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Structural properties of additive binary hard-sphere mixtures. III. Direct correlation functions
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An analysis of the direct correlation functions ci j (r) of binary additive hard-sphere mixtures of diameters
σs and σb (where the subscripts s and b refer to the “small” and “big” spheres, respectively), as obtained with
the rational-function approximation method and the WM scheme introduced in previous work [S. Pieprzyk
et al., Phys. Rev. E 101, 012117 (2020)], is performed. The results indicate that the functions css(r < σs ) and
cbb(r < σb) in both approaches are monotonic and can be well represented by a low-order polynomial, while
the function csb(r < 1

2 (σb + σs )) is not monotonic and exhibits a well-defined minimum near r = 1
2 (σb − σs ),

whose properties are studied in detail. Additionally, we show that the second derivative c′′
sb(r) presents a jump

discontinuity at r = 1
2 (σb − σs ) whose magnitude satisfies the same relationship with the contact values of the

radial distribution function as in the Percus-Yevick theory.
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I. INTRODUCTION

Systems composed of hard spheres (HSs) are important in
the description of fluids, often playing the role of a generic
or reference model system. They have become one of the
most investigated off-lattice many-body physical systems, and
considerable knowledge on them has been accumulated over
decades. Nevertheless, the development of additional theo-
retical methods and current possibilities to perform effective
simulations of large numbers of particles open up the op-
portunity to investigate in more depth or reveal new, hardly
identified features of HS systems. This is especially important
in the case of HS mixtures, which are obviously more complex
than monocomponent systems.

In this paper, we continue with a series dealing with the
behavior of the structural correlation functions of additive
binary hard-sphere (BHS) mixtures. In the first paper [1], we
presented a method, referred to as the WM method, which
combines molecular dynamics (MD) simulation data, residue
theorem analysis, and the Ornstein-Zernike (OZ) relations,
allowing one to obtain an accurate representation of the struc-
tural correlation functions of this kind of mixtures. Both the
above method and the so-called rational-function approxima-
tion (RFA), which turn out to be in very good agreement
with each other, were employed in the same paper to test
the direct correlation functions and to confirm the presence
of a structural crossover for a particular mixture, namely, one
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with a fixed diameter ratio q = 0.648 and a fixed total packing
fraction η = 0.5 (which was the system analyzed previously
theoretically and through experimental data by Statt et al. [2]).
In the second paper [3], we used the same methodology to
carry out a more thorough analysis of the role of the pole
structure of the Fourier transforms of the total correlation
functions hi j (r) of various BHS mixtures on the asymptotic
behavior r → ∞ of hi j (r), and its relation with structural
crossovers in these functions. This allowed us, on the one
hand, to confirm the power of our theoretical tool to study
structural properties in BHS mixtures and, on the other hand
and in the same vein as in Ref. [4], to discuss a coarse-grained
scenario that provides a fair picture of what goes on in the
plane ηs vs ηb (where ηs and ηb are the partial packing frac-
tions of the “small” and “big” spheres, respectively) when one
varies the size ratio q = σs/σb of the mixture (where σs and σb

are the small and big diameters, respectively). In the present
third paper we continue with a further use of our theoretical
tools and concentrate on the analysis of the direct correlation
functions (DCFs) of BHS mixtures, which are some of the
most hardly accessible and least studied structural properties
of these systems.

In a simple fluid, the DCF c(r) may be computed as the
second derivative of the intrinsic free energy functional with
respect to the number density ρ [5], but it is usually defined
through the OZ relation

h(r12) = c(r12) + ρ

∫
dr3 c(r13)h(r23), (1)

where h(r) = g(r) − 1 is the total correlation function, g(r)
being the radial distribution function. The subscripts (1, 2, and
3) denote the positions of three particles, where the separation
between particles i and j is ri j = |ri − r j |. The function c(r)
represents that part of the total correlation function which
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results from the direct correlation between particles 1 and
2, and is also connected with the dimensionless isothermal
compressibility of the fluid (χ ) via the exact relation

χ−1 = 1 − ρc̃(0) = 1 − ρ

∫
dr c(r), (2)

with c̃(0) denoting the zero wave number value of the Fourier
transform c̃(k) of c(r). Its importance in the theory of liquids
may be judged from the following facts. First of all, if c(r) is
available, h(r) (and hence the corresponding equation of state)
may be readily obtained using the OZ relation. Such avail-
ability also allows one to get insight into how the presence
of density fluctuations affects the free energy of the system.
Further, knowledge of c(r) in a homogeneous fluid may serve
to develop approximate free energy density functionals for the
inhomogeneous system.

