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Abstract. We describe Janus, an application-driven architecture for
Monte Carlo simulations of spin glasses. Janus is a massively parallel
architecture, based on reconfigurable FPGA nodes; it offers two orders
of magnitude better performance than commodity systems for spin glass
applications. The first generation Janus machine has been operational
since early 2008; we are currently developing a new generation, that
will be on line in early 2013. In this paper we present the Janus archi-
tecture, describe both implementations and compare their performances
with those of commodity systems.

1 Introduction

A major challenge in condensed-matter physics is the understanding of glassy
behavior. Glasses are materials with strong industrial relevance (aviation, phar-
maceuticals, automotive, etc.) that do not reach thermal equilibrium in human
lifetimes; a quantitative understanding of their behavior is still an open problem.

Spin glasses (SG) [1] are a widely studied category of prototypical glassy
models. Spin variables, taking a small set of discrete values (e.g. just two , ±1)
sit at the nodes of a regular D-dimensional lattice, and tend to align (or anti-
align) with their neighbors according to the sign of a coupling constant associated
to the link connecting neighbor sites.



The deceivingly simple rules (see later) governing the evolution of each spin,
translate into complex collective dynamics as soon as the lattice has even a fairly
small number of sites (e.g., ≥ 1000 sites). A striking feature of glasses – and of
SG models – is that at low enough temperatures (below the critical temperature,
Tc) important material properties, such as the compliance modulus or specific
heat, depend on time even if the sample is kept for months (years) at constant
experimental conditions.

If one quickly cools a sample below Tc, glassy domains grow in the system;
their size defines a time-dependent coherence length ξ(t); ξ(t) remains very small
(e.g., just a few tens of lattice spacings) even for macroscopic times. Good news is
that lattices whose size is just a small multiple of ξ(t) reproduce the experimental
evolution, so numerical simulations on computationally affordable lattices are an
accurate investigation tool. Bad news is that long simulations are necessary. One
usually studies SG with Monte Carlo techniques; one Monte Carlo step (the trial
of one spin-reversal on all nodes of the lattice), roughly relates to the average
spin-flip time in a real sample, ' 1 ps; real experiments span a time scale of
seconds, that is ≥ 1012 complete lattice updates in the simulated dynamics. If
one wants to simulate ' 100 independent samples of a lattice with 1003 sites
for 1 (equivalent) second the computational burden quickly goes to 1020 spin-
flip trials. One may also want to study spin glass properties at equilibrium, for
which ξ(t) is roughly the size of the system; this is only possible today for small
lattices (e.g. of linear size ≤ 32); thermalization may require in this case 1012

Monte Carlo steps on thousands of independent samples.

We see that SG simulation is a computational grand challenge. Luckily
enough, SG are easy to treat numerically as their computational algorithms (see
Section 2) offer a huge amount of easily identified parallelism; however, the size
of our simulated system is (and must remain) of limited size: as more computing
resources become available, they must speed up the simulation of a problem of
(almost) fixed size; we are in a regime governed by Amdahl’s law, as opposed to
exploiting larger resources to tackle larger problems (where Gustafson’s law ap-
plies). If one uses standard parallel systems this means that strong performance
scaling is crucial: this is why an application-driven system is appropriate.

This paper describes Janus, a reconfigurable architecture carefully optimized
for Monte Carlo simulations of SG. The first generation Janus machine, deployed
in early 2008, outperformed standard computing systems by two orders of mag-
nitude; after four years it still retains a non-negligible performance edge. We are
now developing a new generation – Janus2 – planned for early 2013; again we
expect performances O(100) better than commercial systems.

This paper is organized as follows: we first describe the SG models we are
interested in, and the Monte Carlo techniques used to investigate them; we then
describe the Janus architecture, highlighting the features that make it a very
efficient SG number-cruncher. We then discuss the first Janus version and provide
details on the new implementation, Janus2. Next, we compare (measured) Janus
and (expected) Janus2 performance with other options available over the lifetime
of the project. Our conclusions and outlooks end our text.



