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Thermal versus entropic Mpemba effect in molecular gases with nonlinear drag
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Loosely speaking, the Mpemba effect appears when hotter systems cool sooner or, in a more abstract way,
when systems further from equilibrium relax faster. In this paper, we investigate the Mpemba effect in a
molecular gas with nonlinear drag, both analytically (by employing the tools of kinetic theory) and numerically
(direct simulation Monte Carlo of the kinetic equation and event-driven molecular dynamics). The analysis
is carried out via two alternative routes, recently considered in the literature: first, the kinetic or thermal
route, in which the Mpemba effect is characterized by the crossing of the evolution curves of the kinetic
temperature (average kinetic energy), and, second, the stochastic thermodynamics or entropic route, in which the
Mpemba effect is characterized by the crossing of the distance to equilibrium in probability space. In general,
a nonmutual correspondence between the thermal and entropic Mpemba effects is found, i.e., there may appear
the thermal effect without its entropic counterpart or vice versa. Furthermore, a nontrivial overshoot with respect
to equilibrium of the thermal relaxation makes it necessary to revise the usual definition of the thermal Mpemba
effect, which is shown to be better described in terms of the relaxation of the local equilibrium distribution. Our
theoretical framework, which involves an extended Sonine approximation in which not only the excess kurtosis
but also the sixth cumulant is retained, gives an excellent account of the behavior observed in simulations.
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I. INTRODUCTION

In recent years, memory effects have become a hot topic
in nonequilibrium statistical physics research [1]. Those phe-
nomena usually imply counterintuitive effects that apparently
contradict well-established standard physical laws. One of
the most interesting is the Mpemba effect (ME): Given two
samples of a fluid in a common thermal bath, the initially
hotter one may cool more rapidly than that initially cooler.
The well-known Newton’s law of cooling, according to which
the temperature evolution is predetermined by its initial value,
is thus violated in the presence of the ME. Original studies of
the ME deal with water [2–32], and even today there is still
a lack of consensus about its existence in this very complex
system [33–35].

In a more general context, the ME can be recast as
“the initially further from equilibrium relaxes faster,” with
the separation from equilibrium being defined in a suitable
way, see below. With such an interpretation, Mpemba-like
effects have been investigated in a large variety of many-body
systems: molecular gases [36,37], mixtures [38], granular
gases [39–45], inertial suspensions [46,47], spin glasses [48],
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carbon nanotube resonators [49], clathrate hydrates [50],
Markovian models [51–55], active systems [56], Ising models
[57–59], non-Markovian mean-field systems [60,61], or quan-
tum systems [62]. Very recently, the ME has been analyzed in
the framework of Landau’s theory of phase transitions [63].
Also, it has been experimentally observed in colloids [64,65].

There have been two main approaches to the ME: the
kinetic-theory or “thermal” approach [36–44,46,47] and the
stochastic-process (or thermodynamics) or “entropic” ap-
proach [51–56,62,64,65]. In the thermal approach, kinetic
theory makes it possible to define in a natural way an out-
of-equilibrium time-dependent temperature T (t ) as basically
the average kinetic energy, i.e.,

T (t ) = m

dkB
〈v2〉, (1)

where d is the dimensionality of the system, m is the mass of
a particle, and kB is the Boltzmann constant. This definition
allows for a simple, and close in spirit to the original studies
in water, characterization of the separation from equilibrium
at temperature Teq: The initially hotter (colder) sample A (B)
translates into that having the larger (smaller) initial value of
the kinetic temperature, T 0

A > T 0
B > Teq. A thermal Mpemba

effect (TME) is observed if the evolution curves for the tem-
perature cross at a certain time tθ , TA(tθ ) = TB(tθ ), and that
of the initially hotter remains below the other one for longer
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times, Teq < TA(t ) < TB(t ) for t > tθ . Additionally, a Mpemba
effect may exist in the absence of a temperature crossing if
TB(t ) overshoots the equilibrium value at a certain time tO, i.e.,
TB(tO) = Teq, then reaches a minimum, and finally relaxes to
equilibrium later than sample A. This overshoot effect would
be the analog of the supercooling phenomenon in water.

In the stochastic-process approach, the starting point is
usually a Markov process x(t ). The state of the system at
time t is determined by a probability distribution P(x, t ),
which typically obeys a master equation, for discrete x, or
a Fokker-Planck equation, for continuous x. The Kullback-
Leibler divergence (KLD) or relative entropy [66] is defined
as

D(t ) ≡
〈

ln
P

Peq

〉
=

∫
dx P(x, t ) ln

P(x, t )

Peq(x)
, (2)

where Peq(x) stands for the equilibrium probability distribu-
tion. The H-theorem [67] ensures that D(t ) monotonically
decreases to zero over a nonequilibrium process and thus
D(t ) can be interpreted as the distance to equilibrium from
a physical standpoint [68]. Also, D can be understood as
(the opposite of) the nonequilibrium entropy relative to the
equilibrium state. The ME is translated as follows in this
context: The further from (closer to) sample A (B) has the
larger (smaller) initial value of D, i.e., D0

A > D0
B > 0. The

entropic Mpemba effect (EME) emerges when the evolution
curves for D cross at a certain time tD, DA(tD ) = DB(tD ), and
0 < DA(t ) < DB(t ) for t > tD.

The two effects described above, TME and EME, are
equivalent if a biunivocal correspondence between nonequi-
librium temperature and (entropic) distance to equilibrium
exists. Yet, this is not the case in general, as we will
show. In fact, the main aim of this paper is to analyze the
correspondence between the TME and the EME in a pro-
totypical system, where the two approaches can be carried
out analytically—at least in an approximate, systematic way.
Specifically, we consider a molecular gas of hard particles that
is coupled to a thermal bath, with the resulting drag force
being nonlinear in the velocity [36]. In addition, there are
binary elastic collisions between the particles. See Fig. 1 for
an illustration of the system. The evolution equation of the
velocity distribution function (VDF) is given by the Enskog-
Fokker-Planck equation (EFPE)—the Enskog term accounts
for binary collisions, whereas the Fokker-Planck term models
the interaction with the thermal bath, see Sec. II for de-
tails. To look into the system dynamics, we employ a hybrid
approach that includes both a theoretical and a numerical
analysis: kinetic-theory tools—via a Sonine approximation
of the EFPE equation—for the former and direct simulation
Monte Carlo (DSMC), together with event-driven molecular
dynamics (EDMD), simulations for the latter.

Note that it is the nonlinearity of the drag force that the
ME stems from. As a consequence, the time evolution of
the kinetic temperature is coupled to other moments and the
kinetic temperature of the nonlinear fluid shows algebraic
nonexponential relaxation and strong memory effects after a
quench [37]. Note also that elastic collisions do not change
the average kinetic energy: Were the drag absent, the kinetic
temperature would remain constant throughout the whole time
evolution. Still, an initial nonequilibrium VDF would evolve

FIG. 1. Illustration of the system considered in this paper. A
molecular gas of hard particles (represented by the large blue cir-
cles) is coupled to a thermal bath (made of particles represented
by the small red circles) via a drag force Fdrag = −mζ (v)v, where
ζ (v) is a velocity-dependent drag coefficient, and a stochastic force
Fnoise = mξ (v)η, where η is a Gaussian white-noise term. In addition,
the particles are subjected to binary elastic collisions.

toward the equilibrium Maxwellian—higher-order velocity
cumulants would indeed be affected by collisions and tend to
zero in the long-time limit.

The above characterizations of out-of-equilibrium temper-
ature and distance to equilibrium, Eqs. (1) and (2), are quite
natural in the molecular fluid. Yet, a different choice may
be more adequate in other systems. On the one hand, some
kind of nonequilibrium temperature, e.g., in the spirit of the
fictive or effective temperature for glassy systems [69–71],
may be introduced in systems where the kinetic temperature
cannot be defined—for example, Ising models [72]. On the
other hand, the L1 and L2 norms have been employed in the
literature to measure the distance of the VDF to equilibrium
[51,54,64]. Alternative choices for the observables character-
izing the thermal relaxation and the distance to equilibrium
may quantitatively affect the values of the crossing times tθ
and tD, and even the own existence of the TME and the EME.

