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Abstract

We study numerically the critical properties of the U(1)-Higgs lat-

tice model, with �xed Higgs modulus, in the region of small gauge

coupling where the Higgs and Con�ning phases merge. We �nd evi-

dence of a �rst order transition line that ends in a second order point.

By means of a rotation in parameter space we introduce thermody-

namic magnitudes and critical exponents in close resemblance with

simple models that show analogous critical behaviour. The measured

data allow us to �t the critical exponents �nding values in agreement

with the mean �eld prediction. The location of the critical point and

the slope of the �rst order line are accurately given.
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1 Introduction

The nonperturbative formulation of four dimensional �eld theories is a very

debated subject. At present, only asymptotically free theories can be rigor-

ously constructed (See [1] for a review).

On the other hand, there is evidence [2, 3] that a self-coupled (�'

4

) four

dimensional scalar �eld theory is trivial, that is, it describes a free theory

after |nonperturbative| renormalization.

The question of nontriviality of scalar �elds coupled to gauge �elds is,

however, not so clear [4]. In the last few years a considerable e�ort on the

understanding of this problem has been carried out.

In this work we study a four dimensional theory with a continuous sym-

metry group: the �xed module U(1)-Higgs theory. Although it does not

represent a limit of the SU(2)�U(1) theory (it lacks a global SU(2) sym-

metry), we expect that many of the results obtained here may be useful for

more complex models.

The phase diagram of our model is represented in Fig. 1 where it can

be seen that there are three phases: Con�ning, Higgs and Coulomb (strictly

speaking only two since the �rst and second are analytically connected).

We have focused our attention in the line that separates the �rst two

phases. We found that it corresponds to a �rst order phase transition. At

the end-point of the line we have observed a clear critical (second order)

behaviour, where it is possible to de�ne a continuum limit. We study the

critical exponents at this point, as they are useful to discover the proper-

ties of the continuum theory, in particular whether the theory is trivial or

interacting.

We study the model with the parameter � =1 (see (1)), which is equiv-

alent to �x the modulus of the Higgs �eld j�j = 1. It is generally assumed

that the �xed modulus theory belongs to the same Universality Class as the

full (� �nite) one.

In order to �nd the critical exponents we compute the evolution of several

thermodynamic quantities for di�erent coupling and several lattice sizes.

We have performed Monte Carlo simulations on lattices ranging from 6

4

to 24

4

. The results presented here amount to 8 months of CPU of a custom

64 INMOS T805 transputer machine with a performance of 100 Mops.

In section 2 and 3 we formulate the model and describe some of its known

properties. Scaling relations and critical exponents near the critical point are
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also introduced. In section 4 we de�ne the observables that will be measured

in the simulation. The numerical method is described in section 5. Finally,

the results are shown in section 6. We include in the appendix the description

of the dedicated multiprocessor machine designed and constructed by our

group.

2 Formulation

The action for a self-coupled scalar �eld with a local U(1) gauge symmetry

(U(1)-Higgs model) in a lattice can be written as

S = ��

X

r;�<�

ReU

r;��

� �

X

r;�

Re

�

�

r

U

r;�

�

r+�

+ �

X

r

(j�

r

j

2

� 1)

2

+ 4�

X

r

j�

r

j

2

;

(1)

where r is the four dimensional lattice site, the Greek indices �; � 2 f1; 2; 3; 4g

represent the four lattice directions and �

r

is the value of the complex scalar

�eld at r, U

r;�

is the gauge (U(1)) �eld at the link in the � direction beginning

at r, and U

r;��

is the plaquette de�ned by the site r and the directions � and

�.

It is usually assumed that the action (1) for �nite � belongs to the same

universality class that the one in the �!1 limit. Taking this limit, we can

�x the modulus of the scalar �eld, and the action becomes (up to an additive

constant)

S = ��

X

r;�<�

ReU

r;��

� �

X

r;�

Re

�

�

r

U

r;�

�

r+�

(2)

In this way both the gauge and the scalar �eld belong to the U(1) group.