2 Spin Glass models and their simulation

We start by introducing a widely studied SG model and its associated compu-
tational algorithms, highlighting their architectural implications.

The three-dimensional Edwards-Anderson model [2] is a popular SG model,
defined on a lattice of L3 sites; it is easily described in terms of the energy of
the system:

E = −
∑
〈ij〉

σiJijσj ; (1)

σi are L3 spin variables (modeling the magnetic moments at atomic sites); they
take values ±1 and sit at the nodes of the lattice; the sum spans all pairs of near-
est neighbors in the lattice. Jij are the strengths of the interaction (couplings)
along the edges connecting nearest-neighbor sites; Jij > 0 favors alignment of the
corresponding spins, a negative value favors misalignment. Jij values are usually
extracted from a distribution with zero mean and unit variance; the simplest
case is that Jij = ±1 with equal probability (binary model). A given assignment
of 3L3 Jij defines a sample of the system;

The local energy of a spin at site k is ε(σk) = −σkφk; φk depends on the
value of the neighbor spins:

φk =
∑

j=k±x,k±y,k±z

Jkjσj ; (2)

for a given configuration of neighbors, ε(σk) is two valued, ε(±1) = ∓φk. With
the assumption that σk is at equilibrium with its neighbors at a given tem-
perature T , the probabilities that σk = ±1 are given by the Boltzmann-Gibbs
distribution,

P (σk = 1) =
exp [βφk]

exp [βφk] + exp [−βφk]
. (3)

β = 1/T is the inverse temperature (in units such that the Boltzmann constant
KB equals 1). This defines the Heat-Bath Monte Carlo algorithm (see ref. [3]
for a review on Monte Carlo algorithms): we may decide if the spin σk is up or
down by comparing the probability, Eq. (3), with a (pseudo-)random number ρ,
uniformly extracted in [0, 1).

The simulation of a sample starts from an arbitrary initial configuration
(usually chosen by randomly assigning ±1 to all spins) and proceeds as follows:

1. begin a trial spin-flip: pick a site k at random, with uniform probability;
2. compute φk, Eq. (2), and the spin up probability P (+1), Eq. (3);
3. pick a uniformly distributed pseudo-random number 0 ≤ ρ < 1;
4. if ρ < P (+1), then σk = +1, otherwise σk = −1; end of the trial spin-flip;
5. repeat as many times as needed;

One easily maps spin values to bits by setting σk → Sk = (1 +σk)/2 and ap-
plying similar transformations for Jij → Ĵij and φk → Fk; most of the processing



then reduces to logical (as opposed to arithmetic) operations on bits. Fk takes
only seven integer values in [0 . . . 6] so the values of P (+1) can be precomputed
and stored in a small look-up table, addressed by Fk.

A Monte Carlo step (MCS) is defined as a number of trial spin-flips equal to
the number of sites in the lattice; one such step relates to the average spin-flip
time for real systems, as discussed in the introduction. Each MCS produces a new
spin configuration on the lattice; one can show that the sampled configurations
asymptotically follow the Boltzmann-Gibbs distribution (although, in practice
the number of required MCS may be far larger than possible). One also shows
(see e.g., [3]) that, for a large number of MCS, the statistical properties of the
observables (averages over all sites and over MCS) do not depend on the order
in which the algorithm visits each lattice sites; one then adopts a fixed sequence,
so each site is visited once and only once in each MCS, and always in the same
order. This makes it easy to efficiently exploit available parallelism, as we will
see shortly.

The algorithms described above are extremely compute-friendly:

– there are only two critical kernels in the computation, the assignment of a
new value to σk and the correlated generation of one random number;

– both kernels are based on a small number of logical and arithmetic operations
on a small set of variables;

– the main computational structure, when repeated over the whole lattice,
gives rise to regular loops performing the same set of operation on a regu-
larly structured data base, whose elements are stored in memory in regular
patterns that do not depend on the computation itself;

– Control is simple and memory addressing is regular: simple state-machines
are enough for both purposes;

– there is a huge amount of available internal parallelism; this is most easily
unveiled, by considering a checkerboard decomposition of the lattice: the
neighbors of all black sites are white, so each of the two subsets can in
principle by operated upon at the same time;

– there is an additional level of available parallelism – external parallelism
– associated to the fact that one wants to accumulate statistics on several
unrelated samples, or to perform simulations at many different temperatures.