With the above definitions, both the TME and the EME can
be investigated. Some basic questions arise, though. Does the
TME imply the EME, or vice versa? When both of them are
present, how close are the respective crossover times tθ and
tD? Is it possible to observe the ME if the kinetic temperature
of at least one of the two samples overshoots its equilibrium
value? The theoretical framework developed in this paper,
which is supported by computer simulations, answers these
key questions.

The paper is organized as follows. Section II puts forward
our model system for a fluid with nonlinear drag. Also, the
local equilibrium concept is introduced and its implications
for the entropic distance are discussed. In Sec. III, we derive
the evolution equations for the relevant physical quantities,
within the Sonine approximation schemes developed in this
paper. From this knowledge, the general phenomenology of
TME and EME is predicted and described from heuristic
arguments in Sec. IV. Afterwards, in Sec. V a singular case
for TME, induced by the appearance of an overshoot effect,
is investigated. Thus, Secs. II–V constitute the core of the
theoretical framework developed in the paper. In addition, we
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present simulation results supporting the theoretical predic-
tions in Sec. VI. Finally, conclusions are presented in Sec. VII,
including a discussion on the definition of nonequilibrium
temperature for a general system. Some technical parts are
relegated to appendices.

II. MODEL SYSTEM AND LOCAL EQUILIBRIUM

Let us consider the following model for a fluid with nonlin-
ear drag [36,37,73–75]: a d-dimensional fluid of elastic hard
spheres of mass m and diameter σ , with number density n,
subjected to a stochastic force composed by a white-noise
term with nonlinear variance plus a nonlinear drag force. This
scheme mimics a system of elastic spheres assumed to be
suspended in a background fluid in equilibrium at temperature
Tb, as depicted in Fig. 1.

The (spatially uniform) EFPE for the one-body VDF
f (v, t ) reads

∂t f (v, t ) − ∂

∂v
·
[
ζ (v)v + ξ 2(v)

2

∂

∂v

]
f (v, t ) = J[v| f , f ],

(3)
where

J[v1| f , f ] = σ d−1gc

∫
dv2

∫
+

d σ̂ v12 · σ̂

× [ f (v′
1, t ) f (v′

2, t ) − f (v1, t ) f (v2, t )] (4)

is the usual Boltzmann-Enskog collision operator with v12 ≡
v1 − v2, gc = limr→σ+ g(r) being the contact value of the pair
correlation function and

∫
+ d σ̂ ≡ ∫

d σ̂ �(v12 · σ̂ ). In addi-
tion, the drag component of the stochastic force is −mζ (v)v,
while the white-noise counterpart has a nonlinear variance
m2ξ 2(v). The functions ζ (v) and ξ 2(v) are connected via the
fluctuation-dissipation theorem as

ξ 2(v) = 2kBTb

m
ζ (v), (5)

where Tb is the temperature of the background fluid. This
ensures that the only stationary solution of the EFPE is the
equilibrium Maxwellian,

f eq(v) = n

(
m

2πkBTb

)d/2

e−mv2/2kBTb . (6)

A quadratic dependence of the drag coefficient naturally
appears when the hard spheres and the background fluid par-
ticles have a comparable mass [36,37,73–75],

ζ (v) = ζ0

(
1 + γ

mv2

kBTb

)
. (7)

The coefficients ζ0 and γ are both positive and measure the
zero-velocity value of the drag coefficient and the degree of
nonlinearity of the drag force, respectively. Note that, due
to the nonlinearity of the drag force, the implementation of
the Langevin equation associated with the free streaming of
particles between collisions is far from trivial. This issue is
discussed in Appendix A.

The two approaches to the ME can be implemented in
the nonlinear fluid introduced above. Translating Eqs. (1) and
(2) to our model system, we have that the nonequilibrium

temperature T (t ) is given by

T (t ) = m

dkB
〈v2〉 = m

ndkB

∫
dv v2 f (v, t ), (8)

and the relative entropy is

D(t ) =
〈
ln

f

f eq

〉
= 1

n

∫
dv f (v, t ) ln

f (v, t )

f eq(v)
, (9)

where n ≡ ∫
dv f (v, t ) is the number density.

On physical grounds, it is expected that the evolution of
the gas toward equilibrium takes place along two stages [76].
First, a rapid “kinetic” stage where the VDF approaches the
so-called local equilibrium (LE) form,

f LE(v; T (t )) = n

[
m

2πkBT (t )

]d/2

e−mv2/2kBT (t ), (10)

i.e., f LE has the Maxwellian shape but with the time-
dependent temperature. Second, a slower “hydrodynamic”
stage, where the VDF is close to f LE and the evolution of the
VDF takes place via the temperature.

The above discussion suggests the following decomposi-
tion for the relative entropy:

D(t ) = Dkin(t ) + DLE(T (t )), (11)

where

Dkin(t ) = 1

n

∫
dv f (v, t ) ln

f (v, t )

f LE(v; T (t ))
(12a)

and

DLE(T (t )) = 1

n

∫
dv f LE(v; T (t )) ln

f LE(v; T (t ))

f eq(v)

= d

2
[θ (t ) − 1 − ln θ (t )], θ (t ) ≡ T (t )

Tb
. (12b)

Both Dkin and DLE are positive definite [77]. To split D
into the sum of Dkin and DLE, we have employed that the
average of the kinetic energy with f (v, t ) is the same as with
f LE(v; T (t )). A generalization of this idea makes it possible to
define a nonequilibrium temperature and an analogous split-
ting of D in quite a general class of systems, see Sec. VII for
further details.

The first contribution to the total D, Dkin, is a measure of
the departure of the true VDF from the LE one, and depends
explicitly on time through the whole VDF f (v, t ). In contrast,
the second contribution DLE measures the deviation of the
LE state from the asymptotic equilibrium state and only de-
pends on time through the nonequilibrium temperature T (t ),
namely on the temperature ratio θ (t ). More specifically, DLE

monotonically increases as |θ − 1| increases in the domains
θ > 1 and θ < 1 separately. Figure 2 presents a sketch of the
temporal evolution of D and its two contributions, DLE and
Dkin [78].

The TME and EME can be directly related if the cross-
ing comes about in the hydrodynamic regime, since therein
Dkin ≈ 0 and D(t ) ≈ DLE(θ (t ))—which is a function of tem-
perature only, as explicitly stated by our notation. Therefore,
the TME and EME become equivalent during the hydrody-
namic stage, and tθ � tD. However, we will show that in
most situations the ME occurs during the kinetic stage, the
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FIG. 2. Sketch showing a typical evolution of the total KLD
(solid line), its LE contribution (dashed line), and its kinetic con-
tribution (dotted line).

contribution Dkin is then relevant, and the physical picture is
much more complex. In fact, the two-stage relaxation picture
may even break down under certain conditions, as discussed
in Ref. [79].

III. EVOLUTION EQUATIONS

Multiplying both sides of Eq. (3) by v2 and integrating
over velocity one readily obtains the evolution equation for
the time-dependent temperature,

Ṫ

ζ0
= −2(T − Tb)

[
1 + (d + 2)γ

T

Tb

]
− 2(d + 2)γ

T 2

Tb
a2,

(13)

where

a2(t ) ≡ d

d + 2

〈v4〉
〈v2〉2

− 1 (14)

is the excess kurtosis.
Using as unit of time the mean free time—average time

between collisions—at equilibrium,

τb = Kd

gcnσ d−1
√

2kBTb/m
, Kd ≡

√
2�(d/2)

π
d−1

2

, (15)

the dimensionless time t∗ and zero-velocity drag coefficient
ζ ∗

0 can be defined as

t∗ = t/τb, ζ ∗
0 = ζ0τb. (16)

The parameter ζ ∗
0 measures the relative relevance of the drag

force (i.e., the interactions between the particles and the back-
ground fluid) and hard-sphere binary collisions. The limit
ζ ∗

0 → 0 corresponds to negligible drag force, where the EFPE
reduces to the Enskog equation. The limit ζ ∗

0 → ∞ corre-
sponds to negligible collisions, where the EFPE reduces to
the Fokker-Planck equation [80]. In this work, we typically
consider the value ζ ∗

0 = 1, for which the drag force and binary
collisions are comparable and act over the same timescale.
Note that both the drag force and binary collisions drive by
themselves the system to equilibrium, independently of the
magnitude of the other interaction, with the entropic distance
monotonically decreasing to zero [81].