Various aspects of the DCFs of hard-core systems have
been reported in the literature. While the following description
is certainly far from complete, we shall attempt to provide
here an overview of the main developments. To our knowl-
edge, the earliest analytic result for c(r) in a three-dimensional
system was reported by Wertheim [6] for a homogeneous HS
fluid within the Percus-Yevick (PY) approximation. An exact
result up to third order in density for this correlation function
was obtained by Ashcroft and March [7]. More recently, other
approximate expressions for the DCFs of hard-core systems
have been proposed. For hard-disk fluids, where there is no
analytical solution in the PY theory, an expression for c(r) was
introduced by Ripoll and Tejero [8], who also considered a
generalization valid for hard-core fluids in arbitrary d dimen-
sions. The DCF of two- and three-dimensional systems was
also addressed by Guo and Riebel [9], who derived yet other
approximate expressions for a monolayer of monodisperse
hard disks and spheres. Due to the fact that in HS systems
specification of the tail of the DCF is enough to derive the total
correlation function h(r) for all distances r, such a tail was
analyzed by Henderson and Grundke [10], who introduced
a parametrization of the tail to obtain an expression for the
DCF of a HS fluid. A similar analysis of the tail of c(r)
was carried out by Katsov and Weeks [11] for fluids whose
molecules interact via a potential with a soft repulsive core
of finite extent and a weaker and longer ranged tail. Baus and
Colot [12] also derived an approximation of c(r) for hard-core
fluids in d dimensions using rescaled virial expansions. While
some of us [13,14] derived the explicit expression for c(r) for
a HS fluid in the RFA, another two of us obtained an accurate
representation of this DCF using the WM scheme [15], and
Fukudome et al. [16] obtained an approximate c(r) of the
same system in connection with scaled particle theory. Nu-
merical simulation results for the function c(r) of a HS fluid
have been reported by Groot et al. [17]. Analytical expressions
for the DCFs in a multicomponent HS mixture were derived
by Lebowitz [18] from the exact solution of the corresponding
PY equation, while those of the RFA for the same system
have been derived by some of us [13,19]. A sixth-order virial
expansion was used by Dennison et al. [20] to obtain the DCF
of a HS fluid that presents good agreement with simulation
data. In a different vein, the DCFs of symmetric equimolar
BHS mixtures with negatively nonadditive diameters have

been computed by Gazillo [21] in the PY approximation and
those of the Widom-Rowlinson model by Fantoni and Pastore
[22] through Monte Carlo numerical simulations. Also using
Monte Carlo data, Henderson et al. [23] obtained DCFs for
HSs near a large HS.

Among the different systems considered within density-
functional-theory approaches in which the DCFs are involved,
the following few have been selected for this brief overview.
Samborsky and Evans [24] calculated the phase diagram of
binary liquid crystal mixtures made of HSs and hard ellip-
soids, while, by generalizing Rosenfeld’s density functional
theory for HS mixtures [25], Charmoux and Perera [26] de-
rived analytical approximations for the DCFs of molecular
fluids and their mixtures. A simple weighted density approach
for the one-particle correlation functions of the nonuniform
system, requiring as input only the one- and two-particle
DCFs of the corresponding uniform system, was used by
Patra [27] to study the structure of BHS mixtures near a hard
wall. Another simple weighted density approximation was
considered by Zhou and Ruckenstein [28] to derive DCFs
of uniform fluids of all orders, finding that, in the case of
uniform HS fluids, the third-order DCF was in satisfactory
agreement with simulation data. In a similar path, Roth et al.
[29] developed a density functional for HS mixtures which
has the same structure as the one of Rosenfeld’s fundamental
measure theory [25], but also includes the Boublík-Mansoori-
Carnahan-Starling-Leland (BMCSL) bulk equation of state
[30,31]. By considering a generic free energy functional
which requires the knowledge of the DCF of the homogeneous
solvent (a quantity that may be extracted directly from MD
simulations of the pure solvent), Ramirez et al. [32] computed
the DCFs of polar solvents. Moradi and Khordad [33] used a
formalism based on the work by Chamoux and Perera [26]
mentioned above to obtain the DCFs of binary mixtures of
hard Gaussian overlap molecules, while Avazpour and Moradi
[34] combined the PY DCF and the one introduced by Roth
et al. [29] to obtain a new expression for the DCF of HS fluids
which they afterwards used to calculate the DCF of hard ellip-
soidal fluids. With the aim of providing reference results for
on-lattice density functional theories and related perturbation
theories, Siderius and Gelb [35] used both simulation results
and theory to obtain thermodynamic and structural properties
of on-lattice HS fluids. More recently, Lutsko [36] derived the
DCF from the consistent fundamental-measure free energies
[37] for HS mixtures. Finally, Lin et al. [38], on the basis of
the fundamental-measure concept, computed the DCF of a HS
crystal and showed that it differs significantly from its liquid
counterpart at coexistence.