The last point is easily exploited by farming; previous points define the chal-
lenge for an efficient SG engine: extract the largest possible amount of available
parallelism; The ideal SG machine can be seen as a large collection of identi-
cal cores, that perform efficiently the small set of needed logical and arithmetic
operations; a single control structure drives all cores; they work concurrently,
performing the same thread at the same time. Each core is a slim object, of just
' 1000 logical gates, so thousands of them can be easily deployed.

Another way to look at the ideal SG machine is to view it as an applica-
tion specific GPU, with data paths tailored to the specific sequence of logical
operations, a control structure shared by a number of cores larger than in state-
of-the-art GPUs, variables allocated on on-chip memory and a memory controller
optimized for the access patterns required by the chosen algorithm.



Fig. 1. Conceptual architecture of a Janus system, including the cluster of Simulation
Processors (SPs), the Input-Output Processor (IOP) and the host PC.

3 Janus Architecture

As pointed out above, an efficient SG machine is a large collection of spin-
processors. The spin-processor is a small computing element, tailored to the
required mix of operations on bit-valued variables, and to random number gen-
eration. Currently available commodity processors are at large variance with
these requirements, mainly because their architectures are optimized for long
data words. This makes the logic complexity of each data path much larger than
needed in SG simulations, and also makes it hard to map efficiently spins onto
machine words.

Over the years, Field Programmable Gate Arrays (FPGA) have steadily be-
come more powerful and flexible enough to become key building blocks for an
SG-computer. FPGAs are reconfigurable at gate level, and the amount of avail-
able resources in state-of-the-art FPGAs is enough to accommodate a large clus-
ter of spin-processors. Last but not least, storing the lattice on on-chip memory
makes it possible to provide the large memory bandwidth needed to keep all
spin-processors at work.

The available parallelism of SG applications is larger than can be exploited
by one FPGA: a set of FPGAs can be connected together by a simple network,
e.g. a first neighbor torus, and one can process SG samples on this multi-node
structure.

A host computer is connected to this structure: contrary to several recent
proposed reconfigurable machines [4–6], the host has a minor role, and it is only
needed to initialize and start the FPGA array, and to collect simulation results;
relatively low bandwidth and long latency are acceptable in our case.

The architecture of the Janus machine [8–10] follows these guidelines; figure 1
shows the Janus concept. Janus is a cluster of computing elements called SP and
based on FPGAs; the smallest Janus block is based on 16 FPGAs mounted on
a processing-board; our largest installation has 16 processing-boards mounted
in a standard 19” rack and controlled by 8 host PCs. Each processing-board
hosts a communication hub (the IOP, also using an FPGA) between the SPs



Fig. 2. Left: a Janus processing-board with 16 SPs; Right: a large Janus system with
16 processing-boards, 256 SPs and 8 host PCs.

and the host PC; communication is based on a gigabit Ethernet interface. The
IOP handles input-output operations between the SPs and the host PC, and
acts as a supervisor for all SPs.

Janus uses Xilinx Virtex-4 LX200 FPGAs, the largest available elements of
a state-of-the-art FPGA family when the system was built. The main advantage
of FPGAs is that they allow a quick and low cost development cycle; a further
step would be to develop an hardwired application-specific processor, as done,
for instance, in the Anton project [7]. The main clock is fixed once for all at
a conservative 62.5 MHz. This choice reduces the effort needed to successfully
map on the FPGA many different and quickly evolving versions of our codes,
associated to various possible choices for the physics model and the simulation
algorithm.

Figure 2 is a picture of the system. Janus was developed in 2006-2007; it
helped obtain significant physics results, as early as mid 2008 [11]; a recent
summary is presented in [12].