We will limit ourselves in this work to study this two{parameter model.

3 Critical behaviour

3.1 Description of the parameter space

Let us briey describe the di�erent limits of the action when the coupling

parameters �; � take the extreme values 0 or 1.

4



3.1.1 � =1

In this case the gauge �elds are frozen out and the remaining model is:

S = ��

X

r;�

Re

�

�

r

�

r+�

(3)

This action has a global O(2) symmetry (or U(1)). The O(N) model in four

dimensions shows a continuous transition between a disorder phase, with

explicit O(N) symmetry at low � and a ordered one, at high �, where the

O(N) symmetry breaks down to a O(N-1) symmetry . Due to the Goldstone

theorem this phase has N-1 massless Goldstone bosons (spin waves). This is

a gaussian second order phase transition [5].

We can estimate �

c

using the mean �eld approximation (MFA), the result

is [6]:

�

c;MFA

=

N

2q

(4)

where q is the coordination number, 2d in our case (d-dimensional square

lattice). This is an approximation from below since MFA neglects the uc-

tuations and overestimates the interactions.

An upper limit is [7]:

�

c

�

NI(d)

2

(5)

where:

I(d) =

Z

�

��

dk

1

:::dk

d

(2�)

d

1

P

d

j=1

(1 � cos(k

j

))

(6)

If we take N = 2 and d = 4 we get:

0:125 � �

c

� 0:311 (7)

3.1.2 � = 0

This situation corresponds to a spin model with annealed bond disorder [7]

(the disorder is in thermodynamic equilibrium with the Higgs �eld). The

action is:

S = ��

X

r;�

Re

�

�

r

U

r;�

�

r+�

(8)
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There is not a phase transition in this case, for the following reason: it can

be made a gauge transformation which maps the Higgs �eld into a constant

because the Higgs �eld lives in the U(1) group. The functional integration

over the Higgs is trivial and the U(1) sector is a one-link separable theory

(without interaction).

3.1.3 � = 0

The remaining model is U(1) pure gauge. This model shows a transition

between a maximally disordered Con�ning phase, at low �, and a Coulomb

phase (it has free photons and coulomb potential between static charges) at

high �. The transition, located at � � 1, is found to be �rst order [8].

Applying a theorem by Shrock [7], the full theory at low � can be written

as a pure U(1) theory with a shifted coupling, where the shift is proportional

to �

4

. Thus we can extend the � = 0 transition to a small �.

3.1.4 � =1

It is always possible to �x the unitary gauge, so that the Higgs �elds disap-

pears and the action (2) becomes

S = ��

X

r;�<�

ReU

r;��

� �

X

r;�

ReU

r;�

(9)

Now in the � = 1 limit, the second term in the action makes that

only con�gurations that satisfy ReU

r;�

= 1 have non vanishing probability.

Then, S becomes trivial, and there is no transition in this case. The situation

changes when charged (q > 1) Higgs �elds are considered [9]. Then the limit

� =1 corresponds to a non trivial Z

q

gauge theory.

3.1.5 Interior of the parameter space

The phase diagram of the model was studied on the pioneering work of Frad-

kin and Shenker [10], and is plotted in the �gure 1. Further studies can be

found in references [5, 8, 11].

On the point \C" there is coexistence of Con�ning, Coulomb and Higgs

phases (triple point).

If we consider � 6= 1 the main modi�cation is that the end point \D"

tends, as � decreases, to the � = 0 axis and �nally cuts it.
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The transition line \B-C" is a line of second order transition, the vertical

line \A-C" is of �rst order [11] and we will show that the line \D-C" is, again,

of �rst order. The end point (\D") is according to our study a second order

point.

3.2 Critical behaviour in related systems

Regarding the \C-D" line, the structure of our model is similar to that of a

wide variety of systems, like, for instance, the magnetic Ising model or the

liquid-vapour transition.

The Ising model with nearest neighbour interaction has an action

S = �J

X

<ij>

S

i

S

j

� h

X

i

S

i

(10)

it shows a �rst order phase transition line (h = 0; J > J

c

) that �nishes in a

second order critical point at J

c

.