In the remainder of the paper we employ dimensionless
quantities. Dimensionless temperature is identified with the
temperature ratio θ defined in Eq. (12b). For simplicity,
henceforth the stars on t∗ and ζ ∗

0 are dropped. The evolution
equation for the temperature, Eq. (13), thus reads

θ̇

ζ0
= −2(θ − 1)[1 + (d + 2)γ θ ] − 2(d + 2)γ θ2a2. (17)

Notice that one gets Newton’s cooling law θ̇ = −2ζ0(θ − 1)
in the linear case γ = 0. However, if γ �= 0, then the evolution
of temperature is coupled to that of the fourth-degree moment
〈v4〉 through a2. Next, the evolution equation for 〈v4〉 stem-
ming from the EFPE, Eq. (3), is coupled to the sixth-degree
moment 〈v6〉 due to the nonlinear drag term and to all the
moments 〈v�〉 due to the collision term, and so on. Thus,
the full evolution of θ (t ) is coupled to the infinite hierarchy
of moment equations, which are derived in Appendix B by
introducing a Sonine expansion of the VDF. By retaining only
the first two terms in the expansion, which involve the excess
kurtosis (or fourth-order cumulant) a2 and the sixth-order
cumulant a3,

a3(t ) = 1 + 3a2 − d2

(d + 2)(d + 4)

〈v6〉
〈v2〉3 , (18)

and neglecting nonlinear terms in the cumulants one gets

ȧ2

ζ0
= −8γ (θ − 1) + 4

[
2γ − (d + 8)γ θ − 1

θ

]
a2

+ 4(d + 4)γ θa3 − 8(d − 1)

d (d + 2)

√
θ

ζ0

(
a2 − a3

4

)
, (19a)

ȧ3

ζ0
= −24γ (2 − 3θ )a2 + 6

[
4γ − (d + 14)γ θ − 1

θ

]
a3

+
√

θ

ζ0

3(d − 1)

d (d + 2)(d + 4)
[4a2 − (4d + 19)a3]. (19b)

Equations (17) and (19) make a closed set of three coupled
differential equations, nonlinear in the temperature but linear
in the cumulants.

In this paper, we consider two Sonine approximations.
The roughest approximation consists of neglecting a3, setting
a3 = 0 in Eq. (19a), and dealing then with Eqs. (17) and (19a)
for the pair (θ, a2). Here we term this approach the basic So-
nine approximation (BSA) [82]. A more sophisticated theory
is obtained by keeping a3 and dealing then with Eqs. (17) and
(19). We term this approach the extended Sonine approxima-
tion (ESA) [83].

IV. THERMAL VERSUS ENTROPIC MPEMBA EFFECTS

A. Heuristic arguments

Now we proceed to study the ME in the theoretical frame-
work of the Sonine approximations we have just introduced.
To start with, let us consider two samples (A and B) at
the same initial temperatures θA(0) ≡ θ0

A and θB(0) ≡ θ0
B ,

above the equilibrium value, i.e., θ0
A = θ0

B > 1. According to
Eq. (17), the initial slopes θ̇A(0) and θ̇B(0) satisfy the inequal-
ity θ̇A(0) < θ̇B(0) if a2A(0) ≡ a0

2A > a2B(0) ≡ a0
2B, in which

case sample A is expected to reach equilibrium before sample

054140-4



THERMAL VERSUS ENTROPIC MPEMBA EFFECT IN … PHYSICAL REVIEW E 105, 054140 (2022)

TABLE I. Summary of possible cases regarding the occurrence of the TME and the EME.

Case Type of ME Initial condition If ... then ...

ET1 Direct TME & EME θ0
A > θ0

B > 1, a0
2A > a0

2B, D0
A > D0

B |a2A(tθ )| < |a2B(tθ )| tD < tθ
TE1 Direct TME & EME θ0

A > θ0
B > 1, a0

2A > a0
2B, D0

A > D0
B |a2A(tθ )| > |a2B(tθ )| tD > tθ

ET2 Inverse TME & EME θ0
A < θ0

B < 1, a0
2A < a0

2B, D0
A > D0

B |a2A(tθ )| < |a2B(tθ )| tD < tθ
TE2 Inverse TME & EME θ0

A < θ0
B < 1, a0

2A < a0
2B, D0

A > D0
B |a2A(tθ )| > |a2B(tθ )| tD > tθ

T1 Direct TME θ0
A > θ0

B > 1, a0
2A > a0

2B D0
B > D0

A No EME
T2 Inverse TME θ0

A < θ0
B < 1, a0

2A < a0
2B D0

B > D0
A No EME

E1 EME D0
B > D0

A θ 0
A > θ0

B > 1 No Direct TME
E2 EME D0

B > D0
A θ 0

A < θ0
B < 1 No Inverse TME

B. It must be brought to bear that the latter statement is true
if θ (t ) − 1 keeps its initial sign along the whole relaxation
to equilibrium, a condition that is assumed throughout this
section. Exceptions to this fact, due to the overshoot of θ with
respect to its equilibrium value, are discussed in Sec. V.

In order to analyze the TME described in Sec. I, let us
take now θ0

A > θ0
B > 1. As discussed above, θ̇A(0) < θ̇B(0) if

a0
2A > a0

2B. In that way, it can be expected that, by a convenient
choice of the initial-condition values (θ0

A, a0
2A) and (θ0

B, a0
2B),

the evolution curves θA(t ) and θB(t ) intersect at a certain
crossover time tθ . That is, θA(tθ ) = θB(tθ ) and θ̇A(tθ ) < θ̇B(tθ ),
which entails a2A(tθ ) > a2B(tθ ) and 1 < θA(t ) < θB(t ) for t >

tθ . This is the typical framework for the emergence of the
(direct) TME in the kinetic description [36,37,39].

The inverse TME is analogous, except that, instead of
θ0

A > θ0
B > 1, one now has θ0

A < θ0
B < 1. If now a0

2B > a0
2A,

then θ̇B(0) < θ̇A(0), so that it is in principle possible that the
evolution curve θA(t ) intersects θB(t ) at a certain crossover
time tθ .

Note that, without loss of generality, we denote by A the
sample with an initial temperature farther from the equilib-
rium one, both in the direct and inverse TME. Thus, the
necessary (but, of course, not sufficient) conditions for the
direct and inverse TME are a0

2A > a0
2B and a0

2B > a0
2A, respec-

tively.
In this work, we analyze both the TME and the EME. In

the latter, it is the evolution curves of the relative entropy D
that intersect at a certain time tD, as described in Sec. I [84].
In particular, we want to understand whether the TME implies
the EME or not. Also, when both the TME and the EME are
present, we would like to investigate the relation between the
crossing times tθ and tD.

Let us address the questions above by simple heuristic
arguments. First, we consider the case in which the further
from equilibrium sample in the kinetic approach (A) is also
the further from equilibrium in the entropic approach, i.e.,
D0

A > D0
B. Therein, the existence of the TME implies that of

the EME, and vice versa, as shown below. Note that D0
A > D0

B
if D0 increases with |θ0 − 1|. This is indeed true for the LE
contribution DLE, but not necessarily so for the total KLD D
if the kinetic contribution Dkin plays a relevant role.

For the direct TME, we have θ0
A > θ0

B > 1 and D0
A > D0

B.
If the TME exists, then one has θB(t ) > θA(t ) > 1 after the
crossover. In particular, this holds for sufficiently long times
belonging to the hydrodynamic stage, where both Dkin

A and

Dkin
B are negligible, and thus one has DB(t ) > DA(t ) (EME) in

the same stage. Reciprocally, if the EME exists, then DB(t ) >

DA(t ) in the hydrodynamic stage after the crossover, implying
θB(t ) > θA(t ) > 1 (TME) in the same regime. An analogous
reasoning applies to the inverse TME, i.e., 1 > θ0

B > θ0
A and

D0
A > D0

B.
Provided that the TME and EME are present, the argument

above does not tell us the relative positioning of the crossover
times tθ and tD, i.e., whether tθ > tD or tθ < tD. Let us start by
considering that the direct TME takes place at tθ . Therefore,
we have that DLE

A (tθ ) = DLE
B (tθ ) and only the kinetic part

contributes to the KLD difference at tθ , DA(tθ ) − DB(tθ ) =
Dkin

A (tθ ) − Dkin
B (tθ ). This implies that DA(tθ ) < DB(tθ ) (and

hence tD < tθ ) if Dkin
A (tθ ) < Dkin

B (tθ ), while DA(tθ ) > DB(tθ )
(and hence tD > tθ ) otherwise.

