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The transport coefficients for dilute granular gases of inelastic and rough hard disks or spheres with constant
coefficients of normal (α) and tangential (β) restitution are obtained in a unified framework as functions of the
number of translational (dt ) and rotational (dr) degrees of freedom. The derivation is carried out by means of
the Chapman–Enskog method with a Sonine-like approximation in which, in contrast to previous approaches,
the reference distribution function for angular velocities does not need to be specified. The well-known case of
purely smooth d-dimensional particles is recovered by setting dt = d and formally taking the limit dr → 0. In
addition, previous results [G. M. Kremer, A. Santos, and V. Garzó, Phys. Rev. E 90, 022205 (2014)] for hard
spheres are reobtained by taking dt = dr = 3, while novel results for hard-disk gases are derived with the choice
dt = 2, dr = 1. The singular quasismooth limit (β → −1) and the conservative Pidduck’s gas (α = β = 1) are
also obtained and discussed.
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I. INTRODUCTION

A granular gas is essentially a system of particles that
move erratically and collide inelastically. The simplest model
to describe its kinetic behavior consists in a collection of
inelastic hard disks (HD) or spheres (HS) with a constant
coefficient of normal restitution α (with 0 � α � 1) [1–5].
A plausible improvement of the model is the addition of
collisional friction due to surface roughness (as demanded by
recent experiments [6]), which can be quantified via a constant
coefficient of tangential restitution β (with −1 � β � 1) [7].

Certainly, this simple two-parameter model does not ac-
count for sliding effects that can be relevant in grazing
collisions [8]. Models with a Coulomb friction constant [9,10]
are more realistic but less theoretically tractable outside of
the quasielastic and/or quasismooth limits [11–13]. There-
fore, the (α, β ) model for granular fluids, which captures
satisfactorily well the basics of collision processes, represents
an excellent compromise between simplicity and physical
content [14–16].

In analogy with a conventional fluid, a hydrodynamic de-
scription is also applicable and useful in the case of granular
gases [5,13,17–32]. If the gas is made of perfectly elastic
(α = 1) and either perfectly smooth (β = −1) or perfectly
rough (β = 1) hard particles [33], then kinetic energy is con-
served upon collisions. Therefore, a complete set of hydrody-
namic variables is defined from the densities of the conserved
quantities, that is, particle density n (reflecting mass conser-
vation), flow velocity u (due to momentum conservation), and
temperature T (associated with energy conservation). How-
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ever, for inelastic (α �= 1) and/or imperfectly rough (|β| �= 1)
hard particles, energy is no longer preserved at the colli-
sional level. Despite that, temperature is usually included as
a hydrodynamic variable [5], except that a sink term (the
so-called cooling rate) needs to be included in the energy
balance equation. Therefore, as done in Refs. [34,35] for
(three-dimensional) HS, in this paper we will choose {n, u, T }
as hydrodynamic variables. In contrast, the mean angular
velocity � is not a collisional invariant, even if α = β = 1,
and thus it is not included as a hydrodynamic field in
our description.

To the best of our knowledge, the derivation by means of
the Chapman–Enskog method of the Navier–Stokes–Fourier
(NSF) hydrodynamic description (for generic constant coeffi-
cients of restitution α and β) of a two-dimensional granular
gas of inelastic and rough HD has not been carried out yet.
The aim of this work is to fill this gap in an inclusive way by
generalizing the study to a hard-particle system with dt and dr

translational and rotational degrees of freedom, respectively,
in analogy with our previous study on the energy production
rates in granular mixtures [36,37]. In this way, apart from
obtaining the sought results for HD gases with the choice
(dt , dr ) = (2, 1), the results for rough HS [34] are recovered
by setting (dt , dr ) = (3, 3). Additionally, the expressions for
d-dimensional smooth particles (β = −1) [38] are also reob-
tained by formally taking dr → 0.

Whereas the three-dimensional is perhaps the most gen-
eral, verisimilar, and intuitive geometry, a two-dimensional
constrained system is also found in ordinary life, like a set
of marbles moving and spinning on a plane or the pucks and
strikers in the air hockey game. But the most important asset
of the two-dimensional geometry resides in its ordinary use in
experiments setups [39–47]. Thus, this work aims at providing
testable results for the hydrodynamic transport coefficients
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within a general framework that encompasses the three- and
two-dimensional geometries of spinning particles.

The intricacy of the (dt , dr )-generalization resides in the
difficulties associated with a uniform characterization of the
HS and HD vector spaces. The HS case is described by a
three-dimensional Euclidean space common to both trans-
lational and angular velocities. However, to preserve the
two-dimensional confinement of the HD system, angular ve-
locities are orthogonal to the translational ones. To unify both
descriptions in a common framework, we will consider the
three-dimensional Euclidean space as an embedding space
for the translational and angular velocity subspaces. Those
subspaces coincide with the embedding space for HS systems,
whereas they form an orthogonal decomposition of the vector
space in the HD case. Within such a description, all vector
operations and relations can be written as in the HS system
[36,37]. Although this mathematical description seems to be
straightforward, it is rather tricky in some aspects, as will
be seen.

The present paper is structured as follows. In Sec. II, the
Boltzmann equation framework is established and the balance
equations of the dt + 2 hydrodynamic fields, {n, u, T }, are
derived in terms of dt and dr . This mathematical descrip-
tion allows us to introduce in Sec. III the Chapman–Enskog
method around the homogeneous cooling state (HCS), from
which we obtain the velocity distribution function (VDF) to
first order in the hydrodynamic gradients, f (1), under the form
of four linear integral equations. To solve those equations, two
successive approximations are worked out in Sec. IV. First,
a Sonine-like approximation is assumed without prejudicing
the form of the zeroth-order HCS VDF f (0); this allows us
to express the NSF transport coefficients in terms of velocity
cumulants and collision integrals of f (0). As a second step,
the unknown function f (0) is approximated by a Maxwellian
distribution for the translational velocities times a generic
marginal distribution for the angular velocities, what allows
us to derive explicit expressions for the transport coefficients
(see Table I below). The results are illustrated in Sec. V for
both spheres and disks, including some interesting limiting
situations. Finally, concluding remarks and main results are
summed up in Sec. VI.

II. GRANULAR GAS OF INELASTIC AND ROUGH
HARD PARTICLES

A. Boltzmann equation

We consider a HD or HS granular gas made of identical
particles of diameter σ , mass m, and moment of iner-
tia I = κmσ 2/4. The reduced moment of inertia takes the
values κ = 1

2 for uniform disks and κ = 2
5 for uniform

spheres; its maximum value is κmax = 1 (HD) and κmax = 2
3

(HS). The translational and angular velocities of a particle
will be denoted by v and ω, respectively. Whenever conve-
nient, we will use the short-hand notations � ≡ {v,ω} and∫

d� ≡ ∫
dv

∫
dω for simplicity.