The position of the end point may be determined studying the behaviour

of the magnetization over the �rst order {straight| line. It is found that

M � (J � J

c

)

�

; J > J

c

(11)

The exponents � and  are de�ned respectively from the critical behaviour

of the speci�c heat and susceptibility:

C � jJ � J

c

j

��

(12)

� � jJ � J

c

j

�

(13)

which hold the scaling relation [12]

� + 2� +  = 2 (14)

Another analogous system is the liquid-vapour transition. The lack of

a symmetry implies that neither the straightness of the critical line nor its

exact location (h = 0 in the Ising case) are given. In this system the critical

exponents (�; �; ) have been experimentally measured [13] and the relation

(14) checked.

In our model we have not an explicit symmetry and so, the exact position

and shape of the transition line, must be numerically computed. However

we can de�ne the critical exponents as in the previous models.
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4 Observables

We de�ne the (normalized) plaquette and link energies as

E

P

=

1

6V

X

r;�<�

ReU

r;��

(15)

E

L

=

1

4V

X

r;�

Re

�

�

r

U

r;�

�

r+�

(16)

where V = L

4

is the volume of the lattice. In terms of the above energies,

the action can be rewritten as:

�S = �E

P

6V + �E

L

4V (17)

Both E

P

and E

L

lie in the [�1; 1] interval. With our de�nition, E

P

! 1 when

� !1 and E

L

! 1 when �!1. < E

P

>=< E

L

>= 0 at � = � = 0.

Let us write the partition function as

Z(�; �) =

Z

[dU ][d�]e

�S

: (18)

It is useful to introduce the parameter �

0

� 2�=3 to symmetrize the action.

In this way the uctuation matrix (or connected correlation) can be written

as

F

ij

�< E

i

E

j

> � < E

i

>< E

j

>=

1

(6V )

2

@

2

logZ(x

i

; x

j

)

@x

i

@x

j

(19)

where

x

1

= �; x

2

= �

0

; E

1

= E

P

; E

2

= E

L

(20)

At a given point (�

0

; �

0

0

), the F matrix can be diagonalized. We shall call

�

max

and �

min

to their maximum and minimum eigenvalues respectively.

We can perform a rotation of angle � in such a way that in the new

coordinates

c

?

� � cos � + �

0

sin � (21)

c

k

� �� sin � + �

0

cos � (22)

the uctuation matrix is diagonal.
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Consequently the operators

E

?

� E

1

cos � + E

2

sin � (23)

E

k

� �E

1

sin � + E

2

cos � (24)

are uncorrelated. In terms of the new quantities the action can be written as

�S = (c

?

E

?

+ c

k

E

k

)6V (25)

Assuming that the point \D" is second order, we expect divergences in

somemagnitudes. Using the Ising model analogy discussed in section (3.2) we

can write the following formulae for the previously de�ned thermodynamic

quantities:

�E

?

(c

k

) �

@f

@c

?

�

�

�

�

�

c

?

=a

+

�

@f

@c

?

�

�

�

�

�

c

?

=a

�

� (c

k

� c

c

k

)

�

; c

k

< c

c

k

(26)

�(c

k

) �

@

2

f

@c

2

?

�

�

�

�

�

c

?

=a

= (6V )�

max

� jc

k

� c

c

k

j

�

(27)

C(c

k

) �

@

2

f

@c

2

k

�

�

�

�

�

�

c

?

=a

= (6V )�

min

� jc

k

� c

c

k

j

��

(28)

where f �

1

6V

logZ is the intensive free energy, � is the susceptibility and C

is the speci�c heat. We have call a to the value of the c

?

parameter on the

�rst order line that, as we shall see below, is almost independent of c

k

in the

interesting region (neighbourhood of \D").

The critical law for �E

?

is analogous to that for the Ising magnetization.

We denote as �E

?

the di�erence between E

?

in the Con�ning and Higgs

phases in the c

?

! a limit.