For the sake of simplicity, and to go beyond the generic
analysis of the previous paragraph, let us assume that the
values of the excess kurtoses at the crossover time tθ are
small enough as to approximate Dkin ∝ a2

2. The proportion-
ality constant may depend on the details of the VDF—see
Eq. (24) below for the specific example of a gamma dis-
tribution. Within this approximation, the first case, tD < tθ ,
is expected if |a2A(tθ )| < |a2B(tθ )|, while the second case,
tD > tθ , is expected if |a2A(tθ )| > |a2B(tθ )|. Both scenarios are
possible, even recalling that a2A(tθ ) > a2B(tθ ) is a necessary
condition to have the TME, because the sign of the excess
kurtoses of samples A and B may be different. For the case of
the inverse TME, the sign of tD − tθ coincides again with that
of |a2A(tθ )| − |a2B(tθ )|.

The different possibilities analyzed above for the case
D0

A > D0
B are summarized in Table I, specifically as cases

labeled ET1, TE1 (for the direct ME) and ET2, TE2 (for the
inverse ME).

Now we move onto the situation in which the further from
equilibrium sample in the kinetic approach (A) is, however,
the closer to equilibrium in the entropic approach, D0

A < D0
B.

On account of Eq. (12b), the condition D0
B > D0

A requires

Dkin,0
B − Dkin,0

A >
d

2

(
θ0

A − θ0
B − ln

θ0
A

θ0
B

)
> 0. (20)

Additional cases are possible, which are labeled as T1, T2, E1,
and E2 in Table I. The TME and the EME are no longer biu-
nivocally related. For example, in the T1 case, the direct TME
is present but no genuine EME takes place: θ0

A > θ0
B > 1 and
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FIG. 3. Dependence of Dkin with a2 for a gamma distribution.
Specifically, we plot the exact expression (solid line), given by
Eq. (23), and the small |a2| approximation (dotted line), given by
Eq. (24), for d = 3. Symbols correspond to the particular values at
a2 = −0.35, −0.20, 0.30, and 0.50 considered in Table II.

θB(t ) > θA(t ) > 1 for t > tθ , but DB > DA both initially and
for asymptotically long times. Note, however, that this does
not prevent the difference DB(t ) − DA(t ) from changing its
sign an even number of times during the transient relaxation.

To fix ideas and for further use, let us take the VDF cor-
responding to a gamma distribution [85] for the probability
density of the variable x = c2. Using the condition 〈c2〉 =
d
2 , the reduced VDF associated with the gamma distribution
reads

φ(c) = π−d/2 �( d
2 )zdz/2

�( dz
2 )

cd (z−1)e−zc2
, z ≡ 1

1 + d+2
2 a2

. (21)

Note that this includes the LE distribution, Eq. (B10), as the
special case a2 = 0. Thus, the deviations of the distribution
(21) from LE are monitored by the excess kurtosis a2 only. In
particular, the sixth cumulant is given by

a3 = 4

d + 4
a2

(
1 − d + 2

2
a2

)
. (22)

The KLD of the gamma distribution with respect to the LE
one is [86]

Dkin = d

2

{
ln z + (z − 1)

[
ψ

(
dz

2

)
− 1

]}
+ ln

�
(

d
2

)
�

(
dz
2

) , (23)

in which ψ (x) = d ln �(x)/dx is the digamma function [87].
For small |a2|, one has

Dkin ≈ d (d + 2)2

16

[
d

2
ψ ′

(
d

2

)
− 1

]
a2

2, (24)

where ψ ′(x) ≡ dψ (x)/dx.
The dependence of Dkin, as given by Eq. (23), as a function

of a2 in the three-dimensional case (d = 3) is shown in Fig. 3.
We observe that Dkin grows more rapidly for negative than
for positive values of a2, exhibiting a vertical asymptote at
a2 = −2/(d + 2), which corresponds to z → ∞.

B. Linearized analysis

To provide a simple, but yet more quantitative, study, in
the remainder of this section (and also in Sec. V) we adopt
the linearization scheme put forward in Ref. [36]. The starting
point is the BSA described by Eqs. (17) and (19a), setting
a3 → 0 in the latter. Furthermore, the temperature ratio θ is
linearized around a reference value θr close to θ0 ≡ θ (0). The
solution of the resulting set of two differential equations is
[36]

θ (t ) = B1 + [
A11(θ0 − B1) − A12

(
a0

2 − B2
)]

e−λ−t

−[
(A11 − 1)(θ0 − B1) − A12

(
a0

2 − B2
)]

e−λ+t ,

(25a)

a2(t ) = B2 + [
A22

(
a0

2 − B2
) − A21(θ0 − B1)

]
e−λ−t

− [
(A22 − 1)

(
a0

2 − B2
) − A21(θ0 − B1)

]
e−λ+t ,

(25b)

in which a0
2 ≡ a2(0), and the expressions of the parame-

ters λ±, Bi, and Ai j can be found in Appendix C. We refer
to Eqs. (25) as the linearized basic Sonine approximation
(LBSA). When using the LBSA to investigate the ME, we are
assuming that θ (t ) is close to θr , which in turn is close to θ0.
This entails that the LBSA is expected to be applicable to the
kinetic stage only—i.e., when the ME comes about for short
times.

The LBSA can be applied to the evolution of the two
samples A and B with the convenient choice θr = θ0

B [36]. It
is then straightforward to find the crossover time tθ as

tθ = 1

λ+ − λ−
ln

(
1 + A−1

11

R0
max/R0 − 1

)
, (26)

where

R0 ≡ θ0
A − θ0

B

a0
2A − a0

2B

, R0
max ≡ A12

A11
. (27)

Therefore, in the LBSA, the crossover time tθ depends on the
set of four initial values θ0

A , a0
2A, θ0

B , and a0
2B only through the

ratio R0. Moreover, Eq. (26) is meaningful only if

0 < R0 < R0
max. (28)

Otherwise, no TME—either direct or inverse—exists.
The determination of the crossover time tD is much more

involved, even in the simple LBSA. It is obtained as the
solution of a transcendental equation and the solution depends
on θ0

A , a0
2A, θ0

B , and a0
2B. The locus separating the region

where tD < tθ from the region where tD > tθ is approximately
given by the condition |a2A(tθ )| = |a2B(tθ )|; the sign of tD − tθ
is the same as that of |a2A(tθ )| − |a2B(tθ )|—as discussed in
the previous section. See cases ET1, TE1, ET2, and TE2 in
Table I. Furthermore, cases T1, T2, E1, and E2 are possible
if the initial values of the KLD cross the locus D0

A = D0
B,

as summarized in Table I and described in Sec. IV A. If the
locus D0

A = D0
B happens to separate regions ET1 and T1 (or

ET2 and T2), then one has tD → 0 on the locus, so that
0 < tD < tθ in region ET1 (or ET2) and formally tD < 0 < tθ
in region T1 (or T2).

054140-6



THERMAL VERSUS ENTROPIC MPEMBA EFFECT IN … PHYSICAL REVIEW E 105, 054140 (2022)

TABLE II. Four representative choices for the initial values a0
2A

and a0
2B (d = 3). The numerical values of Dkin, as given by Eq. (23)

with d = 3, are also included. The sixth column gives the cases (see
Table I) that, in principle, are associated with each pair (a0

2A, a0
2B ).

However, some of them (enclosed in parentheses) are not actually
observed (see Fig. 4).

Label a0
2A a0

2B Dkin,0
A Dkin,0

B Cases

I 0.50 −0.35 0.292 0.644 ET1, (TE1), T1, E1, E2
II 0.50 −0.20 0.292 0.110 ET1, TE1
III −0.35 0.30 0.644 0.122 ET2, TE2
IV −0.20 0.50 0.110 0.292 (ET2), (TE2), T2, E1, E2

C. Illustrative examples

Let us choose the four representative pairs (a0
2A, a0

2B) pre-
sented in Table II. Since the scenarios ET1 and TE1 described
in Table I require a0

2A > a0
2B, they are in principle feasible

for the pairs I and II. Analogously, the scenarios ET2 and
TE2 might be possible for the pairs III and IV. Next, by
assuming the initial VDF has the gamma form, Eq. (21), we
have Dkin,0

B > Dkin,0
A for the pairs I and IV, but not for the pairs

II and III; in view of Eq. (20), we conclude that, in principle,
cases T1, E1, and E2 are possible for pair I and cases T2, E1,
and E2 for pair IV.