Particle-particle collisions are characterized by constant
coefficients of normal (α) and tangential (β) restitution (see
Appendix A for a summary of the collision rules). As said
in Sec. I, vector relations within our generalized description

belongs to an embedding space, namely the three-dimensional
Euclidean space E. Therefore, the collision rules in
Appendix A are presented in the three-dimensional frame-
work.

We will carry out a kinetic-theory description of a di-
lute granular gas, in the sense that the one-body VDF will
be enough to characterize the system. This approach is
complemented with the assumption of molecular chaos or
Stosszahlansatz. The analytical treatment is then based on the
Boltzmann equation in the absence of external forces, which
reads

∂t f + v · ∇ f = J�[ f , f ], (1)

where f = f (r,�; t ) is the VDF at time t and J� is the
Boltzmann bilinear collision operator:

J�1 [ f , f ] = σ dt −1
∫

d�2
∫
+d σ̂ (v12 · σ̂ )

[ f ′′
1 f ′′

2
α2|β|2dr /dt − f1 f2

]
.

(2)

Here, v12 ≡ v1 − v2 is the relative translational velocity, σ̂ =
(r2 − r1)/|r2 − r1| is the intercenter unit vector at contact, the
subscript + in the integral over σ̂ designates the constraint
σ̂ · v12 > 0, and f1,2 = f (�1,2) and f ′′

1,2 = f (�′′
1,2), the double

primes denoting precollisional quantities giving rise to un-
primed quantities as postcollisional values. Moreover, use has
been made of the Jacobian given by Eq. (A7).

B. Hydrodynamic balance equations

From a macroscopic point of view, the flow of a low-
density granular gas can be fully described by the knowledge
of the following hydrodynamic fields: particle number density
n(r, t ), hydrodynamic flow velocity u(r, t ), and total granular
temperature T (r, t ). They are given by

n(r, t ) =
∫

d� f (r,�; t ), (3a)

u(r, t ) = 〈v〉, (3b)

T (r, t ) = dt Tt (r, t ) + drTr (r, t )

dt + dr
, (3c)

where

Tt (r, t ) = m

dt
〈V 2〉, Tr (r, t ) = I

dr
〈ω2〉, (4)

V = v − u being the peculiar velocity. The angular brackets
denote averages defined generically as

〈ψ〉 = 1

n(r, t )

∫
d� ψ (r,�; t ) f (r,�; t ). (5)

Note that the rotational temperature Tr is not defined with
respect to the mean angular velocity � = 〈ω〉 because the
latter is not a conserved quantity [34].

Given a quantity ψ (r,�; t ), its associated transfer equation
can be obtained by multiplying both sides of the Boltzmann
equation, Eq. (1), by ψ and integrating over translational and
angular velocities. The result is

∂t (n〈ψ〉) + ∇ · (n〈vψ〉) − n〈(∂t + v · ∇)ψ〉 = J [ψ | f , f ],
(6)
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where J [ψ | f , f ] is the collisional production term of the
quantity ψ , given by

J [ψ | f , f ] =
∫

d�1 ψ (r1,�1; t )J�1 [ f , f ]

= σ dt −1

2

∫
d�1

∫
d�2

∫
+

d σ̂ (̂σ · v12)

× �(ψ1 + ψ2) f1 f2. (7)

Here, the operator � acting on a generic quantity ψ yields
the difference between the postcollisional and precollisional
values of ψ , i.e., �ψ (�) ≡ ψ (�′) − ψ (�).

The balance equations for mass, momentum, and energy
are obtained from Eq. (6) by choosing ψ = 1, ψ = mv, ψ =
1
2 mV 2, ψ = 1

2 Iω2, and ψ = 1
2 mV 2 + 1

2 Iω2. This yields, re-
spectively,

Dt n + n∇ · u = 0, (8a)

Dt u + ρ−1∇ · P = 0, (8b)

Dt Tt + 2

ndt
(∇ · qt + P : ∇u) + Ttζt = 0, (8c)

Dt Tr + 2

ndr
∇ · qr + Trζr = 0, (8d)

Dt T + 2

n(dt + dr )
(∇ · q + P : ∇u) + T ζ = 0. (8e)

In these equations, Dt ≡ ∂t + u · ∇ is the material time
derivative and ρ ≡ mn is the mass density. Moreover, P is
the pressure tensor, qt (qr) is the translational (rotational)
contribution to the total heat flux q, ζt (ζr) is the translational
(rotational) energy production rate, and ζ is the cooling rate.
These quantities are defined as

Pi j = ρ〈ViVj〉, p = 1

dt
TrP = nTt , (9a)

qt = ρ

2
〈V 2V〉, qr = In

2
〈ω2V〉, q = qt + qr, (9b)

ζt = − m

dt nTt
J [v2| f , f ], ζr = − I

drnTr
J [ω2| f , f ], (9c)

ζ = dtζt Tt + drζrTr

(dt + dr )T
. (9d)

In Eq. (9c), the collisional rates of change J [v2| f , f ] and
J [ω2| f , f ] are obtained from Eq. (7) by setting ψ = v2 and
ψ = ω2, respectively.

C. Homogeneous cooling state

Before analyzing inhomogeneous states in terms of the
transport coefficients at the NSF order in Secs. III–V, let us
consider the HCS, henceforth represented by the superscript
(0). In that case (∇ → 0), Eqs. (8a) and (8b) yield n = const
and u = const, while Eqs. (8c)–(8e) become

Ṫ (0)
t + T (0)

t ζ
(0)
t = 0, (10a)

Ṫ (0)
r + T (0)

r ζ (0)
r = 0, (10b)

Ṫ + T ζ (0) = 0. (10c)

Note that we have not attached a superscript (0) to the global
temperature T because of its status as a hydrodynamic vari-
able. The Boltzmann equation, Eq. (1), reduces in the HCS to

∂t f (0)(�; t ) = J�[ f (0), f (0)]. (11)

Since in the HCS all the time-dependence of f (0) occurs
through a dependence on T , we can write [5,34]

∂t f (0) = Ṫ
∂ f (0)

∂T
= ζ (0)

2

(
∂

∂V
· V + ∂

∂ω
· ω

)
f (0). (12)

The rotational-to-translational, translational-to-total, and
rotational-to-total temperature ratios are defined as

θ ≡ T (0)
r

T (0)
t

, (13a)

τt ≡ T (0)
t

T
= dt + dr

dt + drθ
, τr ≡ T (0)

r

T
= dt + dr

dt/θ + dr
. (13b)

Those temperature ratios are stationary in the HCS, so that
Eqs. (10) imply that ζ