Therefore, we expect the three critical exponents de�ned above to follow

the scaling relation (14).

5 The numerical method

We have used the subgroup Z

N

with N = 1024 as an approximation of

the gauge group U(1) since, in the region of interest, the uctuations of
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the variables are large (typically of the order of 1 radian), and the phase

transition associated with the discrete group is safely far away.

The updating algorithm is an adaptive step size Metropolis, with an ac-

ceptance rate of more than a sixty percent.

5.1 Parallelization

We have used lattice sizes 6

4

; 8

4

; 12

4

; 16

4

and 24

4

implemented on a transputer

(IMS-T805) [14] machine of 64 processors with a 8 � 8 topology. For the

smaller lattices, we have also used transputer boards of 8 and 3 processors

with 4 � 2, 8� 1 and 3 � 1 topologies.

The parallelization strategy is straightforward: divide the lattice among

the processors, so that each of them accounts for a smaller sublattice that

can be updated in parallel with the other transputers. One of the problems

is that, being a nearest neighbour interaction, the update cannot be entirely

made inside each processor: the sites and links in the border of the sublattice

must know some of the variables in the neighbouring transputer.

A critical choice in the parallelization is the way in which neighbouring

processors exchange the necessary information during the update. The sim-

pler method could be the transmission, by means of a parallel process, of the

variables that are required in a given step of the calculation. In addition of

a minor problem of synchronization, transmitting single variables is poorly

e�cient regarding the link bandwidth and also, it means a considerable over-

head due to the frequent start and end of needed parallel processes.

For this reason we have added to the sublattice in each transputer the

rows and columns of the links and sites needed to make the update entirely

inside. For instance, in the 16

4

lattice on the 64-processor machine with

a 8 � 8 topology, each transputer holds a sublattice of 4 � 4 � 16

2

lattice

and not a 2� 2� 16

2

lattice. The update is performed almost synchronized

in all processors. Once it is �nished, the borders are transmitted to the

neighbouring processors. To guarantee the independence of the variables

currently updating, we perform a checkered update.

We have obtained in this way a parallel e�ciency close to a 95%.
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5.2 Spectral Density Method

The precise location of the critical values of the parameters may be a di�cult

task because Monte Carlo methods provide information about the thermo-

dynamic quantities only at particular values of the couplings. The approach

that we use here to locate them is based on histograms and is known as the

Spectral Density Method [15].

The generalization of the method to a two{dimensional parameter space

is straightforward. Considering that, we perform a Monte Carlo simulation

at a particular point of the parameter space (�; �), and we compute the

histogram H(E

P

; E

L

) as an approximation to the density of states. The

probability of �nding a con�guration of plaquette energy E

P

and link energy

E

L

at a di�erent point (�

1

; �

1

) can be calculated as

P

(�

1

;�

1

)

(E

P

; E

L

) =

H(E

P

; E

L

)e

(�

1

��)6VE

P

+(�

1

��)4VE

L

R

dE

0

P

dE

0

L

H(E

0

P

; E

0

L

)e

(�

1

��)6VE

0

P

+(�

1

��)4VE

0

L

: (29)

Let us discuss the range of applicability of the Spectral Density Method.

Let �

P

; �

L

be the widths of the measured histogram in the E

P

; E

L

directions

respectively. It may be easily seen from the previous equation that the ranges

are �� � 1=(6V �

P

);�� � 1=(4V �

L

).

Although near the transition line �

P

(or analogously �

L

) is large, the

application of (29) at �xed � is very useful to �nd the �-value where the

uctuation of the energy has a maximum |apparent critical point| and,

eventually, to adjust the parameters for a new simulation.

We can also move simultaneously in both directions. The minimumeigen-

value of the uctuation matrix corresponds to an eigenvector parallel to the

transition line. This means that the range of applicability of the Spectral

Density Method in the c

k

direction is large.