The phase diagrams predicted by the LBSA are shown in
Fig. 4 for ζ0 = 1, γ = 0.1, and d = 3. We observe that, at
least for that choice of the parameters, case TE1 is absent
for the class of initial conditions I, while cases ET2 and TE2
are absent for the class of initial conditions IV. This confirms
that the initial conditions shown in the third column of Table I
for the cases ET1, TE1, ET2, and TE2 represent necessary—
but not sufficient—conditions for their occurrence, the actual
realization of those scenarios depending on the evolution of
a2A(t ) and a2B(t ).

The time evolution of the differences

�D ≡ DA − DB, �DLE ≡ DLE
A − DLE

B , (29)

for the representative points indicated in Fig. 4 are displayed
in Figs. 5–8, where the difference �Dkin = Dkin

A − Dkin
B =

�D − �DLE is also included. The change of sign of DLE
A −

DLE
B and DA − DB during their evolution signals the presence

of the TME and EME, respectively. Here, we made an extra
ansatz to evaluate Dkin(t ). As we are working with an initial
gamma distribution and the final equilibrium state is a particu-
lar case of such a distribution—with a2 = 0, we have assumed
that the VDF during its time evolution is sufficiently close to a
gamma distribution so as to estimate Dkin(t ) by Eq. (23) with
an excess kurtosis a2(t ) given by Eq. (25b).

Figures 5(b) and 5(c) are both examples of the scenario
T1 for the class of initial conditions I. In Fig. 5(b), where
(θ0

B − 1, θ0
A − θ0

B ) = (0.8, 0.2) [see Fig. 4(a)], the difference
D0

A − D0
B presents a negative local maximum. When mov-

ing horizontally in Fig. 4(a) to the point (θ0
B − 1, θ0

A − θ0
B ) =

(0.3, 0.2), however, Fig. 5(c) shows that the local maximum
of D0

A − D0
B becomes positive and D0

A − D0
B vanishes twice

during the time evolution. While interesting, this does not
qualify as an EME because, as already said above Eq. (20),
DB > DA both initially and for asymptotically long times.
Next, moving vertically in Fig. 4(a) to the point (θ0

B − 1, θ0
A −

θ0
B ) = (0.3, 0.5), the local maximum observed in Fig. 5(d) is

again positive but there is a single crossing D0
A − D0

B = 0,
which results in the E1 scenario.

V. OVERSHOOT MPEMBA EFFECT

In Sec. IV, we have assumed that, even though the evolu-
tion of θ (t ) may not be monotonic, θ (t ) − 1 does not change
sign, i.e., the temperature does not overshoot the equilibrium

−1 0 1 2 3 4 5 6 7 8
−0.5

0.0
0.5
1.0
1.5
2.0
2.5

θ0 A
−

θ0 B

(a)

ET1

T1
E1

E2

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

2.0

θ0 A
−

θ0 B

(b)

ET1

TE1

−1.00 −0.75 −0.50 −0.25 0.00
θ0
B − 1

−0.12

−0.08

−0.04

0.00

θ0 A
−

θ0 B

(c)

ET2

TE2

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
θ0
B − 1

−0.50

−0.25

0.00

0.25

0.50

θ0 A
−

θ0 B

(d)

E1T2

E2

FIG. 4. Phase diagrams in the representation θ0
A − θ0

B vs θ 0
B − 1. Specifically, they are plotted for ζ0 = 1, γ = 0.1, d = 3, and the four

representative choices of (a0
2A, a0

2B ) displayed in Table II: (a) I, (b) II, (c) III, and (d) IV. The solid, dashed, and dotted lines represent the loci
R0 = R0

max, tθ = tD , and D0
A = D0

B, respectively. The labels in each region correspond to the cases described in Table I and the circles represent
the specific examples considered in Figs. 5–8. Note that θ0

A > θ0
B > 1 and θ0

A < θ0
B < 1 refer to the direct TME and inverse TME, respectively.

054140-7



MEGÍAS, SANTOS, AND PRADOS PHYSICAL REVIEW E 105, 054140 (2022)
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(d)E1(θ0
A, θ0

B) = (1.8, 1.3)
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(e)E2(θ0
A, θ0

B) = (0.8, 0.91)

FIG. 5. Time evolution of the difference of the relative entropies
for the representative initial condition I in Table II, (a0

2A, a0
2B ) =

(0.50, −0.35). Parameter values are ζ0 = 1, γ = 0.1, d = 3. Specif-
ically, we represent Dkin

A − Dkin
B (dotted lines), DLE

A − DLE
B (dashed

lines), and DA − DB (solid lines) for different pairs of initial tempera-
tures, namely (a) (θ0

B − 1, θ0
A − θ0

B ) = (8, 1), (b) (θ0
B − 1, θ0

A − θ0
B ) =

(0.8, 0.2), (c) (θ0
B − 1, θ0

A − θ0
B ) = (0.3, 0.2), (d) (θ0

B − 1, θ0
A −

θ 0
B ) = (0.3, 0.5), and (e) (θ0

B − 1, θ0
A − θ0

B ) = (−0.09,−0.11). Pan-
els (a), (b), (c), (d), and (e) represent examples of cases ET1, T1, T1,
E1, and E2, respectively [see Fig. 4(a)].

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

Δ
D

(a)ET1(θ0
A, θ0

B) = (3.5, 3)

0.0 0.1 0.2 0.3 0.4
t

−0.2

−0.1

0.0

0.1

0.2

Δ
D

(b)TE1(θ0
A, θ0

B) = (3.15, 3)

FIG. 6. Same as in Fig. 5, but now for the representative ini-
tial condition II in Table II, (a0

2A, a0
2B ) = (0.50, −0.20. Here, initial

conditions for the temperatures are (a) (θ0
B − 1, θ0

A − θ0
B ) = (2.0, 0.5)

and (b) (θ 0
B − 1, θ0

A − θ0
B ) = (2.00, 0.15). Panels (a) and (b) represent

examples of cases ET1 and TE1, respectively [see Fig. 4(b)].

value. However, such an overshoot θ (tO) = 1 at a finite time
tO is possible. In general, a2(tO) �= 0, and Eq. (17) shows that
θ̇ (tO)/ζ0γ = −2(d + 2)a2(tO) �= 0. As a consequence, start-
ing from θ0 > 1, θ (t ) − 1 develops a hump with a negative
minimum if a2(tO) > 0; analogously, starting from θ0 < 1
and if a2(tO) < 0, θ (t ) − 1 develops a hump with a positive
maximum, reminiscent of the Kovacs effect [37,88–94]. We
will refer to this crossover θ (tO) = 1 and subsequent hump,
either positive or negative, as an overshoot phenomenon.

Given the fact that the relaxation of a2(t ) is generally
much faster than that of θ (t ), at least if θ0 = O(1) [37], it is
reasonable to expect that the overshoot effect requires initial
values |θ0 − 1| � 1, unless |a0

2| is unphysically large. This
suggests a theoretical treatment based on the LBSA (25) with
θr → 1, i.e.,

θ (t ) = 1 + [
Ā11(θ0 − 1) − Ā12a0

2

]
e−λ̄−t

− [
(Ā11 − 1)(θ0 − 1) − Ā12a0

2

]
e−λ̄+t , (30a)

a2(t ) = [
Ā22a0

2 − Ā21(θ0 − 1)
]
e−λ̄−t

−[
(Ā22 − 1)a0

2 − Ā21(θ0 − 1)
]
e−λ̄+t , (30b)

where overlined quantities refer to their values at θr = 1.
Following the same methodology as in Eqs. (26) and (27),
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0.0 0.2 0.4 0.6 0.8
t

10

10

10

Δ
D

FIG. 7. Same as in Fig. 5, but now for the representative initial
condition III in Table II, (a0

2A, a0
2B ) = (−0.35, 0.30). In this case, the

initial conditions for the temperatures chosen are (a) (θ0
B − 1, θ0

A −
θ 0

B ) = (−0.09, −0.03) and (b) (θ0
B − 1, θ0

A − θ0
B ) = (−0.09, −0.09).