After this overview of the literature pertaining to the DCF,
we turn to the subject with which this paper is mainly con-
cerned. In the case of BHS mixtures, there are three DCFs:
cbb(r), css(r), and csb(r). The functions ci j (r) are known to
present a discontinuity at the contact distance σi j = 1

2 (σi +
σ j ), exhibiting the three of them an oscillatory fast decaying
behavior for r > σi j . As we will discuss below, the behavior
inside the core (i.e., r < σi j) is qualitatively different for the
different DCFs. In particular, the functions cbb(r) and css(r)
are monotonically increasing (concave) functions, similarly
to what occurs with c(r) in the monocomponent case. On
the other hand, the cross DCF csb(r) changes very little (it is
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almost flat) up to a certain distance near r = λsb ≡ 1
2 (σb − σs)

and then increases considerably. The form of this latter func-
tion has not been systematically studied, and it is usually
thought to be a monotonic function with a constant value in
the range 0 < r < λsb, as predicted by the PY theory [18,39],
which is the standard approximation used in the literature
[7,8,22,26–28,34].

As pointed out later, we have found that, in fact, the func-
tion csb is not a monotonically increasing function for r < σi j

but presents a state-dependent minimum. One major aim of
this paper is to reveal details of the DCFs with the focus
on their core part, which represents a substantial part of the
whole function. In passing, we will also establish that the
RFA can predict well the features of the DCFs of additive
BHS mixtures and, in particular, the nonmonotonic behavior
of csb(r) inside the core.

The paper is organized as follows. In Sec. II A, we recall
the explicit expressions of the Fourier transforms of the DCFs
in terms of the Fourier transforms of the total correlation
functions that follow from the OZ relation. In order to make
the paper self-contained, in Secs. II B and II C we provide
the explicit results for the Fourier transforms of the DCFs in
BHS mixtures, as obtained with the WM scheme and the RFA,
respectively. Section III profits from the previous derivation,
allowing us to explicitly compute the DCFs of different mix-
tures. This is complemented with a comparison between the
results of the WM method and the RFA predictions, as well
as with the outcome of the PY theory and a subsequent dis-
cussion. The paper is closed in Sec. IV with some concluding
remarks.

II. METHODS

A. The Ornstein-Zernike relation and the direct
correlation functions

The DCFs ci j (r) in a general Nc-component mixture are
defined through the OZ relation,

hi j (r12) = ci j (r12) + ρ

Nc∑
�=1

x�

∫
dr3 ci�(r13)h� j (r23), (3)

where ρ is the number density of the mixture and xi = ρi/ρ

is the mole fraction of species i (where ρi = Ni/V is the
partial number density, Ni and V being the number of particles
of species i and the volume of the system, respectively). In
Fourier space, the OZ relation takes the following form [40]:

h̃i j (k) = c̃i j (k) + ρ

Nc∑
�=1

x�c̃i�(k)h̃� j (k), (4)

where h̃i j (k) and c̃i j (k) denote the corresponding Fourier
transforms of hi j (r) and ci j (r), k being the wave number. They
are given by

h̃i j (k) = 4π

∫ ∞

0
dr r2hi j (r)

sin (kr)

kr
, (5)

with a similar expression for c̃i j (k).
We shall now restrict ourselves to the case of an additive

BHS fluid mixture in which the species of small spheres is
labeled as species s and the one of big spheres is labeled

as species b. In this system, the hard core of the interac-
tion between a sphere of species i and a sphere of species
j (i, j = s, b) is given by σi j = 1

2 (σi + σ j ), with the diam-
eter of a sphere of species i being σii = σi. Let the size
ratio be q = σs/σb < 1. In this instance, one can define the
partial packing fractions ηi = π