We can go one step further using data from simulations at di�erent points

of the parameter space, using a two{dimensional generalization of the mul-

tihistogram method proposed in [16], which gathers all the information for a

given lattice size. This method has been used for many observables and the

results plotted as a smooth line in the �gures, with the points corresponding

to single simulations. However, in order to obtain a safer estimation of the

errors, we only use the single points to do the �ts to a critical power law.
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Usually, the Spectral Density Method is very useful to �nd the value of

the coupling where some observable has a maximum, as well as to obtain an

accurate value for this maximum. In this work we have used it extensively

to locate the transition line \C-D" at a �xed c

k

, looking for the maximum in

the uctuation of E

?

. However, in order to �nd the end point \D" we have

to move in the c

k

direction, in doing so we do not �nd a maximum for any

simple observable, and the usefulness of the method is a great extent lost.

5.3 Measurements

At every simulation point we store the plaquette and link energies to con-

struct the histograms. We compute the two{dimensional histogram in the

E

P

-E

L

plane. As an example, we show in �gure 2 some contour plots of the

energies histogram.

In principle we can move in the (�; �) plane in whatever direction using

the spectral density method. In �gure 3 we plot the mean value of E

?

as a

function of the couplings obtained with the multihistogram method.

Nevertheless, most of the results presented in this work, have been ob-

tained studying one dimensional histograms. To this end, we rotate the

parameter space in order to discretize the energies E

?

. To simplify the com-

putations we have chosen a �xed rotation angle for all lattice sizes and all

the parameter space points. Notice that the error in the determination of

the angle could only mean second order corrections for most of the quanti-

ties of interest. The only exception is the minimum eigenvalue �

min

that is

computed diagonalizing the uctuation matrix in every simulation.

We usually discretize the energy interval into one hundred subintervals.

From the (one dimensional) histogram (�gure 4, upper side), we compute

E

?

and @E

?

=@c

?

in the neighbourhood of the simulation point, determining

the best approximation to the critical point by looking at the maximum of

the derivative. In �gure 5 we show an example of this method. The validity

range is estimated from the uctuation in the energy.

A very important quantity to be computed is the latent heat, that is,

the di�erence between the values of E

?

on both sides of the �rst order line.

In a �nite lattice this limit is not well de�ned; we take as its de�nition

the distance between the two minima of the e�ective potential at the �rst

order line (that is, the distance between the two maxima of the histogram).

Unfortunately, this procedure needs a precise estimation of the local maxima
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of a noisy function. To reduce the statistical error, we smooth the histogram

in the region near each maximumwith a cubic spline, measuring the distance

between the smoothed functions (see �gure 4, lower side).

The computation of statistical errors has been carried out using the jack-

knife method. We perform a primary determination of the correlation in

Monte Carlo time and construct statistically independent bins. The number

of iterations performed in the larger lattices for � 2 [0:52; 0:54] has been (in

thousands of Monte Carlo Sweeps)

L = 16; � = 0:52 : 200

L = 16; � = 0:525 : 500

L = 16; � = 0:5275 : 600

L = 16; � = 0:53 : 800

L = 16; � = 0:54 : 200

L = 24; � = 0:52 : 100

L = 24; � = 0:5275 : 800

L = 24; � = 0:53 : 200

(30)

so that, in the neighbourhood of the critical point, we can use bins of around

a hundred thousand of MC sweeps.

6 Results

In this section we report our results classi�ed according to every observable

computed. In all cases we have used the coordinate transformation to the

(c

?

; c

k

) plane.

For the sake of simplicity regarding the �gures we �x from the beginning

� � 0:96 (31)

which is within a 1% our estimation for the angle of the uctuation matrix

de�ned above. We will discuss in every case the e�ects of the particular

selection of this quantity.

We have always run in points of the parameter space over the �rst order

line for c

k

< c

c

k

and on the prolongation (dotted line in �gure 1) for c

k

> c

c

k

.

Since there is not an explicit symmetry, as in the liquid vapour transition,

the straightness of the transition line is not implied, and then the angle of

13



the eigenvector of the uctuation matrix does not have to take the same

value as the one of the �rst order line. However we have found numerically

that, over the line, c

?

is practically constant; it changes less than 0:01% for

� 2 [0:52; 0:54] (c

k

2 [�0:501;�0:478]).