Panels (a) and (b) represent examples of cases TE2 and ET2, respec-
tively [see Fig. 4(c)]. Note that �D is plotted in logarithmic scale in
the inset of panel (b) to favor the perception of the crossover times,
at which �D vanishes.

we find

tO = 1

λ̄+ − λ̄−
ln

[
1 + Ā−1

11

R̄0
maxa0

2/(θ0 − 1) − 1

]
, (31)

where

R̄0
max ≡ Ā12

Ā11
. (32)

Therefore, according to the LBSA, the overshoot effect ap-
pears if

0 <
θ0 − 1

a0
2

< R̄0
max. (33)

It is interesting to look into the possible change of the
ME phenomenology brought about by the overshoot-induced
humps. As we show below, the existence of humps may make
it necessary to change the preconception of considering the
TME present only when the evolution curves of the temper-
ature of the two samples intersect. To be more specific, we
consider, as before, samples A and B with A being the initially
hotter, i.e., θ0

A > θ0
B > 1. Let us assume that the colder sample

B fulfills condition (33) but the hotter sample does not. In that
case, θB(t ) might not be crossed by the curve θA(t ), which
remains always above the equilibrium temperature, and yet
relax more slowly to equilibrium than A but from below.
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(a)E1(θ0
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Δ
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(c)E2(θ0
A, θ0
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FIG. 8. Same as in Fig. 5, but now for the representa-
tive initial condition IV in Table II, (a0

2A, a0
2B ) = (−0.20, 0.50).

Here, initial temperatures are (a) (θ0
B − 1, θ0

A − θ0
B ) = (0.8, 0.2), (b)

(θ 0
B − 1, θ0

A − θ0
B ) = (−0.09, −0.03), and (c) (θ0

B − 1, θ0
A − θ0

B ) =
(−0.09, −0.21). Panels (a), (b), and (c) represent examples of cases
E1, T2, and E2, respectively [see Fig. 4(d)].

We could then say that a (direct) TME is present without
the existence of a standard crossover time tθ , provided that
a crossover between the LE KLD curves DLE

A (t ) and DLE
B (t )

occurs at a certain time tDLE . A completely analogous situation
is possible for the inverse ME, i.e., when θ0

A < θ0
B < 1. We

will refer to this phenomenon, where DLE
A and DLE

B intersect
but θA(t ) and θB(t ) do not, as the overshoot ME (OME). This
phenomenon is reminiscent of the ME observed in Ref. [21]
in supercooled water.

The different scenarios where overshoot-induced humps
appear are illustrated in Fig. 9 for direct preparations, i.e.,
θ0

A > θ0
B > 1. In Fig. 9(a), θA(t ) and θB(t ) do not cross each

other, but they both exhibit humps, the one in system B be-
ing stronger than in system A. This makes the latter system
relax to equilibrium earlier than the former, which physically
qualifies as a direct TME. While in the thermal scheme there
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FIG. 9. Time evolution of the temperature and LE relative
entropy of samples A and B for the direct case, θ0

A > θ0
B > 1.

Specifically, we show {θA,DLE
A } (solid lines) and {θB,DLE

B } (dashed
lines), as obtained from Eq. (30a). Initial conditions are [(a) and
(b)] (θ0

A, θ0
B ) = (1.05, 1.01) and (a0

2A, a0
2B ) = (0.5, 0.5), [(c) and (d)]

(θ 0
A, θ0

B ) = (1.05, 1.01) and (a0
2A, a0

2B ) = (0.5, 0.2), and [(e) and (f)]
(θ 0

A, θ0
B ) = (1.1, 1.05) and (a0

2A, a0
2B ) = (−0.35, 0.5). In all cases,

ζ0 = 1, γ = 0.1, and d = 3.

is no crossing, the positiveness of DLE forces an intersection
between A and B curves, as observed in Fig. 9(b). This is the
essence of the OME.

On the other hand, the existence of humps or of a finite
crossover time tθ does not ensure the existence of TME. In
fact, in Fig. 9(c) there is a crossing between the thermal
curves, but the overshoot-induced humps make the initially
hotter system relax later to the equilibrium state, thus frus-
trating the TME. This is signaled by a pair of intersections in
the DLE curves of Fig. 9(d), so the OME is absent. The third
different scenario is reflected in Figs. 9(e) and 9(f), where
there is no crossover either in the thermal evolution or in DLE,
even though sample B exhibits a thermal hump.

The analogous cases for inverse preparations θ0
A < θ0

B < 1
are illustrated in Fig. 10.

To summarize, the OME is characterized by a single cross-
ing DLE

A = DLE
B at a certain time tDLE , without any crossing

between θA and θB. In order to establish the conditions under
which this may happen, let us assume again |θ − 1| � 1 and
approximate ln θ ≈ θ − 1 − 1

2 (θ − 1)2 in Eq. (12b). There-
fore, the condition DLE

A (tDLE ) = DLE
B (tDLE ) with θA(tDLE ) �=

θB(tDLE ) translates into

θA(tDLE ) − 1 = 1 − θB(tDLE ). (34)
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FIG. 10. Same as in Fig. 9, but now for the inverse case
θ 0

A < θ0
B < 1. Initial conditions are [(a) and (b)] (θ0

A, θ0
B ) =

(0.96, 0.99) and (a0
2A, a0

2B ) = (−0.35,−0.35), [(c) and (d)]
(θ 0

A, θ0
B ) = (0.96, 0.99) and (a0

2A, a0
2B ) = (−0.35, −0.1), and [(e)

and (f)] (θ 0
A, θ0

B ) = (0.91, 0.99) and (a0
2A, a0

2B ) = (0.3, −0.35).

Making use of Eq. (30a) entails

tDLE = 1

λ̄+ − λ̄−
ln

(
1 + Ā−1

11

R̄0
max/R0+ − 1

)
, (35)

where R̄0
max is defined in Eq. (32) and

R0
+ ≡ θ0

A + θ0
B − 2

a0
2A + a0

2B

. (36)

Note the difference between this parameter R0
+ and the pa-

rameter R0 defined before in Eq. (27). Since tDLE must be
finite in the OME, the corresponding condition on the initial
preparation is

0 < R0
+ < R̄0

max, (37a)

R0 < 0 or R0 > R̄0
max. (37b)

The supplementary condition (37b) represents the violation of
Eq. (28) (with θr → 1) and is needed to exclude any thermal
crossing.

According to Eq. (33), if both systems A and B exhibit
overshoot-induced humps, the condition given by Eq. (37a) is
ensured. As a test, note that R0

max = 0.172 for all the cases
considered in Figs. 9 and 10. The values of (R0

+, R0) are
(0.060,∞), (0.086,0.133), and (1,−0.059) in the cases repre-
sented in Figs. 9(a) and 9(b), Figs. 9(c) and 9(d), and Figs. 9(e)
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and 9(f), respectively. Analogously, (R0
+, R0) are (0.071,∞),

(0.111,0.120), and (2,−0.123) in the cases represented in
Figs. 10(a) and 10(b), Figs. 10(c) and 10(d), and Figs. 10(e)
and 10(f), respectively. Thus, the OME double condition (37)
is fulfilled only in the cases (a) and (b) of Figs. 9 and 10.

VI. SIMULATION RESULTS

In this section, our simulation results are used to test the
theoretical predictions stemming from the numerical solutions
of (i) the (nonlinear) BSA, Eqs. (17) and (19a) with a3 →
0, and ESA, Eqs. (17) and (19). The theoretical results for
the KLD D(t ) and DLE(t ) are constructed by introducing the
theoretical θ (t ) and a2(t ) in Eqs. (12b) and (23), respectively.

The employed computer simulation schemes, DSMC and
EDMD, to build the simulation curves are presented in Ap-
pendix D. In all cases, the (reduced) initial VDF has been
taken as the gamma distribution given by Eq. (21) with the
chosen value of the initial excess kurtosis a0

2, as previously
done in Refs. [39,95,96]. The KLD from simulations is com-
puted as described in Refs. [95,96].