6 ρiσ
3
i and the total packing

fraction η = π
6 ρσ 3

b (xb + xsq3) = ηb + ηs. Then, from Eq. (4)
with Nc = 2 one can get the following results:

c̃ss(k) = h̃ss(k) + ρb
[
h̃ss(k)h̃bb(k) − h̃2

sb(k)
]

D(k)
, (6a)

c̃sb(k) = h̃sb(k)

D(k)
, (6b)

c̃bb(k) = h̃bb(k) + ρs
[
h̃ss(k)h̃bb(k) − h̃2

sb(k)
]

D(k)
, (6c)

where

D(k) = 1 + ρsh̃ss(k) + ρbh̃bb(k)

+ρsρb
[
h̃ss(k)h̃bb(k) − h̃2

sb(k)
]
. (7)

Therefore, provided one can have accurate approximations
of the Fourier transforms h̃i j (k) of the total correlation func-
tions, it is immediate to also obtain accurate approximations
to the Fourier transforms c̃i j (k) from Eqs. (6). Finally, the
DCFs ci j (r) are readily computed by taking inverse Fourier
transforms:

ci j (r) = 1

2π2

∫ ∞

0
dk k2c̃i j (k)

sin (kr)

kr
. (8)

The large-k behavior of c̃i j (k) has the structure [1]

c̃i j (k) →
∞∑

n=2

k−nc̃(n)
i j (k), (9)

where c̃(n)
i j (k) is a bound function expressed as a combination

of sine and cosine functions of σsk, σbk, and σsbk. Thus, at
a practical level, it is useful to introduce an arbitrarily large
cutoff wave number Q and decompose ci j (r) into two contri-
butions:

ci j (r) = cnum
i j (r) + ctail

i j (r), (10)

with

cnum
i j (r) = 1

2π2

∫ Q

0
dk k2c̃i j (k)

sin (kr)

kr
, (11a)

ctail
i j (r) = 1

2π2

nmax∑
n=2

∫ ∞

Q
dk k−(n−2)c̃(n)

i j (k)
sin (kr)

kr
, (11b)

where nmax is a conveniently chosen integer. Assuming that
c̃i j (k) is analytically known, the contribution (11a) can be
obtained numerically, whereas the contribution (11b) can be
evaluated analytically term by term.

B. WM scheme

The WM scheme [1,3] allows one to obtain analytic forms
for c̃i j (k). The method relies on accurate MD simulation data
(here obtained via the DynamO program [41]) for the total
correlation functions in combination with their pole structure
representation and the OZ equation.
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The MD simulation data hMD
i j (r) are fitted to the semiem-

pirical approximation

hW M
i j (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, 0 < r < σi j,
W∑

n=1
b(n)

i j rn−1, σi j < r � rm
i j ,

M∑
n=1

A(n)
i j

r e−αnr sin
(
ωnr + δ

(n)
i j

)
, r � rm

i j ,

(12)

where rm
i j is chosen as the position of the first minimum of

hW M
i j (r), and {b(n)

i j ; n = 1, . . . ,W } and {A(n)
i j , αn, ωn, δ

(n)
i j ; n =

1, . . . , M} are fitting parameters. Moreover, the continuity of
hW M

i j (r) and their first derivatives at r = rm
i j , as well as the

Boublík-Grundke-Henderson-Lee-Levesque (BGHLL) con-
tact values [30,42,43], are enforced. Convenient choices for
the parameters W and M are W = 15 and M = 10. To get
sufficient accuracy, the data for hMD

i j (r) were obtained from
long simulations (∼109 total collisions in production) and for
a large number of particles (typically 16 384–48 668 particles,
depending on density and the size ratio). For further details
on the MD simulations and the WM scheme, the reader is
referred to Refs. [1,3].

From the parametrization (12), it is possible to obtain the
Fourier transforms h̃W M

i j (k) analytically [1]. Next, the OZ re-
lations (6) yield analytic expressions for c̃W M

i j (k), from which

the associated asymptotic functions c̃W M(n)
i j (k) follow [see

Eq. (9)]. Finally, the DCFs are obtained from Eqs. (10) and
(11) with the choices Q = 200/σi j and nmax = 6. In summary,

hMD
i j (r)

Eq. (12)−→ hW M
i j (r)

Eq. (5)−→ h̃W M
i j (k)

Eqs. (6)−→ c̃W M
i j (k)

Eqs. (10)–(11)−→ cW M
i j (r). (13)

C. Rational-function approximation

We shall now sketch the RFA approach to obtain the
structural properties of additive HS mixtures. The detailed
description may be found elsewhere [19,40,44–46]. First, we
introduce the Laplace transforms of rgi j (r):

