A Bhatnagar-Gross-Krook-like Model Kinetic Equation for a Granular Gas of Inelastic *Rough* Hard Spheres

Andrés Santos

Universidad de Extremadura, Badajoz (Spain)

Minimal model of a granular gas: A gas of *identical smooth inelastic* hard spheres

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

This minimal model ignores ...

Interstitial fluid

Caltech Granular Flows Group (http://www.its.caltech.edu/~granflow/)

Non-constant coefficient of restitution

www.oxfordcroquet.com/tech/

Non-spherical shape

Polydispersity

http://www.cmt.york.ac.uk/~ajm143/nuts.html

Model of a granular gas: A *mixture* of *inelastic rough* hard spheres

This model unveils an inherent breakdown of energy equipartition in granular fluids, even in homogeneous and isotropic states

Several circles (Kandinsky, 1926)

Galatea of the Spheres (Dalí, 1952)

Outline

- Energy production rates in a mixture of inelastic rough hard spheres.
- Simple kinetic model for monodisperse systems.
- Application to the simple shear flow.
- Conclusions and outlook.

Collisions of inelastic rough hard spheres

Coefficients of normal restitution α_{ii}

 \bullet

- Coefficients of tangential restitution β_{ij}
 - $\alpha_{ij} = 1$ for perfectly elastic particles
 - β_{ij} =-1 for perfectly smooth particles
 - $\beta_{ij} = +1$ for perfectly rough particles

Energy collisional loss

$$E_{ij} = \frac{1}{2}m_i v_i^2 + \frac{1}{2}m_j v_j^2 + \frac{1}{2}I_i \omega_i^2 + \frac{1}{2}I_j \omega_j^2$$
$$E'_{ij} - E_{ij} = -(1 - \alpha_{ij}^2) \times \cdots$$
$$-(1 - \beta_{ij}^2) \times \cdots$$

Energy is conserved *only* if the spheres are • elastic ($\alpha_{ij}=1$) and

• either

- perfectly smooth (β_{ij} =-1) or
- perfectly rough ($\beta_{ij} = +1$)

Partial (granular) temperatures

Translational temperatures: $T_i^{\text{tr}} = \frac{m_i}{3} \overline{\langle (\mathbf{v}_i - \mathbf{u})^2 \rangle}$

Rotational temperatures: $T_i^{\text{rot}} = \frac{I_i}{3} \langle \omega_i^2 \rangle$

Total temperature:
$$T = \sum_{i} \frac{n_i}{2n} \left(T_i^{\text{tr}} + T_i^{\text{rot}} \right)$$

Collisional rates of change for temperatures

Energy production rates: $\xi_{i}^{\mathrm{tr}} = -\frac{1}{T_{i}^{\mathrm{tr}}} \left(\frac{\partial T_{i}^{\mathrm{tr}}}{\partial t}\right)_{\mathrm{coll}}, \quad \xi_{i}^{\mathrm{tr}} = \sum_{j} \xi_{ij}^{\mathrm{tr}}$ **Binary collisions** $\xi_i^{\mathrm{rot}} = -\frac{1}{T_i^{\mathrm{rot}}} \left(\frac{\partial T_i^{\mathrm{rot}}}{\partial t} \right) \quad , \quad \xi_i^{\mathrm{rot}} = \sum_{i=1}^{N} \left(\frac{\partial T_i^{\mathrm{rot}}}{\partial t} \right) \quad ,$ Net *cooling* rate: $= -\frac{1}{T} \left(\frac{\partial T}{\partial t} \right)_{\text{coll}}, \quad \zeta = \sum_{i} \frac{n_i}{2nT} \left(\xi_i^{\text{tr}} T_i^{\text{tr}} + \xi_i^{\text{rot}} T_i^{\text{rot}} \right)$

Energy production rates. Kinetic-theory estimates (A.S., G.M. Kremer, V. Garzó, 2010)

Two-body velocity distribution function:

$$f_{ij}(\mathbf{v}_i, \boldsymbol{\omega}_i; \mathbf{v}_j, \boldsymbol{\omega}_j) \to n_i n_j \left(\frac{m_i m_j}{4\pi^2 T_i^{\text{tr}} T_j^{\text{tr}}} \right)^{3/2} e^{-m_i \frac{(\mathbf{v}_i - \mathbf{u})^2}{2T_i^{\text{tr}}} - m_j \frac{(\mathbf{v}_j - \mathbf{u})^2}{2T_j^{\text{tr}}}} \\ \times f_i^{\text{rot}}(\boldsymbol{\omega}_i) f_j^{\text{rot}}(\boldsymbol{\omega}_j)$$

Molecular chaos+Maxwellian approx. for translational distribution

Paradoxical "ghost" effect in the Homogeneous Free Cooling State

27th RGD, Asilomar Conference Grounds (CA), July 10-15, 2010

this evening)