Figures 11 and 12 contain the theoretical and simulation
results of the time evolution of the temperature ratio θ and
the KLD D. The graphs for the cumulants a2 and a3 are
presented in Appendix E. Samples A and B are prepared with
the representative values of the cumulants in Table II, namely
pairs I and II (III and IV) for the direct (inverse) ME, and
different values of the initial temperatures θ0

A and θ0
B . Pairs

(θ0
A, θ0

B ) are chosen to illustrate the different cases summarized
in Table I. Specifically, we present the cases ET1 in Figs. 11(a)
and 11(b), TE1 in Figs. 11(c) and 11(d), ET2 in Figs. 11(e)
and 11(f), TE2 in Figs. 11(g) and 11(h), T1 in Figs. 12(a) and
12(b), T1 with a double crossing in D in Figs. 12(c) and 12(d),
E1 in Figs. 12(e) and 12(f), T2 in Figs. 12(g) and 12(h), and E2
in Figs. 12(i) and 12(j). Note that the cases in Figs. 11(a) and
11(b), 11(c) and 11(d), 11(e) and 11(f), 12(a) and 12(b), 12(g)
and 12(h), and 12(i) and 12(j) are the same as in Figs. 5(a),
6(b), 7(b), 5(b), 8(b), and 8(c), respectively. Moreover, the
case in Figs. 12(c) and 12(d) is close to the case in Fig. 5(c).

It must be remarked that the classification of the case in
Figs. 11(e) and 11(f) as ET2 is less clear than expected. The
LBSA theory predicts the ET2 behavior with a wide differ-
ence between tθ and tD, as observed in the inset of Fig. 7(b).
Still, nonlinearities reduce the time difference tθ − tD. More-
over, the double crossing in D predicted by the LBSA for
the case of Figs. 12(c) and 12(d) is not actually observed in
the simulations. The shallow positive maximum of DA − DB

predicted by the LBSA, as seen in Fig. 5(c), is washed out
by nonlinear contributions—at least in the case represented in
Figs. 12(c) and 12(d).

Let us now turn to the OME predicted by the LBSA, which
we have discussed in Sec. V. Figures 13 and 14 show the time
evolution of θ , DLE, and D for the same cases as considered
in Figs. 9 and 10, respectively. Again, the graphs for a2 and
a3 can be found in Appendix E. We see that the overshoot
behavior and the OME phenomenology are indeed present.
The crossover characterizing the TME is accounted for by
the intersection of the DLE curves in Figs. 13(a)–13(c) and
14(a)–14(c), though the corresponding temperature curves
never cross.
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FIG. 11. ME for cases when θ − 1 does not change its sign.
Specifically, we plot the time evolution of the temperature and
relative entropy for samples A and B: {θA,DA} (solid and dotted
lines, circles, and crosses) and {θB,DB} (dashed and dash-dotted
lines, squares, and triangles). Initial conditions are [(a) and
(b)] (θ0

A, θ0
B ) = (10, 9) and (a0

2A, a0
2B ) = (0.5, −0.35), [(c) and (d)]

(θ 0
A, θ0

B ) = (3.15, 3) and (a0
2A, a0

2B ) = (0.5, −0.2), [(e) and (f)]
(θ 0

A, θ0
B ) = (0.82, 0.91) and (a0

2A, a0
2B ) = (−0.35, 0.3), and [(g) and

(h)] (θ0
A, θ0

B ) = (0.85, 0.91) and (a0
2A, a0

2B ) = (−0.35, 0.3). Other pa-
rameter values are ζ0 = 1, γ = 0.1, and d = 3.

The figures in this section show that our theoretical pre-
dictions for both θ (t ) and D(t ) are generally in very good
agreement with DSMC and EDMD simulation results. This is
especially true for the ESA, which still gives a good account
of the behavior of the fourth cumulant a2(t ) and a fair account
of the behavior of the sixth cumulant a3(t ) (see Figs. 17–20),
consistently with the results reported in Ref. [37]. The im-
provement of the ESA over the BSA can be understood by
noticing that the values of the cumulant a3 are typically of the
same magnitude as those of a2. It is also worth highlighting
the generally good agreement between the simulation results
for the relative entropy D and those obtained from Eqs. (12b)
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FIG. 12. Same as in Fig. 11, except that the initial conditions
are [(a) and (b)] (θ0

A, θ0
B ) = (2, 1.8) and (a0

2A, a0
2B ) = (0.5,−0.35),

[(c) and (d)] (θ0
A, θ0

B ) = (1.5, 1.27) and (a0
2A, a0

2B ) = (0.5,−0.35),
[(e) and (f)] (θ0

A, θ0
B ) = (2, 1.95) and (a0

2A, a0
2B ) = (−0.2, 0.5), [(g)

and (h)] (θ 0
A, θ0

B ) = (0.88, 0.91) and (a0
2A, a0

2B ) = (−0.2, 0.5), and
[(i) and (j)] (θ0

A, θ0
B ) = (0.7, 0.91) and (a0

2A, a0
2B ) = (−0.2, 0.5).

and (23) when θ and a2 are given by either the BSA or the
ESA. This means that the gamma distribution in Eq. (21)
represents a convenient proxy of the unknown time-dependent
VDF. This ansatz is further confirmed by the generally fair
agreement (not shown) between the simulation data for a3 and

the right-hand side of Eq. (22) when plugging the simulation
data of a2, especially in the cases with a2 < 0.

Finally, we note that small deviations between EDMD
and DSMC simulation are observed (especially for the sub-
tler quantities D and a3), despite the low density of the
systems. This might be a consequence of the approxima-
tions carried out in the numerical implementation of the
Langevin dynamics in the approximate Green function (AGF)
algorithm explained in Appendix D 2. Nevertheless, there is
a good agreement for the collisional scheme, as tested in
Appendix D 3.

VII. CONCLUSIONS

In this paper, we have analyzed in depth the relaxation to
equilibrium of a dilute gas of elastic hard spheres subjected to
a nonlinear drag and the associated stochastic force. We have
particularly focused on two versions of the ME, namely, the
TME and the EME. Our analysis combines theory and simula-
tion. The theoretical approach is based on a Sonine expansion
of the solution of the EFPE, Eq. (3). The simulation approach
comprises both DSMC results, which integrate numerically
Eq. (3), and EDMD results.

We have employed the Kullback-Leibler divergence (or
relative entropy) D, defined in Eq. (9), to measure the distance
to equilibrium and monitor the possible emergence of the
EME. It must be remarked that other distances to equilibrium
have been employed in the literature, as long as they share
some common properties of monotonicity, convexity, etc.
However, the choice of the distance function does not impinge
on the existence of the EME—for a thorough discussion of
this issue, see Ref. [51]. The KLD choice for the distance
function is quite natural due, to its connection to the nonequi-
librium entropy, and especially convenient for comparing the
TME and EME, since D can be decomposed into two sum-
mands, see Eqs. (11) and (12). First, the hydrodynamic LE
contribution DLE, which only depends on the temperature and,
second, the kinetic-stage correction Dkin, which depends on
the whole VDF. To obtain an approximate expression for the
latter within the Sonine approximation, we have employed the
gamma distribution function, Eq. (23).

For given values of the drag force, i.e., given values of
(ζ0, γ ), the emergence of ME—either direct or inverse—
depends on the initial preparations of the two samples (A,
whose initial temperature is farther from equilibrium, and
B, whose initial temperature is closer to equilibrium). The
simplest approach, based on heuristic arguments, is the LBSA
given by Eqs. (25). Therein, both the temperature ratio θ (t )
and the excess kurtosis a2(t ) are a linear superposition of two
exponentials.

When the difference θ − 1 keeps its initial sign during the
relaxation process—i.e., when the temperature does not cross
its equilibrium value at a finite time, we have the most usual,
standard situation. Bringing to bear that the kinetic-stage con-
tribution Dkin is expected to decay to zero over a shorter
timescale than that of the local equilibrium contribution DLE,
we have argued that the existence of TME implies that of
EME (and vice versa) if D0

A > D0
B. There are two possibilities:

either the thermal crossover occurs earlier than the entropic
one (scenarios TE1 and TE2 for direct and inverse effects,
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FIG. 13. ME for cases case in which θ − 1 changes sign, i.e., the OME. In this case, we show the time evolution of {θA,DLE
A ,DA} (solid

and dotted lines, circles, and crosses) and {θB,DLE
B ,DB} (dashed and dash-dotted lines, squares, and triangles). Parameter values and initial

conditions correspond to those in Fig. 9.

respectively) or it occurs later than the entropic crossover
(scenarios ET1 and ET2 for direct and inverse effects, respec-
tively).

