

r

:(15)

This last equation says us that the probability distribution of the correlation

functions computed at large distances is asymptotically Gaussian, but this is di�erent

from the fact that at any �nite distance the probability distribution is Gaussian.

We can write the following Langevin equation in order to study the dynamic of

the model (with no conserved parameter)[5]

@�(x)

@t

= �

��H

��(x)

+ �(x; t);(16)

1

In the replicated action we can write the most general Gaussian action (neglecting in the notation

the replica indexes) (see for instance [8])

S

G

=

1

2

Z

d

2

p �(p)G(p)�(�p) :(9)

The variational parameter is the propagator itself of the theory. The free energy in this approximation

is (F

VAR

)

F � F

VAR

� F

G

+ hS � S

G

i

G

;(10)

where F

G

is the free energy of the action S

G

and h(� � �i

G

denotes average with the Gaussian action

S

G

. F is the free energy of the original model. The variational condition on the propagator is

�

�G(p)

[F

G

+ hS � S

G

i

G

] = 0 :(11)
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where � is a Gaussian noise, with variance proportional to the temperature and zero

mean. Using the Martin-Siggia-Rose formalism and the RG it is possible to obtain

the behavior of the dynamical critical exponent with the temperature [5]

z(T ) = 2 + 2e




(1� T=T

c

);(17)

for T < T

c

and near of the transition point. 
 is the Euler constant and T

c

= �=�. In

the rough phase the model is described by a Gaussian theory and z should take the

Gaussian vale (z = 2).

3. Numerical Results. In this section we will discuss the results that we have

obtained. Firstly we will show the results of the static of the system and �nally we

will study the dynamic (for more details see references [10, 11, 12]). All the numerical

results have been obtained using the supercomputer APE-100 [26].

We have focused our static numerical studies on the study of the propagator

C(x). In the analysis of this object we have used the exact analytical expression for

the propagator for a Gaussian theory, P

L

(r), de�ned in a box:

P

L

(r) =

1

2L

2

L�1

X

n

1

=1

L�1

X

n

2

=0

1� cos(

2�rn

1

L

)

2� cos(

2�n

1

L

)� cos(

2�n

2

L

)

'

1

2�

log(

r

2

p

2e




) ;(18)

where the symbol ' holds for L � 1 and r � 1. Only for large distance it is well

approximate by the logarithm. If one try to analyze the numerical data using the

logarithm must �ght against two factors: i) the propagator becomes the logarithm

only for large distances, and ii) the propagator does not diverge inde�nitely because

the system is �nite with periodic boundary conditions: C(x) = C(L � x). In some

analysis of the numerical data done in the literature [19] forget the previous items

and consequently the conclusions are wrong

2

.

In order to examine the behavior of the propagator in the low temperature phase

we try to �t the numerical propagator to

C(r) = b

1

P

L

(r) + b

2

P

L

(r)

2

(19)

where we have used that the representation of the lattice of log

2

(r) is given by P

L

(r)

2

,

and so the information of the possible super-roughening of the low-T phase is encoded

in the b

2

coe�cient. In this representation the prediction of the renormalization group

is b

2

=

8

�

2

�

2

where � � (T � T

c

)=T

c

is the reduced temperature.

We have plotted in �gure 1 the results of the �t for three di�erent values of � and

in a wide range of temperatures. It is clear that b

2

is zero in the rough phase (Gaussian

phase) and then becomes to be non zero qualitatively following the RG predictions.

For this plot it is evident that if we de�ne as the \apparent" critical temperature

the temperature where b

2

is non zero, this \apparent" critical temperature depends

on the value of the coupling against of the Renormalization Group predictions. In

the conclusion we will examine again this problem. Initially the agreement between

our numerical simulations and the RG predictions was only qualitative. In particular

the value of the coe�cient of �

2

that we have found was a factor 5 less than the RG

prediction. But lastly, Carpentier and Le Doussal claim [15] (and compute the exact

number on a triangular lattice) that the original RG prediction is wrong in a factor

2

Another example: if one correlation function goes like exp(�r=�) in a �nite lattice with periodic

boundary conditions the �t should be cosh((x � L=2)=�) due the periodic boundary conditions.
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Fig. 1. Coe�cient of the log

2

(b

2

) versus the temperature for di�erent values of the � parameter

from a two parameter �t. Left to right in the plot: � = 0:5; 2:0 and � =1 (discrete model).

4 (minor algebraic mistakes in the older RG calculations)[15], and so the agreement

turns out to be quantitative.