A simple kinetic model for *monodisperse* inelastic *rough* hard spheres

(Cartoon by Bernhard Reischl, University of Vienna)

Boltzmann equation:

 $\partial_t f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) + \mathbf{v} \cdot \nabla f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) = J[\mathbf{v}, \boldsymbol{\omega} | f, f]$

Inelastic+Rough collisions

Antecedents for smooth particles

Boltzmann eq.: $\partial_t f(\mathbf{r}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla f(\mathbf{r}, \mathbf{v}, t) = J[\mathbf{v}|f, f]$

Elastic collisions: [Bhatnagar-Gross-Krook (BGK) & Welander, 1954]

$$J[\mathbf{v}|f,f] \to -\nu \left(f - f_0\right), \quad f_0 = n \left(\frac{m}{2\pi T}\right)^{3/2} \exp\left[-\frac{m(\mathbf{v} - \mathbf{u})^2}{2T}\right]$$

Inelastic collisions: [Brey, Dufty, Santos, 1999]

$$J[\mathbf{v}|f,f] \to -\lambda(\alpha)\nu\left(f-f_0\right) + \frac{\zeta(\alpha)}{2}\frac{\partial}{\partial\mathbf{v}}\cdot\left[(\mathbf{v}-\mathbf{u})f\right]$$

Simple kinetic model for monodisperse inelastic rough hard spheres

Four key ingredients we want to keep: 1. $(\partial_t \Omega)_{coll} = -\overbrace{\subseteq \Omega}^{(\alpha)} \Omega, \quad \Omega \equiv \langle \omega \rangle$ 2. $(\partial_t T^{tr})_{coll} = -\overbrace{\in}^{tr} T^{tr}, \quad T^{tr} \equiv \frac{m}{3} \langle (\mathbf{v} - \mathbf{u})^2 \rangle$ Energy production rates 3. $(\partial_t T^{rot})_{coll} = -\overbrace{\in}^{rot} T^{rot}, \quad T^{rot} \equiv \frac{I}{3} \langle \omega^2 \rangle$ 4. $\int d\mathbf{v}_1 \int d\omega_1 \mathbf{v}_1 J_{12} [\mathbf{v}_1, \omega_1 | f_1, f_2] \approx \lambda \int d\mathbf{v}_1 \int d\omega_1 \mathbf{v}_1 J_{12} [\mathbf{v}_1, \omega_1 | f_1, f_2] \Big|_{\substack{\alpha = 1 \\ \beta = -1}}$ $\lambda(\alpha, \beta) \equiv \frac{1+\alpha}{2} + \frac{\kappa}{1+\kappa} \frac{1+\beta}{2}, \quad \kappa \equiv \frac{4I}{m\sigma^2}$ Elastic smooth spheres

$$\begin{split} & \mathcal{C}\text{ollisional rates of change} \\ & \zeta_{\Omega} = \frac{5}{6} \frac{1+\beta}{1+\kappa} \nu \\ & \xi^{\text{tr}} = \frac{5}{12} \left[1 - \alpha^2 + \frac{\kappa}{1+\kappa} \left(1 - \beta^2 \right) + \frac{\kappa}{(1+\kappa)^2} \left(1 + \beta \right)^2 \left(1 - \frac{T^{\text{rot}}(1+X)}{T^{\text{tr}}} \right) \right] \nu \\ & \xi^{\text{rot}} = \frac{5}{12} \frac{1+\beta}{1+\kappa} \frac{T^{\text{tr}}}{T^{\text{rot}}} \left[(1-\beta) \frac{T^{\text{rot}}(1+X)}{T^{\text{tr}}} - \frac{\kappa}{1+\kappa} \left(1 + \beta \right) \left(1 - \frac{T^{\text{rot}}(1+X)}{T^{\text{tr}}} \right) \right] \nu \\ & X \equiv \frac{\kappa m \sigma^2 \Omega^2}{12 T^{\text{rot}}}, \quad \nu \equiv \frac{16}{5} \sigma^2 n \sqrt{\pi T^{\text{tr}}/m} \end{split}$$

27th RGD, Asilomar Conference Grounds (CA), July 10-15, 2010

25

The kinetic model. Joint distribution

 $\partial_t f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) + \mathbf{v} \cdot \nabla f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) = J[\mathbf{v}, \boldsymbol{\omega} | f, f]$

$$\begin{aligned} J[f,f] &\to -\lambda\nu \left(f-f_0\right) \\ &+ \frac{1}{2}\xi^{\mathrm{tr}}\frac{\partial}{\partial \mathbf{v}} \cdot \left[(\mathbf{v}-\mathbf{u})f\right] + \frac{1}{2}\frac{\partial}{\partial \boldsymbol{\omega}} \cdot \left\{ \left[2\zeta_{\Omega}\boldsymbol{\Omega} + \overline{\xi}^{\mathrm{rot}}\left(\boldsymbol{\omega}-\boldsymbol{\Omega}\right)\right]f \right\} \end{aligned}$$