(0)
t = ζ (0)

r = ζ (0).
The exact solution to Eq. (11) is not known, but good

estimates for the production rates ζ
(0)
t , ζ (0)

r , and ζ (0) can be
obtained by assuming the simple trial function

f (0)(�) → nv
−dt
th ω

−dr
th π−dt /2e−c2

ϕr (w), (14)

where

vth =
√

2T (0)
t

m
, ωth =

√
2T (0)

r

I
(15)

are the translational and rotational thermal velocities, and

c = V
vth

, w = ω

ωth
(16)

are the scaled translational and angular velocities. Note that,
while a Maxwellian translational distribution has been as-
sumed, the (isotropic) marginal rotational distribution ϕr (w)
does not need to be specified. Within this approximation, the
results are [36,37]

ζ
(0)
t = ν

dt

{
1 − α2 + 2drκ (1 + β )

dt (1 + κ )2

[
1 − θ

+κ (1 − β )

2

(
1 + θ

κ

)]}
, (17a)

ζ (0)
r = 2ν

dt

κ (1 + β )

(1 + κ )2

[
1 − 1

θ
+ 1 − β

2

(
1

θ
+ 1

κ

)]
, (17b)

ζ (0) = ν

dt + drθ

[
1 − α2 + dr

dt

1 − β2

1 + κ
(κ + θ )

]
, (17c)

where ν is the collision frequency defined as

ν = Knσ dt −1vth, K ≡
√

2π
dt −1

2

�(dt/2)
. (18)

Note that ν = dt +2
4 ν0, where ν0 is the collision frequency

associated with the shear viscosity of a molecular gas [48].
Insertion of Eqs. (17) into the condition ζ

(0)
t = ζ (0)

r yields the
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quadratic equation θ − 1 − (dt/dr )(1/θ − 1) = 2h, where

h ≡ dt (1 + κ )2

2drκ (1 + β )2

[
1 − α2 − 1 − dr

dt
κ

1 + κ
(1 − β2)

]
, (19)

whose physical solution is

θ =
√[

h − 1

2

(
dt

dr
− 1

)]2

+ dt

dr
+ h − 1

2

(
dt

dr
− 1

)
. (20)

III. CHAPMAN–ENSKOG METHOD

The main goal of this paper is to obtain the NSF consti-
tutive equations with explicit expressions for the associated
transport coefficients. As usual, this will be done by as-
suming that the VDF depends on space and time only
through the slow hydrodynamic fields introduced before
(n, u, and T ) and applying the Chapman–Enskog expansion
method [4,5].

A. General scheme

The Chapman–Enskog method consists essentially in
introducing multi-scale space-time derivatives and a pertur-
bation expansion of the VDF in powers of the gradients of the
hydrodynamic fields, namely,

∇ → ε∇, f = f (0) + ε f (1) + ε2 f (2) + · · · , (21a)

Dt = D(0)
t + εD(1)

t + ε2D(2)
t + · · · , (21b)

where ε is a bookkeeping parameter. Thus, the Boltzmann
equation, Eq. (1), decouples into a hierarchy of equa-
tions of orders k = 0, 1, 2, . . .. The zeroth- and first-order
equations are

D(0)
t f (0) = J�[ f (0), f (0)], (22a)(

D(0)
t + L

)
f (1) = −(

D(1)
t + V · ∇)

f (0). (22b)

In Eq. (22b), the linear collision operator L is defined as

L�(�1) = −J�1 [�, f (0)] − J�1 [ f (0),�]. (23)

Comparison between Eqs. (11) and (22a) shows that the
zeroth-order VDF f (0) is the local version of the HCS VDF.
This will be further confirmed below.

Substituting Eq. (21a) into Eqs. (9), one obtains

Pi j = p(0)δi j + εP(1)
i j + ε2P(2)

i j + · · · , (24a)

q = εq(1) + ε2q(2) + · · · , (24b)

ζ = ζ (0) + εζ (1) + ε2ζ (2) + · · · . (24c)

Here, p(0) = nτt T , τt being defined by Eq. (13b) and

ζ (1) = dtτtζ
(1)
t + drτrζ

(1)
r

dt + dr
, (25a)

ζ
(1)
t = − m

dt nτt T
�[V 2| f (1)], ζ (1)

r = − I

drnτrT
�[ω2| f (1)],

(25b)

where, in general,

�[ψ |�] ≡
∫

d�1 ψ (�1)L�(�1)

= −σ dt −1

2

∫
d�1

∫
d�2

∫
+

d σ̂ (̂σ · v12)

× �(ψ1 + ψ2)
(

f (0)
1 �2 + �1 f (0)

2

)
. (26)

Note that, within the approximation described by Eq. (14), θ

and ζ (0) are given by Eqs. (20) and (17c), respectively.
Furthermore, the action of the operator D(k)

t on a generic
function ψ (n, u, T ) of the hydrodynamic fields is

D(k)
t ψ = ∂ψ

∂n
D(k)

t n + ∂ψ

∂u
· D(k)

t u + ∂ψ

∂T
D(k)

t T, (27)

where D(k)
t n, D(k)

t u, and D(k)
t T are obtained from the balance

equations, Eqs. (8a), (8b), and (8e). In particular,

D(0)
t n = 0, D(0)

t u = 0, D(0)
t T = −T ζ (0), (28a)

D(1)
t n = −n∇ · u, D(1)

t u = −τt

ρ
∇(nT ), (28b)

D(1)
t T = − 2τt

dt + dr
T ∇ · u − T ζ (1). (28c)

Equation (28a) implies that D(0)
t f (0) = −ζ (0)T ∂T f (0), in

agreement with Eq. (12). This confirms that f (0) is the local
version of the HCS VDF.

B. First-order distribution

By following the same steps as in Sec. IVB of Ref. [34], it
is possible to express the solution to Eq. (22b) as

f (1) = A · ∇ ln T + B · ∇ ln n + Ci j∇ jui + E∇ · u, (29)

where the functions A, B, Ci j , and E obey the following set
of linear integral equations:(

−ζ (0)

2
− ζ (0)T ∂T + L

)
A = A, (30a)(−ζ (0)T ∂T + L

)
B − ζ (0)A = B, (30b)(−ζ (0)T ∂T + L

)
Ci j = Ci j, (30c)(−ζ (0)T ∂T + L

)
E + ξT ∂T f (0) = E . (30d)

Here, the functions in the inhomogeneous terms are defined by
the relation −(D(1)

t + V · ∇) f (0) = A · ∇ ln T + B · ∇ ln n +
Ci j∇ jui + E∇ · u + ζ (1)T ∂T f (0). They are given by

A = −vth

2
(∂c − c∂c · c − c∂w · w) f (0), (31a)

B = −vth

2
(2c + ∂c ) f (0), (31b)

Ci j = −
(

1

dt
δi jc · ∂c − c j∂ci

)
f (0), (31c)