Gi j (z) =
∫ ∞

0
dr e−zrrgi j (r). (14)

The Fourier transform h̃i j (k) is related to Gi j (z) by

h̃i j (k) = −2π
Gi j (z) − Gi j (−z)

z

∣∣∣∣
z=ık

, (15)

ı being the imaginary unit. Next, we propose the following
form for Gi j (z):

GRFA
i j (z) = e−σi j z

2πz2

(
L(z) · [(1 + ξz)I − A(z)]−1)

i j, (16)

where I is the unit matrix, ξ is a parameter to be fixed, and

Li j (z) = L(0)
i j + L(1)

i j z + L(2)
i j z2, (17a)

Ai j (z) = ρi
[
ϕ2(σiz)σ 3

i L(0)
i j + ϕ1(σiz)σ 2

i L(1)
i j

+ϕ0(σiz)σiL
(2)
i j

]
, (17b)

the functions ϕn(x) being defined by

ϕn(x) ≡ x−(n+1)

(
n∑

m=0

(−x)m

m!
− e−x

)
. (18)

Then, by imposing certain consistency conditions, the ele-
ments of the matrices L(0), L(1), L(2) are expressed as linear
functions of ξ . In particular, L(2)

i j = 2πξσi jgc
i j , where gc

i j ≡
g(σ+

i j ) are the contact values of the radial distribution func-
tions.

The special choice ξ = 0 gives the PY solution [18,39].
On the other hand, by an appropriate determination of ξ �= 0
as the physical root of a polynomial equation, the RFA can
be made thermodynamically consistent and, additionally, al-
lows one to freely choose the contact values gc

i j , a convenient
choice being the BGHLL expression [30,42,43].

Once GRFA
i j (z) is analytically known, h̃RFA

i j (k) can be ob-
tained from application of the exact relationship (15). From
here, the procedure is similar to the WM case: Analytic ex-
pressions for c̃RFA

i j (k) are obtained from Eqs. (6), from which

one gets the asymptotic functions c̃RFA(n)
i j (k); then the RFA

DCFs are numerically obtained by application of Eqs. (10)
and (11) again with the choices Q = 200/σi j and nmax = 6.
Thus,

GRFA
i j (z)

Eq. (15)−→ h̃RFA
i j (k)

Eqs. (6)−→ c̃RFA
i j (k)

Eqs. (10)–(11)−→ cRFA
i j (r).

(19)

III. RESULTS

We now present the results of the comparison between the
DCFs predicted by the RFA with those obtained via the WM
scheme from our MD simulations.

Figure 1 shows the comparison for the rather disparate
BHS mixture q = 0.4 at fixed ηb = 0.2 and several values
of ηs. For all three DCFs, we observe very good agreement
between the WM method and the RFA, once more confirming
our previous findings [1,3]. In fact, the relative differences for
the DCFs are small (usually smaller than 2%-4% in the core
region, depending on density), even for the densest cases. In
contrast, the differences with the PY theory are generally quite
significant (not shown).

We also observe that the like-like functions css(r < σs) and
cbb(r < σb) inside the core are monotonic and can be well rep-
resented by a low-order polynomial (usually, fourth or sixth
degree is sufficient). Also, their limiting values css(r = 0),
cbb(r = 0), css(r = σ−

s ), and cbb(r = σ−
b ) can be determined

fairly accurately. On the other hand, while hardly apparent in
Fig. 1(c), both approaches (the WM method and the RFA)
indicate that the cross function csb(r < σsb) is not mono-
tonic inside the core, what requires a separate more detailed
analysis to be carried out below. Outside the core, the func-
tions css(r > σs), cbb(r > σb), and csb(r > σsb) are oscillatory
decaying for the WM method, monotonically decaying for
the RFA, and vanishing for the PY theory [1]. As discussed
in Ref. [1], the part of the DCFs outside the core, namely,
ci j (r > σi j ), is quite important for the asymptotic behavior of
the total correlation functions, and cannot be omitted as in the
PY theory.
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FIG. 1. Plot of (a) css(r), (b) cbb(r), and (c) csb(r) for a size ratio
q = 0.4, a partial packing fraction ηb = 0.2, and (from top to bottom
in each panel) ηs = 0.05, 0.1, 0.15, 0.2, and 0.25. The blue circles
are the WM results, and the red thick lines correspond to the RFA
values. The insets show the differences �(r) = cW M

i j (r) − cRFA
i j (r),

which tend to increase with increasing ηs.