6.1 Latent Heat

As we saw in (26) the critical exponent � is related with the behaviour of

�E

?

over the critical line.

At the �rst order line there is a discontinuity in E

?

and the gap between

its values on both sides, is, in the thermodynamic limit, the latent heat.

In a �nite lattice it is not easy to measure this gap since the discontinuity

is rounded. The method used in this work is to compute the gap from

the histogram in the quantity E

?

. More precisely we compute the distance

between the two maxima of the histogram. If the height of both is not

the same we shift (with the Spectral Density Method) the histogram the

necessary amount in c

?

.

Since E

k

is continuous, it is equivalent, regarding the critical behaviour,

to make the analysis in terms of E

?

or almost any linear combination of E

?

and E

k

, with the only requirement of a nonvanishing coe�cient in E

?

. In [17]

we used the latent heat for the plaquette energy. We expect a |slightly|

better measurement when choosing the optimum combination of E

P

and E

L

which is E

?

.

For the same reason, a small error in the determination of the rotation

angle � is unimportant. We remark that this error a�ects only quadratically

so that it is completely negligible.

In �gure 6 we show our measurements for �E

?

for several couplings and

lattice sizes as a function of c

k

.

Although the critical behaviour is very clear, a precise determination of

the critical exponent (�) is very di�cult.

Equation (26) is only followed strictly in the thermodynamic limit. In

a �nite lattice, we should �nd deviations from the functional form E

?

=

A(c

k

�c

c

k

)

�

, however, it is expected that the main deviation can be considered

as a �nite size dependence on the parameters fA; c

c

k

; �g. In particular we

expect the strongest dependence on the parameter c

c

k

(see section below on

Finite Size Scaling). The procedure we use to compute the parameters is the

following: we �t the whole data to the function (26) with � independent of
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L, allowing a �nite size dependence for c

c

k

and A. Successively we discard

the data from the smaller lattices to check the asymptotic behaviour. Our

results are

L = 6; 8; 12; 16 � = 0:53(7)

L = 8; 12; 16 � = 0:53(7)

L = 12; 16 � = 0:55(9)

L = 16 � = 0:50(11)

(32)

Although the statistical errors do not allow us to observe a monotonous

evolution to the thermodynamic limit, the previous results give a strong

evidence in favour of the classical value � = 1=2.

In reference [17] we compute the exponent � using only the data from

the plaquette energy. Although the simulations are essentially the same,

some minor variations are found since the observables are not completely

correlated. In [17] we found � = 0:54(6) for L = 12; 16 and � = 0:47(9) for

L = 16.

In �gure 7 we plot the latent heat squared as a function of the parameter

c

k

for the points near the critical one. The linear behaviour seems to be in

agreement with the data.

6.2 Maximum eigenvalue

An alternative way to compute the exponent � is measuring the uctuation

of the energy. The uctuation of E

?

is what we previously called �

max

. In

the limit of a histogram with in�nitely narrow peaks, �

max

= (�E

?

)

2

=4.

We point out that measuring �

max

instead of �E

?

is similar to measure the

square of the magnetization (in a magnetic system) to avoid the cancellation

of the magnetization due to tunneling e�ects.

In practice it is not necessary to diagonalize the uctuation matrix at

each point since the variations of the angle � only a�ect quadratically, and

mainly as a global multiplicative constant.

In �gure 8 we show the evolution of �

max

as a function of c

k

for several

lattice sizes. We see a window in the larger lattices where the behaviour is

almost linear according to �

max

= A(c

k

� c

c

k

)

2�

with � near 1=2.

We remark that the statistical error in the measure of �

max

is much smaller

than the one for the latent heat (compare �gures 7 and 8). Unfortunately,

the deviation from the square of the latent heat due to �nite size e�ects is
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large, so it is not easy to obtain a precise estimation of the exponent � and

of its error.