E = − drτtτr

dt + dr

(
∂w · w
drτr

− dt + c · ∂c

dtτt

)
f (0), (31d)

where δi j is the identity tensor in the translational velocity
Euclidean subspace, the scaled velocities c and w are defined
by Eq. (16), and use has been made of the general property
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T ∂T f (0) = − 1
2 (∂V · V + ∂ω · ω) f (0) [see the second equality

in Eq. (12)]. In Eq. (30d), ξ is the velocity-divergence trans-
port coefficient in the constitutive equation

ζ (1) = −ξ∇ · u, (32)

which is given by

ξ = dtτtξt + drτrξr

dt + dr
, (33a)

ξt = − m

dt nτt T
�[V 2|E], ξr = − I

drnτrT
�[ω2|E]. (33b)

Note that Ci j is a traceless tensor. However, in general,
it is not symmetric. In the HS case, due to isotropy, the
local version of the HCS function f (0) is a function of V 2,
ω2, and ϑ ≡ (V · ω)2 [49–51]. This implies [34] Ci j − Cji =
2(∂ f (0)/∂ϑ )(V · ω)(Vjωi − Viω j ). However, the vectors V
and ω are mutually orthogonal in the HD case and hence the
tensor Ci j is symmetric in the two-dimensional geometry.

C. Navier–Stokes–Fourier transport coefficients

The formal derivation from Eq. (29) of the constitutive
equations for the pressure tensor and the heat flux follows the
same steps as in Sec. V of Ref. [34], except that special care
must be exerted to redo those steps keeping dt and dr generic.
For the sake of conciseness, we skip some of the technical
details.

The first-order pressure tensor and heat flux can be ex-
pressed as

P(1)
i j = −η

(
∇iu j + ∇ jui − 2

dt
δi j∇ · u

)
− ηbδi j∇ · u, (34a)

q(1) = −λ∇T − μ∇n, (34b)

where η is the sear viscosity, ηb is the bulk viscosity, λ is
the thermal conductivity, and μ is a Dufour-like cofficient
[5,24,34,35,38,52]. Since q(1) has a translational and a rota-
tional contribution [see Eq. (9b)] so do λ and μ:

λ = τtλt + τrλr, μ = μt + μr . (35)

The transport coefficients can be expressed in terms of the
solutions to Eqs. (30) as

η = − m

(dt + 2)(dt − 1)

∫
d�

(
ViVj − 1

dt
δi jV

2

)
Ci j

= nτt T

νη − 1
2ζ (0)

, (36a)

ηb = − m

dt

∫
d�V 2E = τtτrnT

ζ (0)

2dr

dt + dr

(
ξt − ξr − 2

dt

)
,

(36b)

λt = − m

2dtτt T

∫
d�V 2V · A = dt + 2

2

nτt T

m

1 + 2a(0)
20

νλt − 2ζ (0)
,

(36c)

λr = − I

2dtτrT

∫
d� ω2V · A = dr

2

nτt T

m

1 + 2a(0)
11

νλr − 2ζ (0)
,

(36d)

μt = − m

2dt n

∫
d�V 2V · B = τt T

n

λtζ
(0) + dt +2

2
nτt T

m a(0)
20

νμt − 3
2ζ (0)

,

(36e)

μr = − I

2dt n

∫
d� ω2V · B = τrT

n

λrζ
(0) + dr

2
nτt T

m a(0)
11

νμr − 3
2ζ (0)

,

(36f)

where we have introduced the HCS cumulants

a(0)
20 = m2

dt (dt + 2)τ 2
t T 2

〈V 4〉(0) − 1, (37a)

a(0)
11 = mI

drdtτtτrT 2
〈V 2ω2〉(0) − 1, (37b)

and the collision frequencies

νη = �[ViVj − 1
dt

V 2δi j |Ci j]∫
d�

(
ViVj − 1

dt
V 2δi j

)
Ci j

, (38a)

νλt = �[V 2Vi|Ai]∫
d�V 2V · A , νλr = �[ω2Vi|Ai]∫

d� ω2V · A , (38b)

νμt = �[V 2Vi|Bi]∫
d�V 2V · B , νμr = �[ω2Vi|Bi]∫

d� ω2V · B . (38c)

It is interesting to remark that the rotational-to-translational
temperature ratio is affected by the presence of ∇ · u. Taking
the trace in both sides of Eq. (34a), we get, to first order, Tt =
τt T − (ηb/n)∇ · u. Since Eq. (3c) must hold to any order, this
implies Tr = τrT + (dt/dr )(ηb/n)∇ · u. As a consequence,

Tr

Tt
= θ + τr

τt

2

ζ (0)

(
ξt − ξr − 2

dt

)
∇ · u. (39)

IV. EXPLICIT EXPRESSIONS FOR THE
TRANSPORT COEFFICIENTS

All the expressions in Sec. III are formally exact within
the Chapman–Enskog scheme but they are not explicit since
neither the zeroth-order VDF f (0) nor the solutions to the
linear integral Eqs. (30) are known exactly.

By symmetry arguments, A and B can be expressed, in the
HS case, as linear combinations of the vectors V, (V · ω)ω,
and V × ω, while Ci j is a linear combination of the dyadic
products of those three vectors. However, V ⊥ ω in a HD
system, and thus A and B are vector functions residing in
the two-dimensional subspace V of translational velocities,
so that they can be expressed as linear combinations of the
mutually orthogonal vectors V and V × ω (which form an
orthogonal basis of V), where the latter vector product is
done in the embedding space E = V ⊕ W, W being the one-
dimensional subspace where angular velocities live. Then, in
the case of disks, Ci j is a linear combination of the dyadic
products of the two vectors V and V × ω only.

A. Sonine-like approximation for Ai, Bi Ci j , and E
To get explicit expressions for the NSF transport coeffi-

cients we need to resort to approximations. We will proceed
in two steps. First, the structure of Eqs. (31) suggests to
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propose the following approximate forms for the solutions of
Eqs. (30):

A → −vth

2ν
[γAt (∂c − c∂c · c) − γAr c∂w · w] f (0), (40a)

B → −vth

2ν
[γBt (∂c − c∂c · c) − γBr c∂w · w] f (0), (40b)

Ci j → −γC

2ν

(
1

dt
δi jc · ∂c − c j∂ci

)
f (0), (40c)

E → −γE drτtτr

2ν

(
∂w · w
drτr

− dt + c · ∂c

dtτt

)
f (0), (40d)

where ν is defined by Eq. (18) and the γ coefficients re-
main to be determined. In the case of conservative collisions
(α = |β| = 1), f (0) is the Maxwellian equilibrium distribution
and then Eqs. (40) define the simplest Sonine approximation
[53,54]. Therefore, Eqs. (40) will be referred to as Sonine-like
approximation.