We next focus on the analysis of the cross function csb(r).
Careful inspection shows that, in all studied cases with both
the WM method and the RFA, this function has a minimum at
some r = rmin

sb < σsb (i.e., inside the core). To the best of our
knowledge this feature has not been so far discussed in the
literature. Whether a physical meaning to such a feature may
be ascribed or whether it may influence or be correlated with
other physical properties is not clear to us at this stage, but we
are persuaded that it should be further explored in the future.

FIG. 2. Plot of csb(r) inside the core (r < σsb) for a size ratio
q = 0.4 and partial packing fractions ηb = 0.2 and ηs = 0.05. The
blue circles are the WM results, the red thick lines correspond to the
RFA values, and the green thin lines represent the PY values. The
inset shows details of the curves in the range 0.22 � r/σb � 0.34.
The cyan and red solid circles indicate the position of the minimum
for WM and RFA, respectively.

The characteristic form of the DCF csb(r) inside the core
(r < σsb) is shown in Fig. 2 for the size ratio q = 0.4 and the
partial packing fractions ηb = 0.2 and ηs = 0.05. The inset
in Fig. 2 demonstrates that, in contrast to the PY theory, a
minimum value at r = rmin

sb ≈ λsb is present in the WM and
RFA results. Nevertheless, the minimum cmin

sb ≡ csb(rmin
sb ) is

very shallow, and one may not notice it on a usual scale with
typically obtainable accuracy. In fact, the general shape of the
DCF csb(r) inside the core is rather similar to the one of the PY
theory, and thus the minimum may be easily overlooked. It is
worth noting that the fact that csb(r) = const for 0 < r < λsb

in the PY theory may be linked to the tail property ci j (r) = 0
for r > σi j in that approximation.

We have observed that the position of the minimum is
always localized close to and above r = λsb = 1−q

2 σb, its pre-
cise value slightly depending on the mixture composition and
density. This is illustrated in Fig. 3, where csb(r) in a spatial
region around r = λsb is plotted for three different values of
the size ratio q and, in each case, two pairs (representing
moderate and dense systems) of packing fractions ηs, ηb. Also,
the corresponding PY results are plotted for a comparison.

A more quantitative dependence of the minimum value
(cmin

sb ) and its position (rmin
sb ) on ηs is presented in Fig. 4

for q = 0.648, 0.4, and 0.3 at some representative values
of ηb. We observe that the value of the minimum becomes
monotonically more negative as ηs increases, with an excellent
agreement between WM and RFA. Also, we observe that, in
the log-linear scale, this dependence is well represented by a
linear function. At a given q, the influence of density on the
position rmin

sb is rather weak. Depending on the values of q and
ηb, the change of rmin

sb with increasing ηs can be monotonic or
nonmonotonic.

A more complete 3D view of the density dependence of
cmin

sb and rmin
sb on density, as predicted by the RFA, is given

by Fig. 5 for the same values of q as in Fig. 4. One can ob-
serve that, in all the cases, �sb ≡ rmin

sb − λsb > 0 but �sb/σb ∼
10−3. Furthermore, as density (ηs and/or ηb) decreases, the
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FIG. 3. Plot of csb(r) around r = λsb = 1
2 (σb − σs ) for (a) q = 0.648, ηb = 0.1, ηs = 0.2, (b) q = 0.4, ηb = 0.05, ηs = 0.15, (c) q = 0.3,

ηb = 0.05, ηs = 0.15, (d) q = 0.648, ηb = 0.2, ηs = 0.2, (e) q = 0.4, ηb = 0.2, ηs = 0.15, and (f) q = 0.3, ηb = 0.2, ηs = 0.15. The blue
circles are the WM results, the red thick lines correspond to the RFA values, and the green thin lines represent the PY values. In each panel,
the cyan and red solid circles indicate the position of the minimum for WM and RFA, respectively, while the vertical dashed line signals the
location of λsb. In each panel, the vertical axis range was selected as ±5% of the minimum value.