User applications running on Janus are made of two parts: a firmware mod-
ule, that defines the operation of the SPs, and a C program running on the host
PC; the C program performs data initialization, data input/output and super-
vises the operations of the SPs. Firmware modules are written in VHDL and
compiled by the appropriate Xilinx tools; FPGAs on the SPs are configured on
a run-by-run basis, at the start of each application run. Using VHDL, our heavi-
est SG applications implement up to 1024 spin-processors on each FPGA (and a
matching number of random number generators; we use throughout the simple
but very efficient Parisi-Rapuano generator [13]); they use approximately 95%
of the resources of the FPGA; the actual data-path is very complex and criti-



cally exploits the large number of on-chip memory blocks, providing the needed
memory bandwidth; for full details, see [9, 12].

A more user-friendly programming environment is not a goal of the Janus
project; some limited experimentation with high level FPGA programming tools
ended with only ≤ 10% of the performance of VHDL codes. This scenario –
acceptable for JANUS, as only a small set of applications, each running for
weeks or months, is needed – is a key problem for more general purpose FPGA
machines, like Novo-G [6], whose architecture is not too different from Janus.

Looking again at (strong) performance scaling, each Janus SP is an ideal
device, as performance scales linearly as more cores are added within each FPGA.
This trend ends as we try to map one physical lattice over several SPs, as the
network bandwidth (' 1Gbit/s per link) is not enough (by a factor 3 if we map
an 803 lattice on a full Janus board).

4 Janus2

We have recently started the development of a new Janus generation, that we
call Janus2. Its architecture follows the approach described above, with several
changes made possible by recent advances in FPGA technology. We plan the
following architectural and technology improvements:

– we make the torus network 3D, so one lattice sample can be mapped onto
a larger number of SPs; this allows faster processing of a given lattice size,
but also simulations of much larger systems;

– we add fast DDR3 memory to each SP node; this is not necessary for SG sim-
ulations; however with this improvement Janus2 becomes a more flexible re-
configurable system; for instance, we are already considering graph-coloring
algorithms for which the old Janus was poorly suited as enough memory was
not available;

– we place the host CPU closer to the SP array, using a PCI-Express (PCIe)
interface; this increases bandwidth by a factor 40 and decreases latency to
≈ 1µs, allowing a much closer control of the SP array by the host;

– the IOP module is directly connected to the host PC through an 8X PCI-
Express bus; the host PC is a Computer-On-Module (COM) system, directly
plugged onto the processing-board;

– we use the VX485T device of the latest Xilinx Virtex 7 FPGA family. This
more than doubles the complexity that can be mapped, and preliminary
synthesis have verified that the clock frequency of our codes can be increased
by a factor 4X; all in all we expect that each Janus2 SP will be 8 times faster
than Janus.

As before 16 SPs will be installed on a mother-board, arranged on the edges
of a 4× 4× 1 3D-grid. All links of the torus network use high speed serial links
directly available on the FPGA. We plan ≥ 20 Gbit/sec for the on-board links
and ≥ 5 Gbit/sec for the links in the Z-directions (that run on cables across
multiple processing-boards). These figures match the bandwidth requirement of



L3 Core 2 Duo CBE (16 cores) Janus Tesla C1060 NH (8 cores) SB (16 cores) Janus 2

2007 2007 2008 2009 2009 2012 2013

643 1000 ps 150 ps 16 ps 720 ps 200 ps 60 ps 2 ps

Table 1. Spin-update-time (SUT) of EA simulation codes on a 643 lattice on several
architectures. CBE is a system based on the IBM Cell processor; Tesla C1060 is an
NVIDIA GP-GPU with 448 cores; NH (SB) are dual-socket systems based respectively
on the 4-core Nehalem Xeon-5560 (8-core Sandybridge Xeon-E5-2680) processors.

linear scaling for a lattice of 1603 points, that we plan to parallelize on all 16
Janus2 SPs on a board; so, we expect an overall strong scaling performance
increase of a factor ≥ 100. We will also consider much larger lattices, for which a
real 3D system with several processing-boards will be used. We expect working
prototypes of this system in late summer, this year.