Inserting Eqs. (40) into the first equalities in Eqs. (36), one
can relate the transport coefficients to the γ coefficients as
follows:

η∗ ≡ η

η0
= 2γC

dt + 2
, η∗

b ≡ ηb

η0
= 4drτrγE

dt (dt + 2)
, (41a)

λ∗
t ≡ λt

λ0
= 4(dt − 1)

dt (dt + 2)
[1 + 2a(0)

20 ]γAt , (41b)

λ∗
r ≡ λr

λ0
= 4(dt − 1)dr

dt (dt + 2)2

[
γAr + (γAr + γAt )a

(0)
11

]
, (41c)

μ∗
t ≡ nμt

λ0T
= 4(dt − 1)τt

dt (dt + 2)
[1 + 2a(0)

20 ]γBt , (41d)

μ∗
r ≡ nμr

λ0T
= 4(dt − 1)drτr

dt (dt + 2)2

[
γBr + (γBr + γBt )a

(0)
11

]
, (41e)

where

η0 = dt + 2

4

nτt T

ν
, λ0 = dt (dt + 2)

2(dt − 1)

η0

m
, (42)

are the shear viscosity and thermal conductivity, respec-
tively, in the elastic (α = 1) and smooth (β = −1) case.
Appendix B shows that the γ coefficients can be expressed
in terms of collision integrals involving the HCS VDF f (0).

B. Approximate form for f (0)

Thus far, we did not need in this section to specify the VDF
f (0). Furthermore, the dependence on the number of degrees
of freedom dt and dr in the equations above obeys to purely
geometric considerations from the point of view that the ex-
plicit form of the collision rules has not been used yet. Now,
as a second step in the quest for explicit expressions for the
transport coefficients, we adopt the semi-Maxwellian approx-
imation given by Eq. (14), which implies that the cumulants
a(0)

20 and a(0)
11 [see Eqs. (37)] vanish. As a matter of fact, it has

been previously observed [49–51] that those cumulants are
indeed generally small, at least in the HS case. Preliminary
results [55] show that the cumulants are also relatively small
in the HD case, except for high inelasticity.

Equation (14) allows us to carry out the collision integrals
in Eqs. (B1) and (B2) by applying the collision rules, which
include vector products (see Appendix A). This gives rise to

TABLE I. Summary of the main explicit expressions in the ap-
proximations (14) and (40).

α̃ = 1 + α

2
, β̃ = 1 + β

2

κ

1 + κ

T (0)
t

T
= τt = dt + dr

dt + drθ
,

T (0)
r

T
= τr = dt + dr

dt/θ + dr

θ =
√[

h − 1

2

(
dt

dr
− 1

)]2

+ dt

dr
+ h − 1

2

(
dt

dr
− 1

)
h ≡ dt (1 + κ )2

2drκ (1 + β )2

[
1 − α2 − 1 − dr

dt
κ

1 + κ
(1 − β2)

]
ν = Knσ dt −1

√
2τt T/m, K ≡

√
2π

dt −1
2

�(dt/2)

ζ (0)

ν
= ζ ∗ = 1

dt + drθ

[
1 − α2 + dr

dt

1 − β2

1 + κ
(κ + θ )

]
η = nτt T

ν

1

ν∗
η − 1

2 ζ ∗ , ηb = drnτtτrT

dtν
γE

λ = τtλt + τrλr, λt = dt + 2

2

nτt T

mν
γAt , λr = dr

2

nτt T

mν
γAr

μ = μt + μr, μt = dt + 2

2

τ 2
t T 2

mν
γBt , μr = dr

2

τtτrT 2

mν
γBr

ξ = dtτtξt + drτrξr

dt + dr
= γE�, ξt = γE�t , ξr = γE�r

ν∗
η = 4

dt (dt + 2)

[
(dt + 3)

(
α̃ + dr

dt
β̃

)
− 3α̃2 − d2

r

dt
β̃2

− 4dr β̃

dt − 1

(
α̃ − β̃θ

4dt

)]
γE = 2

dt

(
�t − �r − dt + dr

2dt
ζ ∗

)−1

�t = 3drτr

2d2
t

{
1 − α2 + dr

dt

κ

1 + κ
(1 − β2)

−
(

1 + β

1 + κ

)2
κ

3

[
dr

dt
(θ − 3) − 2

]}
�r = τt

2dt

1 + β

1 + κ

{
(1 − β )

(
dr

dt
θ − 2

)
+1 + β

1 + κ
κ

[
dr

dt
(θ − 3) − 2

]}
� = 3drτtτr

2dt (dt + dr )

{
1 − α2 + 1 − β2

3(1 + κ )

[
dr

dt
(3κ + θ ) − 2

]}
γAt = Zr − Zt − 2ζ ∗

(Yt − 2ζ ∗)(Zr − 2ζ ∗) − YrZt

γAr = Yt − Yr − 2ζ ∗

(Yt − 2ζ ∗)(Zr − 2ζ ∗) − YrZt

γBt = ζ ∗ γAt (Zr − 3
2 ζ ∗) − γAr Zt

(Yt − 3
2 ζ ∗)(Zr − 3

2 ζ ∗) − YrZt

γBr = ζ ∗ γAr (Yt − 3
2 ζ ∗) − γAt Yr

(Yt − 3
2 ζ ∗)(Zr − 3

2 ζ ∗) − YrZt

Yt = 1

dt (dt + 2)

[
(20 + 7dt )

(
α̃ + dr

dt
β̃

)
− 3(dt + 8)̃α2

− (12 + 7dt )dr

dt
β̃2 − 16dr

dt
α̃β̃ − β̃2 θ

κ

dr (dt + 4)

dt

]
Yr = dt + 2

d2
t

β̃

κ

(
1 − 3β̃

θ
− β̃

κ

)
, Zt = −2dr

d2
t

β̃2 θ

κ

Zr = 2

dt

[
α̃ + dr

dt
β̃ + β̃

κ

(
2dt + 1

dt
− β̃

κ
− 2β̃ − 4α̃

dt

)]
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TABLE II. Temperature ratios (θ and τt ), reduced cooling rate (ζ ∗), and reduced transport coefficients (η∗, η∗
b , λ∗, μ∗, and ξ ) in certain limits.