The b

1

exponent initially follows the predictions of the Gaussian model (that

it is the e�ective theory of the high-T , phase-rough): i.e. it is proportional to the

temperature, and near of the transition left the linear dependence of the temperature.

Another interesting test of the RG prediction is to study theD (see (14). We recall

again that the RG prediction, for T < T

c

, is a logarithmic growth (i.e. proportional

to P

L

(r)) in the super-rough phase and zero in the rough phase while the Variational

methods predicts that both, D and B, should be zero (at least for large distances).

In �gure 2 we show the D(r) function in the rough phase (lower curve) that for

r < 7 is zero and we can see that in the super-rough phase (upper curve) grows

proportionally to the Gaussian propagator, according with the RG. In particular this

last D(r) curve can be �tted as 10

4

D = (114� 3)P (r) + (36� 3).

Similar results have been obtained calculating the ground state of the discrete

model. It is possible to show that the computation of the ground state of the discrete

model is equivalent to solve a problem of combinatorial optimization [21, 22]. By

calculating the propagator using those ground states it is possible to see that the

propagator at T = 0 is super-rough [23, 24]. The values of the b

2

coe�cient di�ers

from those of the extrapolation of the RG predictions up to T = 0, but there are no

reason to claim the validity of the RG far away of the critical region. Similar results

at T = 0 was obtained by �nding the ground state solving the Langevin equation at

T = 0 (i.e. a deterministic equation) [25].

In the rest of this section we will study the dynamical properties of the sine

Gordon model with random phases.

It is possible, knowing the equilibrium propagator at a given temperature, to

compute a dynamical critical correlation length (�(t)) that can be thought as the
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Fig. 2. D as a function of r at T = 0:40 (4) and T = 1:0 (2) for L = 64. here � = 1

(discrete model)

1 10

r
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0.3

0.4

C
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)

Fig. 3. Correlation functions, C

t

(r), shown at equal time intervals (bottom to top: t =2000,

4000, 6000 and 8000 sweeps), and the equilibrium correlator, C

asy

(r), as the continuous line (� =

2:0; T = 0:5).
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Fig. 4. The dynamical critical exponent, z, against temperature for � = 0:5; 2:0 and 1. The

Gaussian value is marked with a horizontal line. We use squares and a dotted line for � = 0:5,

diamonds and a dashed line for � = 2:0 and crosses and a continuous line for � = 1. The lines

are only to guide the eye.

distance up to which the system is thermalized at time t. The structure of the prop-

agator in the o� equilibrium regime (i.e. it reaches a plateau before arriving at the

half of the lattice) permits us to de�ne this dynamical correlation length as follow.

If we denote as C

asyn

(r) the equilibrium correlation length at a given temperature

and C

t

(r) is the propagator measured at the time t, the dynamical correlation length

is de�ned as C

asyn

(�(t)) = Plateau[C

t

(r)]. In the �gure 3 we show the equilibrium

correlation function (top line) and di�erent correlation functions measured at di�er-

ent times (still in the o� equilibrium regime). Roughly �(t) is the point where the

equilibrium propagator and the propagator measured at time t begin to di�er.

We have checked that with this de�nition the dynamical correlation length follows

a power law with the time. The exponent of this power law is just the inverse of the

dynamical critical exponent (z):

�(t) / t

1=z

:(20)

Obviously where the system is Gaussian we should recover the Gaussian value for

z: z = 2. In the super-rough phase, asumming RG, we should see a linear dependence

on the reduced temperature (with slope 3.56).

We have shown our data on the dependence on the temperature of the z exponent

in �gure 4. Again, if we de�ne an "apparent" critical temperature, in which the

z exponent begins to be di�erent from 2, it is clear the dependence on � of this

"apparent" critical temperature. This e�ect is similar to that of b

2

. The data begin

to di�er from the Gaussian value following a behavior that can be �tted assuming a

linear dependence. The result is that the slope is more o less independent of the �

value and in agreement with the RG value: 3.56.
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4. Conclusions. From the previous section it is clear that the low temperature

phase of the random phase sine Gordon model is super-rough according with the

predictions of the (replica symmetric) renormalization group even to the quantitative

level.

Moreover the dynamical critical transition takes place just at the static one and

again is well described by the renormalization group..

Open problems to study is that the \apparent" critical temperature seems to

depend on the coupling, but this problem could be explained in the framework of the

renormalization group, in particular showing that for the values of � simulated the

running coupling constant at scale L are still far away of the �xed point. Moreover,

a theoretical �nite size study of the RG equation would be welcome.

Another interesting open problem is the study of the super-rough phase to check

that this phase is really described by a replica symmetric theory: i.e. the super-rough

phase is not glassy.
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