5 Janus Performances

In this section we analyze Janus performances, comparing them with conven-
tional systems based on recently developed multi- and many-core CPU architec-
tures.

We first consider conventional performance figures: a reference Monte Carlo
algorithm for the simulation of the EA model performs the following operations
for each lattice site:

– generation of 1 random number; using the Parisi-Rapuano generator this
steps performs 1 32-bit sum and 1 32-bit XOR;

– computation of the local field; 6 3-bit XORs and 5 3-bit sums;
– test of the Heat-Bath probability: one 32-bit comparison.

Conservatively equating the 6 short xor and sum operations to one 32-bit integer
operation, we end up with 6 equivalent operations for spin update. On Janus
each SP has 1000 62.5 MHz spin-processors; each SP then delivers ' 375 Giga-
ops (that is ' 96 Tera-ops for our large system); Janus has also been a very
energy efficient machine, at ' 10 Giga-ops/W (for comparison, the top entry of
the Green500 list in summer 2008 had ' 500 Mflops/W).

We now consider a performance metrics relevant to the physics user; the
System spin Update Time (SUT) is the average time needed to update one spin
of one lattice. For each SP in Janus SUT is 16 ps, and we estimate that it will
decrease to 2 ps for Janus2; for one full Janus2 processing board working on one
lattice, SUT goes down to 0.125 ps.

When comparing with standard computers, one also introduces a Global spin
Update Time (GUT),appropriate when one simulation job handles several sam-
ples of the lattice at the same time; GUT is the SUT value divided by the
number of lattices simulate in parallel. This slightly awkward definition is ap-
propriate, since one has been forced, when using traditional CPUs, to combine
the variables of several independent samples into the bits of one processor word



Fig. 3. EA performance (spin-flips/picosec) for optimized programs on several archi-
tectures as a function of time. The dotted grey lines scale according to Moore’s law.
See the text for more details.

and update those samples in parallel, in order to boost overall performance; this
trick, usually called multi-spin coding improves the amount of statistically rel-
evant information made available by a run in a given wall-clock time, but does
not improve on the time needed to perform a given number of MCS.

When the Janus project started, early 2006, state-of-the-art commodity sys-
tems had dual-core CPUs; on those processors carefully optimized codes had a
SUT of ' 1000 ps and GUT of ' 400 ps. In the following years, processors have
changed significantly with the introduction of many-core CPUs and of general
purpose GPUs; these are better SG machines that traditional CPUs as one maps
the available parallelism on more cores (or on more threads, for GPUs).

Over the years, we have compared [14, 15] Janus with several multi-core sys-
tems. A summary of results is collected in Table 1. We clearly see that over the
years the large performance gap of Janus has been significantly eroded; an inter-
esting first example was the extremely efficient IBM Cell CPU, for which SUT is
150 ps. In April 2012 the best figure is offered by a 16 cores Sandybridge-based
system, for which SUT is ≈ 60 ps.

6 Conclusions and Outlook

We have described two generation Janus machines, that we have developed
for Spin Glass applications, and analyzed their measured and expected per-
formances.

An obvious question when developing a custom system is how long it will
keep its performance edge over commercial systems. An educated guess to this



question for Janus2 comes from Figure 3 that graphically presents part of the
data of Table 1. A reasonably clean pattern emerges:

– while commercial machines increase in performance over the time in a regular
way, application-specific projects imply a sequence of step functions over
time, as there is no performance gain till a new generation is available.

– Intel processor performance has grown faster that expected by Moore’s law.
– we interpret this fact as the consequence of a performance gap that happened

when multi-core processors were introduced, followed by a regular Moore’s
behavior (compare the two Moore’s lines in the picture).

– pending new architectural changes, Janus2 should remain a competitive sim-
ulation engine at least up to the year 2017.

– a by-product of our analysis shows the poor performance of GPUs for this
problem, as well as the outstanding performance of the IBM-Cell processor,
whose production has however been discontinued.
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