Quantity Purely smooth particles Quasismooth limit Perfectly rough and elastic particles:
(dt = d , dr → 0) (β → −1) Pidduck’s limit (α = β = 1)

θ Irrelevant
dt

dr

(1 + κ )2(1 − α2)

κ (1 + β )2
→ ∞ 1

τt 1 0 1

ζ ∗ 1 − α2

d

2(1 + β )

dt (1 + κ )
→ 0 0

η∗ 8d

(1 + α)[d (3 + α) + 4(1 − α)]

4dt (dt − 1)

(1 + α)[2(d2
t − 1) + dt (1 − 3α) + 2α]

2dt (1 + κ )2

2dt + (d2
t + 2dt − 2)κ

η∗
b 0

8

(dt + 2)(1 − α2)

2dt dr (1 + κ )2

(dt + 2)(dt + dr )2κ

λ∗ 16(d − 1)

(1 + α)[d (3 + 5α) − 8α]

4(dt − 1)(dt + dr )

(dt + 2)2(1 + α)

4dr (1 + κ )2

(dt + 2)2

PN (κ )

PD(κ )

μ∗ 4(d + 2)(1 − α)

d (5 + 3α) + 4(1 − 3α)
λ∗ 0 0

ξ 0 0 0

a much subtler and complex dependence on the number of
degrees of freedom dt and dr [36], which we simplify under
the constraints that the results remain being valid for three-
dimensional rough HS (dt = dr = 3), two-dimensional rough
HD (dt = 2, dr = 1), and d-dimensional smooth particles
(dt = d , dr → 0). The algebra involved in the computation
of the collision integrals is rather tedious, so here we only
provide the final results. A summary of the main explicit
expressions obtained by the combination of Eqs. (14) and
(40) is presented in Table I. Those expressions are equivalent,
in the HS case (dt = dr = 3), to those shown in Table I of
Ref. [34].

V. RESULTS

A. Limiting cases

While Table I gives the transport coefficients in terms of
the coefficients of restitution (α, β), the reduced moment of
inertia (κ), and the number of degrees of freedom (dt , dr), it is
interesting to consider some important limiting cases.

The first situation corresponds to a d-dimensional gas
of smooth particles. In that case, dt → d and, given that
β → −1 is a singular limit (see below), we formally take
dr → 0. Since the rotational-to-translational temperature ra-
tio lacks any physical meaning in the purely smooth case,
its irrelevant precise value is not needed. In fact, on purely
mathematical grounds, Eq. (20) shows that limdr→0 θ = finite
if α > |β − κ|/1 + κ . Upon taking the limit dr → 0 in
Table I, one can easily obtain the expressions shown in the
second column of Table II. They agree with previous results
[38,48] particularized to the Maxwellian approximation. The
same results are obtained by formally setting θ = 0 and either
β = −1 or κ = 0, except that a spurious factor τt = 1 + dr/dt

is attached to λ and μ [34].
As said before, the quasismooth limit β → −1 is singu-

lar and completely different from the smooth case [34,56].
This distinction is physical and independent of the approxi-

mations carried out in this paper. The physical origin of the
quasismooth singularity of the HCS can be summarized as
follows. If the particles are strictly smooth (β = −1), then the
rotational degrees of freedom are quenched, so that the (physi-
cally irrelevant) rotational temperature remains constant while
the translational temperature monotonically decreases with
time. The rotational-to-translational temperature ratio di-
verges but there is no mechanism transferring energy from the
rotational to the translational degrees of freedom; in other
words, the channel transferring energy between the rotational
and translational degrees of freedom via collisions is broken if
β = −1. However, if β = −1 + ε, where 0 < ε  1, then the
rotational-to-translational temperature ratio becomes so huge
that it is eventually able to activate and “feed” the weak energy
channel connecting the rotational and translational tempera-
tures, thus producing a nonnegligible effect on the HCS VDF
[49–51,57].

After carefully taking the limit β → −1, the results for the
quasismooth limit displayed in the third column of Table II are
obtained. As already noticed in Ref. [34], θ ∼ (1 + β )−2 →
∞, ζ ∼ (1 + β ) → 0, and no dependence on the reduced
moment of inertia κ remains in the transport coefficients after
taking the quasismooth limit.

Figure 1 shows the differences between the smooth and
quasismooth (reduced) transport coefficients. In the cases of
the shear viscosity η∗ and the thermal conductivity λ∗, we
observe that those coefficients are higher for HS than for
HD; additionally, they are higher for smooth particles (mono-
tonic behavior) than in the quasismooth limit (nonmonotonic
behavior). In what respects the bulk shear viscosity η∗

b , it van-
ishes for smooth particles, but not in the quasismooth limit, in
which case it takes higher values for HD than for HS. Finally,
the Dufour-like coefficient μ∗ vanishes in the quasismooth
limit, but not for smooth particles, the HD value being larger
than the HS one if α > 0.303.

As a third limiting situation, we now consider a sys-
tem of particles perfectly elastic (α = 1) and perfectly
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FIG. 1. Dependence of the relevant (reduced) transport coeffi-
cients for the smooth (dr → 0) and quasismooth (β → −1) limits on
the coefficient of normal restitution for HS and HD granular gases.

rough (β = 1). Since energy is conserved by collisions
[see Eq. (A6)], the equipartition principle holds. In the
HS case, this system was first introduced about one hun-
dred years ago by Pidduck [33] and is frequently used to
model polyatomic molecules [53,58,59]. The results for HS
and HD gases are given in the fourth column of Table II.
In the case of λ, PN (κ ) = N0 + N1κ + N2κ

2 and PD(κ ) =
D0 + D1κ + D2κ

2 + D3κ
3 are polynomials with coefficients

(N0, N1, N2, D0, D1, D2, D3) = (10, 39, 24, 2, 11, 12, 21) and
(37,151,50,12,75,101,102) for HD and HS, respectively. It
must be noted that, when setting α = β = 1 in the expressions
of Table I, we took the licence of using dr = 1

2 dt (dt − 1) to
simplify the final results for η∗ and λ∗. Actually, the relation
dr = 1

2 dt (dt − 1) is exact due to the relation of rotational
mechanics on a dt -translational geometry and the orthogonal
group O(dt ) [60,61].

The dependence of η∗, η∗
b , and λ∗ on the reduced moment

of inertia for the HS and HD Pidduck gases is displayed in
Fig. 2. Given a common value of κ/κmax, while the shear
viscosity is higher for HD than for HS, the opposite happens
in the case of the bulk viscosity (except if κ/κmax > 0.718,
in which case the HD curve is slightly above the HS one).
The thermal conductivity is higher for HD than for HS only
if κ/κmax > 0.522. If the particles have a uniform mass distri-

FIG. 2. Dependence of the nonzero (reduced) transport coeffi-
cients for perfectly elastic and perfectly rough particles (Pidduck’s
gas) on the reduced moment of inertia κ , relative to its maximum
value κmax = 1 (HD) or κmax = 2

3 (HS). The symbols correspond to
uniform disks (κ/κmax = 1

2 ) and uniform spheres (κ/κmax = 3
5 ).

bution, then the HD-to-HS ratios are equal to 1.22, 1.02, and
0.99 for η∗, η∗

b , and λ∗, respectively.