difference �sb tends to 0. The qualitative shape of the surface
rmin

sb (ηs, ηb) is rather similar for different values of q: At fixed
ηs (or ηb), rmin

sb first tends to increase and then to decrease with
increasing ηb (or ηs). So far as cmin

sb , as already observed in

FIG. 4. Dependence of cmin
sb (in logarithmic scale) and rmin

sb on ηs for (a) q = 0.648, ηb = 0.1, (b) q = 0.4, ηb = 0.05, (c) q = 0.3, ηb = 0.05,
(d) q = 0.648, ηb = 0.2, (e) q = 0.4, ηb = 0.2, and (f) q = 0.3, ηb = 0.2. The blue circles are the WM results and the red thick lines correspond
to the RFA values. In each plot of rmin

sb , the horizontal dashed line signals the location of λsb.
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FIG. 5. 3D plots, as predicted by the RFA, showing the density dependence of cmin
sb (in logarithmic scale) and the difference

�sb ≡ rmin
sb − λsb for (a) q = 0.648, (b) q = 0.4, and (c) q = 0.3. The red solid lines represent the cases presented in Fig. 4, and the blue

circles (with error bars) are the results from the WM scheme. The black dashed lines show the maximum values of �sb at fixed ηb.

Fig. 4, it decreases almost exponentially with increasing ηs at
fixed ηb.

Once the behavior of the DCFs has been discussed, let us
consider their first and second derivatives c′

i j (r) and c′′
i j (r),

respectively. Both in the WM and RFA schemes, they can be
obtained from the analytic knowledge of c̃i j (k) by application
of expressions analogous to Eqs. (10) and (11), except for the
formal replacements

sin(kr)

kr
→ kr cos(kr) − sin(kr)

kr2
, (20a)

sin(kr)

kr
→ (2 − k2r2) sin(kr) − 2kr cos(kr)

kr3
, (20b)

for c′
i j (r) and c′′

i j (r), respectively.
The shapes of c′

sb(r) and c′′
sb(r) are presented in Figs. 6

and 7, respectively, for the same cases as in Fig. 3. An ex-
cellent agreement between the WM and RFA values is again
observed. Moreover, the three approaches (WM, RFA, and
PY) provide almost indistinguishable values of the second
derivative c′′

sb(r) in the range λsb < r < σsb. Note also that
c′

sb(r) and c′′
sb(r) are discontinuous at r = σsb [1], which is not

surprising, given the fact that the DCFs ci j (r) themselves are
discontinuous at r = σi j . More interesting is the discontinuity
of the second derivative c′′

sb(r) at r = λsb, its existence already
captured by the PY theory [18], according to which

�c′′
sb(λsb) ≡ c′′

sb(λ+
sb) − c′′

sb(λ−
sb)

= 12
σsb

λsb
gc

sb

(
ηs

σ 2
s

gc
ss + ηb

σ 2
b

gc
bb

)
. (21)

Taking into account that the PY values of gc
i j are exact to first

order in density [40], it follows that the discontinuity of c′′
sb(r)

at r = λsb is an exact property and not an artifact of the PY,
RFA, or WM approaches. In fact, taking into account that [18]

gc
ss = 1 + 5

2
η − 3

2
ηb

(
1 − σs

σb

)
+ O(ρ2), (22a)

gc
bb = 1 + 5

2
η + 3

2
ηs

(σb

σs
− 1

)
+ O(ρ2), (22b)

gc
sb = 1 + 5

2
η + 3

2

λsb

σsb
(ηs − ηb) + O(ρ2), (22c)

one gets the exact result

�c′′
sb(λsb) = 12

[
σsb

λsb

(
ηs

σ 2
s

+ ηb

σ 2
b

)
(1 + 5η)

+ 3

2

(
η2

s

σ 2
s

− η2
b

σ 2
b

)
− 12ηsηb

λsbσsb

σ 2
s σ 2

b

]
+ O(ρ3).

(23)

Since the singularities of ci j (r) are independent of Q in
Eqs. (11) and cnum

sb (r) is regular, it turns out that the singular-
ities of ctail

i j (r) determine those of the full functions ci j (r). In
particular, the discontinuity of the second derivative c′′

sb(r) at
r = λsb is

�c′′
sb(λsb) = − Ksb

4πλsb
, (24)

where Ksb is the coefficient of a term of the form
cos(kλsb) in the function c̃(4)

sb (k) defined in Eq. (9).
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FIG. 6. Plot of c′
sb(r) for (a) q = 0.648, ηb = 0.1, ηs = 0.2, (b) q = 0.4, ηb = 0.05, ηs = 0.15, (c) q = 0.3, ηb = 0.05, ηs = 0.15, (d)

q = 0.648, ηb = 0.2, ηs = 0.2, (e) q = 0.4, ηb = 0.2, ηs = 0.15, and (f) q = 0.3, ηb = 0.2, ηs = 0.15. The blue circles are the WM results,
the red thick lines correspond to the RFA values, and the green lines are PY. In each panel, the vertical dashed lines signals the locations of λsb

and σsb. The insets show magnifications of c′
sb(r) around r = λsb.