$$f_0 = n \left(\frac{mI}{4\pi^2 T^{\text{tr}}\overline{T}^{\text{rot}}}\right)^{3/2} \exp\left[-\frac{m(\mathbf{v}-\mathbf{u})^2}{2T^{\text{tr}}} - \frac{I\omega^2}{2\overline{T}^{\text{rot}}}\right]$$

$$\overline{T}^{\text{rot}} \equiv \frac{I}{3} \langle (\boldsymbol{\omega} - \boldsymbol{\Omega})^2 \rangle = T^{\text{rot}} (1 - X), \quad \overline{\xi}^{\text{rot}} = \frac{\xi^{\text{rot}} - 2\zeta_{\Omega} X}{1 - X}$$

$$\begin{split} & \textbf{A simpler version.} \\ & \textbf{Marginal distributions} \\ f^{tr}(\mathbf{r}, \mathbf{v}, t) = \int d\boldsymbol{\omega} f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t), \quad f^{rot}(\mathbf{r}, \boldsymbol{\omega}, t) = \frac{1}{n} \int d\mathbf{v} f(\mathbf{r}, \mathbf{v}, \boldsymbol{\omega}, t) \\ \hline \\ & \boldsymbol{\delta}_t f^{tr} + \mathbf{v} \cdot \nabla f^{tr} = -\lambda \nu \left(f^{tr} - f_0^{tr} \right) + \frac{1}{2} \xi^{tr} \frac{\partial}{\partial \mathbf{v}} \cdot \left[(\mathbf{v} - \mathbf{u}) f^{tr} \right] \\ & \boldsymbol{\delta}_t f^{tr} + \mathbf{u} \cdot \nabla f^{rot} = -\lambda \nu_0 \left(f^{rot} - f_0^{rot} \right) \\ & \boldsymbol{\delta}_t f^{rot} + \mathbf{u} \cdot \nabla f^{rot} = -\lambda \nu_0 \left(f^{rot} - f_0^{rot} \right) \\ & \quad + \frac{1}{2} \frac{\partial}{\partial \omega} \cdot \left\{ \left[2 \zeta_\Omega \Omega + \overline{\xi}^{rot} \left(\boldsymbol{\omega} - \Omega \right) \right] f^{rot} \right\} \end{split}$$

$$\begin{array}{l} \begin{array}{l} \text{An even simpler version.}\\ \text{Translational distribution} \end{array}\\ f^{\mathrm{tr}} = \int d\omega \, f, \quad \Omega = \frac{1}{n} \int d\mathbf{v} \int d\omega \, \omega f, \quad T^{\mathrm{rot}} = \frac{I}{3n} \int d\mathbf{v} \int d\omega \, \omega^2 f \end{array}\\ \left[\begin{array}{l} \partial_t f^{\mathrm{tr}} + \mathbf{v} \cdot \nabla f^{\mathrm{tr}} = -\lambda \nu_0 \left(f^{\mathrm{tr}} - f_0^{\mathrm{tr}} \right) + \frac{1}{2} \xi^{\mathrm{tr}} \frac{\partial}{\partial \mathbf{v}} \cdot \left[(\mathbf{v} - \mathbf{u}) f^{\mathrm{tr}} \right] \end{array} \right] \end{aligned}\\ \left(\int d\mathbf{v} \int d\omega \, \mathbf{v} \omega f \to n \mathbf{u} \Omega, \quad \frac{I}{3} \int d\mathbf{v} \int d\omega \, \mathbf{v} \omega^2 f \to n \mathbf{u} T^{\mathrm{rot}} \right) \\ \partial_t \Omega + \mathbf{u} \cdot \nabla \Omega = -\zeta_\Omega \Omega, \quad \partial_t T^{\mathrm{rot}} + \mathbf{u} \cdot \nabla T^{\mathrm{rot}} = -\xi^{\mathrm{rot}} T^{\mathrm{rot}} \end{array}$$

Application to simple shear flow (steady state)

Application to simple shear flow

Shear stress

Anisotropic translational temperature

Application to simple shear flow "Universal" relationship

Application to simple shear flow Velocity distribution function

Conclusions and outlook

- Collisional energy production rates obtained for mixtures of inelastic rough hard spheres.
- Homogeneous cooling state: Paradoxical effect in the quasi-smooth limit.
- Simulations planned to test the theoretical predictions.
- Proposal of a simple model kinetic equation for the single-component case.
- Solution of the above model in the simple shear flow.
 Simulations planned.
- Application of the model to other states (Couette flow, force-driven Poiseuille flow, uniform longitudinal flow, ...)
- Derivation of the Navier-Stokes constitutive equations.

Thanks for your attention!