B. General system

Now we go back to the general case and illustrate the
dependence of the five transport coefficients η∗, η∗

b , λ∗, μ∗,
and ξ on the coefficients of restitution (α, β) and the reduced
moment of inertia (κ) for both HS and HD granular gases. The
results are displayed as density plots in Figs. 3–7. Two char-
acteristic cases of mass distribution are considered: uniform
distribution (κ = 1

2 and 2
5 for HD and HS, respectively) and

mass concentrated on the outer surface (κ = κmax = 1 and 2
3

for HD and HS, respectively).
We observe an intricate influence of both α and β on the

transport coefficients, with typically a strong nonmonotonic
dependence on β with, at fixed α, a single maximum around
β ≈ 0 for η∗, λ∗, and μ∗, a maximum near β → −1 for
η∗

b , and a more complex behavior for ξ . Note that the bulk
viscosity reaches very high values in the quasielastic and
quasismooth region (see Fig. 4); in fact, as shown in Fig. 1
and Table II, η∗

b diverges in the combined limit β → −1 and
α → 1. Moreover, η∗ and λ∗ are the transport coefficients
more sensitive to the dimensionality and to the mass distribu-
tion. It is also worth mentioning that ξ reaches negative values
in a narrow lobe region near α = 1 (see Fig. 7). That region is
wider for HD than for HS and tends to shrink as the moment
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FIG. 3. Density plots of the reduced shear viscosity η∗ in the
plane β vs α for (a) HD with a uniform mass distribution (κ = 1

2 ),
(b) HD with a mass distribution concentrated on the outer surface
(κ = 1), (c) HS with a uniform mass distribution (κ = 2

5 ), and (d) HS
with a mass distribution concentrated on the outer surface (κ = 2

3 ).

of inertia grows; in fact, it disappears for HS with a surface
mass distribution.

VI. CONCLUDING REMARKS

In this study, we have considered a model of a granular gas
as composed by spherical particles with constant coefficients
of normal (α) and tangential (β) restitution. Previous results
[34] for the transport coefficients of a dilute gas of inelastic
and rough HS have been complemented with novel results for
the parallel case of HD. We have developed this analysis in
a unified vector space framework, based on previous works
[36,37], which allows us to obtain general expressions in

FIG. 4. Same as described in the caption of Fig. 3 but for the
reduced bulk viscosity η∗

b .

FIG. 5. Same as described in the caption of Fig. 3 but for the
thermal conductivity λ∗.

terms of the number of translational (dt ) and rotational (dr)
degrees of freedom. The choice of the embedding Euclidean
three-dimensional space is essential to get results for both
geometries within a common framework. Particular aspects,
especially the orthogonality condition between rotational and
translational velocities in the HD case, permit us to neglect the
computation of certain quantities and reduce them to already
known HS terms being parameterized by dt − 2 or (dr − 1)/2
prefactors, as convenience, in the spirit of Refs. [36,37].

The analysis has been carried out in the context of the
nonlinear Boltzmann equation, where the system is assumed
to be fully described by the one-particle VDF f (r, v,ω; t ).
Under the assumptions of (i) small gradients of the hydro-
dynamic fields [number density n(r, t ), flow velocity u(r, t ),
and granular temperature T (r, t )] and (ii) a “normal” solution
(i.e., the space and time dependence of the one-particle VDF

FIG. 6. Same as described in the caption of Fig. 3 but for the
Dufour-like coefficient μ∗.
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FIG. 7. Same as described in the caption of Fig. 3 but for the
velocity-divergence transport coefficient ξ .

takes place through a functional dependence on n, u, and T ),
the Chapman–Enskog method has been used to solve the
Boltzmann equation up to first order in the gradients. In
that way, the NSF hydrodynamic equations are obtained by
supplementing the balance equations for mass [Eq. (8a)], mo-
mentum [Eq. (8b)], and energy [Eq. (8e)] with constitutive
equations for the pressure tensor Pi j (r, t ) [Eq. (34a)], the heat
flux q(r, t ) [Eq. (34b)], and the cooling rate ζ (r, t ) [Eq. (32)].

The derivation of the associated transport coefficients has
been carried out along three successive stages of increasing
concreteness and level of approximation. In a first stage, the
transport coefficients are expressed [see Eqs. (36) and (38)] in
terms of collision integrals involving the zeroth-order (HCS)
VDF f (0) and the functions A, B, Ci j , and E characterizing
the first-order VDF f (1) [see Eq. (29)]; those functions are the
solutions of a set of linear integral equations [see Eqs. (30)]
with inhomogeneous terms related to f (0) [see Eqs. (31)].
Next, in a second stage, Sonine-like forms for the functions
A, B, Ci j , and E are assumed [see Eqs. (40)], with coefficients
(γAt , γAr , γBt , γBr , γC , and γE ) that can be expressed in terms of
collisional integrals involving f (0) [see Eqs. (B2) and (B3)].
Finally, as the third and final stage, the HCS VDF f (0) is
approximated by the product of a Maxwellian translational
VDF times the marginal rotational VDF [see Eq. (14)]. The
resulting explicit expressions for the transport coefficients
as functions of the coefficients of restitution (α and β), the
reduced moment of inertia (κ), and the numbers of degrees
of freedom (dt and dr) are displayed in Table I. In general,
the transport coefficients exhibit a rather complex nonlinear
dependence on α, β, and κ , as exposed in the density plots of
Figs. 3–7.

The choice (dt , dr ) = (3, 3) allows us to recover known
results for three-dimensional HS [34], except that in our ap-
proach we did not need to assume a Maxwellian form for
the marginal rotational VDF. Moreover, novel results for two-
dimensional HD are derived via the choice (dt , dr ) = (2, 1).
Thus, the outcome quantities can be used as a unified set of
formulas for theoretical and experimental researchers, as well
as a source of comparison between HD and HS setups.

Some special limiting cases have been exposed in Table II:
smooth, quasismooth, and Pidduck’s limits. The common
description in terms of translational and rotational degrees
of freedom let a direct recovery of the purely smooth case
results by formally taking the limit dr → 0 at fixed β, thus
circumventing the singular nature of the quasismooth limit
β → −1. In the latter limit, a universal lack of dependence
on κ of the transport coefficients, already seen for HS [34],
is observed. The quasismooth limit is quite distinct from the
purely smooth case, as shown in Fig. 1. Furthermore, we have
extended the original Pidduck’s system [33] (α = β = 1) to
our description, and novel results for HD are obtained; the
dependencies with the reduced moment of inertia are shown
in Fig. 2, where one can observe that the values of the coeffi-
cients η∗

b and λ∗ with a uniform mass distribution are similar
for the two considered setups. It is also interesting to remark
that the transport coefficient (ξ ) associated with the velocity-
divergence correction of the cooling rate vanishes in all these
limits, for both HD and HS, as expected.

An immediate application of this work is the use of the
closed set of NSF hydrodynamic equations to analyze the sta-
bility of the HCS, again in a unified framework encompassing
the special HS and HD cases. This is the subject of the com-
panion paper [62]. Additionally, the extension of the results to
stochastically driven granular gases is straightforward (since
the evaluation of the collision integrals has already been done
in the present paper) and will be published elsewhere. Another
future goal of our research is to go back to the second stage
mentioned above and assume a form for f (0) where excess
velocity kurtoses and translational-rotational velocity corre-
lations are not neglected. Preliminary results [55] are quite
promising.