6.3 Susceptibility

The susceptibility � = @E

?

=@c

?

is related to the maximum eigenvalue of

the uctuation matrix in the absence of phase coexistence and there its mea-

surement is straightforward: � = 6V �

max

. When c

k

< c

c

k

we would have to

measure � at c

?

near the transition line and, after that, take the limit from

one side of the transition. Alternatively, and this is the method we use, we

can divide the histogram in E

?

in two halves and measure the uctuation on

each half. In the thermodynamic limit the results are equivalent. However,

for �nite lattices near the critical point the overlap between both peaks is

big and the measure of � cannot be very precise.

In �gure 9 we show our results for 6V �

max

which can be called suscepti-

bility only for c

k

> c

c

k

.

The �nite size e�ects do not allow us to use directly the points in the

simulated lattices for �tting to the critical power law (see �gure 9). To

compute  we �rst take the thermodynamic limit and then �t the asymptotic

values. We must point out that this indirect process reduces the objectivity

in the determination of the error. Our results are

 = 1:13(17) (33)

according with the Mean Field prediction  = 1.

In �gure 10 we plot the results for � in the larger lattices, including also

the values for c

k

< c

c

k

obtained using the division method discussed above.

We can obtain a more precise value computing the dispersion excluding the

region of the histogram between peaks: we compute the dispersion in the

�rst phase integrating over the left part of the �rst peak, and in the second,

integrating over the right part of the second peak. The accumulated error

is di�cult to compute, but we can obtain a crude estimation comparing the

results from both peaks (see �gure 10).

We stress that with the hypothesis of the same exponents on both sides

of the transition ( = 

0

) we obtain again (after excluding the points closer

to the critical point which show great �nite size e�ects) a value for  near 1.
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Finally we remark that the divergence of the susceptibility when ap-

proaching the thermodynamic limit is a clear evidence of a second order

behaviour at the end point \D".

6.4 Speci�c Heat

The small eigenvalue of the uctuation matrix is related with the energy E

k

:

�

min

=

1

6V

@E

k

@c

k

(34)

so that, in our analogy with the Ising model, we can call it Speci�c Heat.

Since @E

k

=@c

k

� Ajc

k

� c

c

k

j

��

, V �

min

should present a divergence at the

critical point if � > 0. If � = 0 the divergence should be logarithmic and so,

hard to observe.

To determine the small eigenvalue of a matrix with a much larger one is

not an easy task. However we have obtained quite precise determinations.

Notice that the minimum eigenvalue is just the width of the two{dimensional

histogram (see �gure 2) which can be clearly distinguished from its length.

In �gure 11 we plot the minimum eigenvalue (times V ) as a function of

c

k

. The absence of a divergence at the critical point practically excludes the

possibility of a positive value for �.

In a strict sense, when there is phase coexistence we would have to com-

pute the minimal eigenvalue for both phases. For large lattices the E

P

�E

L

histogram becomes very narrow, and the di�erence in the angle at each phase

makes the minimum eigenvalue for the whole histogram to grow (see �gure

11). Nevertheless, this does not change our conclusions about the behaviour

at the critical point.

6.5 Finite Size Scaling

The critical exponent � has been computed with a Finite Size Scaling Anal-

ysis. We have study the shift in the apparent critical point as a function of

the lattice size. We expect that the shift will follow the law

�c

c

k

(L) � L

�

1

�

(35)
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In �gure 12 we plot the values (squared) obtained �tting the latent heat

data for each lattice size �xing the value of �. A least squares three parameter

�t gives

� = 0:52(4) (36)

The value (36) is almost insensitive to the value of � used in the extrapolation.

For values of � in the range [0:4; 0:6] the resulting � varies by less than 0:01.

In reference [17] using just the plaquette energy data, we obtained the

value � = 0:47(4).

7 Conclusions

We have found a second order point where critical exponents �; �;  may be

de�ned in close analogy with ferromagnetic spin systems. The location of

this point has been accurately measured:

c

c

?