Taking into account that cos(kσsb) cos(kσs,b) = 1
2 {cos(kλsb)

+ cos[k(σsb + σs,b)]}, one can find from Eq. (16b) of Ref. [1]
that Ksb = − 1

2C(1)
sb [ρsC(1)

ss + ρbC
(1)
bb ], where C(1)

i j = 4πσi jgc
i j

[1]. Inserting all of this into Eq. (24), one finally ar-
rives at Eq. (21). This proves that the relationship between
�c′′

sb(λsb) and the contact values gc
i j given by Eq. (21) is an

FIG. 7. Plot of c′′
sb(r) for (a) q = 0.648, ηb = 0.1, ηs = 0.2, (b) q = 0.4, ηb = 0.05, ηs = 0.15, (c) q = 0.3, ηb = 0.05, ηs = 0.15, (d)

q = 0.648, ηb = 0.2, ηs = 0.2, (e) q = 0.4, ηb = 0.2, ηs = 0.15, and (f) q = 0.3, ηb = 0.2, ηs = 0.15. The blue circles are the WM results,
the red thick lines correspond to the RFA values, and the green lines are PY. In each panel, the vertical dashed lines signal the locations of λsb

and σsb.
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FIG. 8. Plot of css(r) (red lines and symbols) and csb(r) (green
lines and symbols) near the origin for a size ratio q = 0.4, a partial
packing fraction ηb = 0.2, and (from top to bottom) partial packing
fractions ηs = 0.15, 0.20, and 0.25. The symbols (red circles for css

and green triangles for csb) are the WM results, the solid thick lines
correspond to the RFA values, and the dashed lines represent the PY
values.

exact property, even though the PY contact values are only
approximate.

A peculiar prediction of the PY theory is that the zero-
separation values of css(r) and csb(r) are equal, i.e., cPY

ss (0) =
cPY

sb (0). However, as Fig. 8 shows, this simple property is not
fulfilled by either WM or RFA, and one actually has csb(0) >

css(0), the difference csb(0) − css(0) tending to increase as the
packing fraction of the small spheres increases.

IV. CONCLUDING REMARKS

In this work, we have confirmed the excellent performance
of the RFA for additive BHS mixtures when compared with
the simulation-fed WM scheme [1,3], this time in connection
with the DCFs.

We have mainly focused on the properties of the cross
DCF csb(r) and highlighted a new feature of this structural
function. Such function (for all BHS fluids) has a minimum
inside the core, its location and magnitude depending on
density and mixture composition. However, the minimum is
rather shallow and hence the nonmonotonic character of the
DCF csb(r) may be hardly visible. The minimum is always
localized near r = λsb, and we have been able to analyze some
characteristic dependence of both its value and position on
density and composition. The observed disappearance of the
minimum at the low density limit is in agreement with the
known zero-density limit of ci j (r) (negative of the Mayer f
functions).

The physical origin of such a minimum and its relation to
other properties are not clear at this stage. The comparison
with the PY result may suggest that oversimplification of the
csb(r) outside the core [i.e., the condition cPY

sb (r > σsb) = 0]
may lead to the monotonic behavior of cPY

sb (r) inside the core
in this approximation.

Moreover, we have studied the behavior of the first and sec-
ond spatial derivatives c′

sb(r) and c′′
sb(r), respectively. From the

analysis of c′′
sb(r) one concludes is that there is a discontinuity

of this derivative at r = λsb whose size has exactly the same
expression in terms of the contact values gc

i j as that of the
corresponding PY result.

We hope that our study can stimulate further investigations
on the properties of the DCFs in fluid mixtures different from
the additive BHS model.
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[1] S. Pieprzyk, A. C. Brańka, S. B. Yuste, A. Santos, and M. López
de Haro, Structural properties of additive binary hard-sphere
mixtures, Phys. Rev. E 101, 012117 (2020).

[2] A. Statt, R. Pinchaipat, F. Turci, R. Evans, and C. P. Royall,
Direct observation in 3d of structural crossover in binary hard
sphere mixtures, J. Chem. Phys. 144, 144506 (2016).

[3] S. Pieprzyk, S. B. Yuste, A. Santos, M. L. de Haro, and A. C.
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