Last, we hope that this research will inspire future works
in the field, which could provide simulation and experimental
results to compare with, as well as the introduction of alter-
native collisional models to describe systems of inelastic and
rough particles.
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APPENDIX A: COLLISION RULES

The direct binary collision rules read

mv′
1,2 = mv1,2 ∓ Q, Iω′

1,2 = Iω1,2 − σ

2
σ̂ × Q, (A1)

where Q is the impulse that particle 1 exerts on particle 2.
Our collision model is based on the existence of two constant
coefficients of restitution, normal (0 < α � 1) and tangential
(−1 � β � 1), which are defined by the following relations:

σ̂ · g′ = −α (̂σ · g), σ̂ × g′ = −β (̂σ × g). (A2)
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Here,

g = v12 − σ̂ × S12 (A3)

is the relative velocity of the contact points at the moment
of collision, v12 ≡ v1 − v2 being the center-of-mass relative
velocity and S12 = σ (ω1 + ω2)/2 being directly related to the
center-of-mass angular velocity. Then, from the conservation
of angular and linear momenta in each collision, the impulse
can be expressed as [34]

Q = mα̃ (̂σ · v12 )̂σ − mβ̃σ̂ × (̂σ × v12 + S12), (A4)

where

α̃ ≡ 1 + α

2
, β̃ ≡ κ

1 + κ

1 + β

2
. (A5)

The loss of energy due to inelasticity and roughness is
observed in the change of total kinetic energy, which is
given by

�EK ≡ m

2
�

(
v2

1 + v2
2

) + I

2
�

(
ω2

1 + ω2
2

)
= −m

4
(1 − β2)

κ

1 + κ
[̂σ × (̂σ × v12 + S12)]2

− m

4
(1 − α2)(̂σ · v12)2, (A6)

where �ψ (v,ω) ≡ ψ (v′,ω′) − ψ (v,ω). One can observe
that, except if α = 1 and either β = −1 or β = 1, the total
kinetic energy is dissipated upon collisions. This expected fact
is translated into a decay of the total granular temperature in
Sec. II B.

The previous equations apply to both HS and HD. In the
HS case, the translational velocity v = vx̂i + vŷj + vzk̂ and
the angular velocity ω = ωx̂i + ωŷj + ωzk̂ have dt = 3 and
dr = 3 nontrivial components, respectively. However, in the
HD case, v = vx̂i + vŷj and ω = ωzk̂ have dt = 2 and dr = 1
nontrivial components, respectively, what simplifies the colli-
sion rules [63]. An important consequence of the distinction
between spheres and disks is that the Jacobian of the transfor-
mation between pre- and postcollisional velocities turns out to
depend on dr , namely,∣∣∣∣∂ (v′

1, v′
2,ω

′
1,ω

′
2)

∂ (v1, v2,ω1,ω2)

∣∣∣∣ = α|β|2dr/dt . (A7)

APPENDIX B: THE γ COEFFICIENTS IN TERMS
OF COLLISION INTEGRALS

When Eqs. (40) are inserted into Eqs. (38) and (33b), one
obtains

ν∗
η ≡ νη

ν
= �

[
ViVj − 1

dt
V 2δi j

∣∣( 1
dt

δi jc · ∂c − c j∂ci

)
f (0)

]
1
2 (dt − 1)(dt + 2)nv2

th

,

(B1a)

ν∗
λt

≡ νλt

ν
= Yt + γAr

γAt

Zt , (B1b)

ν∗
λr

≡ νλr

ν
= γAt Yr + γAr Zr

γAr + γAt

a(0)
11

1+a(0)
11

, (B1c)

ν∗
μt

≡ νμt

ν
= Yt + γBr

γBt

Zt , (B1d)

ν∗
μr

≡ νμr

ν
= γBt Yr + γBr Zr

γBr + γBt

a(0)
11

1+a(0)
11

, (B1e)

ξt = γE�t , ξr = γE�r, (B1f)

where

Yt = �[V 2Vi|(∂ci − ci∂c · c) f (0)]
1
2 (dt + 2)νnv3

th

[
1 + 2a(0)

20

] , (B2a)

Zt = − �[V 2Vi|ci∂w · w]
1
2 (dt + 2)νnv3

th

[
1 + 2a(0)

20

] , (B2b)

Yr = �[ω2Vi|(∂ci − ci∂c · c) f (0)]
1
2 dt drνnvthω

2
th

[
1 + a(0)

11

] , (B2c)

Zr = − �[ω2Vi|ci∂w · w]
1
2 dt drνnvthω

2
th

[
1 + a(0)

11

] , (B2d)

�t = drτtτr

�
[
V 2

∣∣( ∂w·w
drτr

− dt +c·∂c
dt τt

)
f (0)

]
dtνnv2

th

, (B2e)

�r = drτtτr

�
[
ω2

∣∣( ∂w·w
drτr

− dt +c·∂c
dt τt

)
f (0)

]
dtνnω2

th

. (B2f)

The six quantities in Eqs. (B2), together with ν∗
η in Eq. (B1a),

define the fundamental collision integrals within the approxi-
mation given by Eqs. (40).

By comparing Eqs. (41) to the second equalities in
Eqs. (36), one obtains, after some algebra,

γC = 2

ν∗
η − 1

2ζ ∗ , γE = 2/dt

�t − �r − dt +dr
2dt

ζ ∗ , (B3a)

γAt = Zr − Zt (1 + ã11) − 2ζ ∗

(Yt − 2ζ ∗)(Zr − 2ζ ∗) − (Yr − 2ζ ∗̃a11)Zt
, (B3b)

γAr = Yt (1 + ã11) − Yr − 2ζ ∗

(Yt − 2ζ ∗)(Zr − 2ζ ∗) − (Yr − 2ζ ∗̃a11)Zt
, (B3c)

γBt = ζ ∗[γAt

(
Zr − 3

2ζ ∗ − Zt ã11
) − γAr Zt

] + (
Zr − 3

2ζ ∗)̃a20 − Zt ã11(
Yt − 3

2ζ ∗)(Zr − 3
2ζ ∗) − (

Yr − 3
2ζ ∗̃a11

)
Zt

, (B3d)

γBr = ζ ∗[γAr

(
Yt − 3

2ζ ∗) − γAt (Yr − Yt ã11)
] + [

Yt − 3
2ζ ∗(1 − ã20)

]̃
a11 − Yrã20(

Yt − 3
2ζ ∗)(Zr − 3

2ζ ∗) − (
Yr − 3

2ζ ∗̃a11
)
Zt

, (B3e)
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where

ã11 = a(0)
11

1 + a(0)
11

, ã20 = a(0)
20

1 + 2a(0)
20

. (B4)
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