= 0:77391(2)

c

c

k

= �0:494(1)

(37)

it corresponds to �

c

= 0:8485(8); �

c

= 0:5260(9). Although we have �xed in

(31) the rotation angle � that de�nes c

?

and c

k

, our best estimation of the

angle that diagonalizes the energy uctuation matrix at the critical point is

�

c

= 0:963(3).

The thermodynamic limit extrapolations of the latent heat data corre-

sponding to simulations performed below c

c

k

clearly give nonvanishing values,

that show the �rst order nature of the critical line between the Higgs and

the Con�ning phase.

Fitting the thermodynamic limit extrapolations of the inverse suscepti-

bility we have seen that it approaches zero at c

c

k

, giving us a strong evidence

of its second order behaviour. This result has also been con�rmed with ex-

trapolations from the region below c

c

k

.

Our estimations of the critical exponents are compatible with the mean

�eld results � = 0; � = 1=2;  = 1; � = 1=2.
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8 Appendix

The 64-processors machine that we have call Recon�gurable Transputer Net-

work (RTN), has been entirely designed and build inside our group. It pro-

vides us with a power of 100 (sustained) Mops at a low cost. In the actual

con�guration it holds eight boards with eight T800 each, plus a controller

board with one transputer. RTN interfaces with a host computer, a PC in

the actual con�guration, via another board (root board). The eight trans-

puter boards have also a cross-link C004 (programmable switch) that allows

to interconnect them. Each transputer has 1 Mb of memory (may have up to

4Mb). They are connected inside the board forming a ring. One of the two

remaining links of each transputer is connected to the C004 and the other

free link is connected to the C004 of the next board. In this way we may

have a torus (8 � 8) topology for the 64 transputers. Nevertheless it is pos-

sible through the C004s to attain di�erent topologies. We could divide, for

instance, RTN in eight identical machines dedicated to di�erent problems.

The purpose of the controller board, which has a transputer and a cross-

link , is to boot the code to each transputer of RTN, close the torus, wait for

the end of the calculation, open the torus, read the results and repeat the

process. The way to know when the calculation is done and when to open

the torus is through the event pin of one of the transputer in each board.

The root board, as we said, interfaces with the host computer and is

responsible for sending the code and input to the controller board, it also

reads the output from the controller and writes it on the host devices (disk,

terminal, etc.).
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Figure captions.

1. Scheme of the phase diagram of the �xed module U(1)-Higgs model.

2. Contour plots of two{dimensional (E

P

-E

L

) energy histograms for L = 8

(upper part) and L = 12 (lower part). The left side ones correspond

to the point (�; �) = (0:854; 0:52) and those on the right to (�; �) =

(0:835; 0:54). In all cases the most external contour is plotted at a value

of a 10% of the maximum.

3. E

?

near the critical point in a L = 8 lattice using a multihistogram

method.

4. Example of one{dimensional histogram (above). Example of the mea-

sure of the latent heat with a cubic spline �t (below). The data corre-

spond to 500000 sweeps on a L = 16 lattice for (�; �) = (0:8495; 0:525).

5. E

?

(above) and @E

?

=@c

?

(below) using the Spectral Density Method

obtained from a simulation with L = 12, � = 0:84945, � = 0:525,

500000 MC sweeps. The �lled circle is plotted at the c

k

of the simula-

tion.

6. Jump of E

?

across the �rst order line. The continuous lines are ob-

tained from a power law �t.

7. Square of the Latent Heat as function of c

k

. The straight lines are

minimum squares �ts. Symbols as in �gure 6.

8. Maximum eigenvalue of the energy uctuation matrix against c

k

. The

continuous lines are obtained with a multihistogram method.

9. Inverse of the susceptibility (when there is no phase coexistence) as a

function of c

k

. The continuous lines are obtained with a multihistogram

method.

10. Inverse of the susceptibility on both sides of c

c

k

. Only represented for

L = 16 (circles) and L = 24 (triangles).

11. Minimum eigenvalue of the energy uctuation matrix against c

k

.

12. c

c

k

(L) as a function of 1=L
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