Interestingly, even though θ0
A departs from the equilibrium

value 1 more than θ0
B , one may have D0

A < D0
B due to the

kinetic contribution Dkin to the entropic distance. This gives
rise to the existence of TME without entropy crossover
(scenarios T1 and T2 for direct and inverse effects, respec-
tively) or, reciprocally, the existence of EME without thermal
crossover (scenarios E1 and E2 for direct and inverse effects,
respectively).

A summary of all the possible scenarios above (assuming
a constant sign of θ − 1) is provided by Table I. The corre-
sponding phase diagrams in the plane θ0

A − θ0
B vs θ0

B − 1 are
depicted in Fig. 4 for a few representative choices of the initial

excess kurtoses a0
2A and a0

2B, given in Table II. Those scenarios
are modified when the condition of constant sign of θ (t ) − 1
is violated, as explained below.

Nonmonotonic evolutions of θ with a crossing of the
equilibrium line θ = 1 induce the appearance of overshoot-
induced humps. Sample B may relax to equilibrium later than
sample A when the temperature of the former overshoots the
equilibrium value, a fact that sample A can take advantage of.
Even though θA(t ) and θB(t ) do not intersect, the correspond-
ing curves of DLE do intersect. We have termed this class of
ME as OME. Simple conditions for its existence, Eqs. (37),
have been derived by adapting the LBSA to this situation.

The different scenarios for the ME outlined above for the
nonlinear fluid, emerging in the extremely simplistic LBSA,
have been tested and confirmed by computer simulations (both
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FIG. 14. Same as in Fig. 13, but now for the initial conditions in Fig. 10.

DSMC and EDMD). These numerical results have also been
compared with the more complex nonlinear BSA and ESA.
The inclusion of the additional cumulant a3 in the set of
coupled evolution equations allows the ESA to improve over
the BSA. Moreover, DSMC and EDMD results are practically
indistinguishable, with small discrepancies that can be traced
back to the approximations in the EDMD scheme during the
free streaming stage, see Appendix D 2. On the other hand,
the collisional schemes are tested in Appendix D 3, with good
results.

The ME effect is brought about by the nonlinearity in the
drag force, which makes the time evolution of the kinetic tem-
perature be coupled to that of higher cumulants—specifically,
to that of the excess kurtosis a2 for the quadratic depen-
dence of the drag coefficient in Eq. (7). The nonlinear drag
force is also responsible for the algebraic nonexponential
relaxation after a temperature quench and for the emer-

gence of Kovacs-like response [37]. It is important to remark
that these behaviors, and also the ME, survive in the limit
ζ ∗

0 → ∞, in which the EFPE reduces to the Fokker-Planck
equation—which, interestingly, successfully models mixtures
of ultracold atoms [75].

The nonmonotonic relaxation of the kinetic temperature
observed in the OME entails the necessity of revising the
conventional definition of TME. Provided that both initial
temperatures are either above (direct case) or below (inverse
case) equilibrium, the TME is not necessarily characterized
by the crossover of the nonequilibrium temperature but by
the crossover of the associated positive-definite quantity DLE.
Within this generalized scheme and for a general complex sys-
tem, we propose the following, more dependable, definition
of the TME based on the idea of local equilibrium: The TME
exists in a pair of different initially prepared setups if there are
an odd number of crossings between their LE relative entropy
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DLE curves. On another note, the definition of the EME is
not affected, due to the monotonic decay of the whole relative
entropy D to equilibrium. The EME exists in a pair of samples
if their relaxation curves for D present an odd number of
crossings.

It is relevant to stress that the splitting of D into “ki-
netic” and “local-equilibrium” contributions can be done
on quite a general basis, not only for the molecular fluid
we are analyzing in this paper. Moreover, this allows for
defining a nonequilibrium temperature T (t ), even in systems
for which the kinetic temperature makes no sense. Let us
consider a general system with Hamiltonian H (x), in which
D(t ) is given by Eq. (2). The system is initially prepared
in a certain state with average energy 〈H〉0 and is put in
contact with a thermal bath at temperature Tb. Thus the
probability distribution function P(x, t ) relaxes toward the
equilibrium distribution Peq(x) = exp[−H (x)/kBTb]/Z (Tb),
where Z (Tb) is the partition function. One can always intro-
duce a LE distribution with the canonical form PLE(x, T (t )) ≡
exp[−H (x)/kBT (t )]/Z (T (t )), with T (t ) being determined
self-consistently by the condition

〈H〉(t ) =
∫

dx H (x)P(x, t ) =
∫

dx H (x)PLE(x, T (t )). (38)

In this way, T (t ) corresponds to the temperature that a system
would have at equilibrium if it had an average energy equal to
the instantaneous value 〈H〉(t ). With such a definition of the
nonequilibrium temperature T (t ), is it easily shown that

D(t ) = Dkin(t ) + DLE(T (t )), (39)

where Dkin and DLE are given by

Dkin(t ) =
∫

dx P(x, t ) ln
P(x, t )

PLE(x, T (t ))
, (40a)

DLE(T (t )) =
∫

dx PLE(x, T (t )) ln
PLE(x, T (t ))

Peq(x)
. (40b)

Note that T (t ) may in general overshoot its equilibrium value
Tb, leading to an OME, but DLE is positive definite and makes
it possible to introduce the more reliable definition of the TME
explained in the previous paragraph [97].

We expect this work can motivate the experimental investi-
gation, making use of a suitable aging protocol to prepare the
initial samples, of the whole variety of ME phenomenology
described in this work. Specifically, our predicting and ob-
serving the OME—as a novel unexpected behavior—in this
molecular gas driven by a nonlinear drag opens the door to
its finding in other complex systems. Also, we plan to employ
the theoretical and computational framework developed here
to study the relaxation times of pairs of temperature quenches
thermodynamically equidistant from equilibrium [98,99], one
above and the other one below.
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APPENDIX A: LANGEVIN EQUATION
UNDER NONLINEAR DRAG

In this Appendix, we discuss the Langevin equation asso-
ciated with the left-hand side of Eq. (3), since the effect of
interparticle collisions represented by the right-hand side is
well known.

Let us start writing the Langevin equation as

v̇(t ) = −ζ (v(t ))vi(t ) + ξ (v(t ))η(t ), (A1)

where η(t ) is a Gaussian white-noise stochastic term with the
statistical properties

〈η(t )〉noise = 0, 〈η(t )η(t ′)〉noise = Iδ(t − t ′), (A2)

where I is the d×d unit tensor and 〈·〉noise reads for an average
over different realizations. Let us define a Wiener process
W (t ) with elemental increment dW (t ) = ξ (v(t ))η(t )dt . This
is the case of a multiplicative noise and, therefore, there is
no a unique way of interpreting the proper time within a
given interval [t, t + h] at which the process W (t ) must be
evaluated [101]. In general, one can choose a time t + εh
parameterized by 0 � ε � 1. Hence, the associated Fokker-
Planck equation is [101]

∂t f (v) − ∂

∂v
·
[
ζ (v)v + ξ 2ε (v)

2

∂

∂v
ξ 2(1−ε)(v)

]
f (v) = 0. (A3)

The specific choices ε = 0, 1
2 , and 1 correspond to the Itô [67],

Stratonovich [67], and Klimontovich [102] interpretations,
respectively.

The (differential) fluctuation-dissipation relation stemming
from Eq. (A3) turns out to be

ζ (v) = mξ 2(v)

2kBTb
− 1 − ε

2v

∂ξ 2(v)

∂v
. (A4)

Only in the Klimontovich interpretation (ε = 1) does one
recover the conventional fluctuation-dissipation relation,
Eq. (5), holding for constant drag coefficient and additive
noise. In that case, the left-hand sides of Eqs. (3) and (A3)
coincide.

On the other hand, from a simulation point of view, the
Itô interpretation (ε = 0) is the simplest one to implement.
Fortunately, even if ε �= 0 (as happens in the Stratonovich
and Klimontovich interpretations), one can always apply the
Itô interpretation to the Langevin equation, provided that the
original drag coefficient ζ (v) is replaced by an effective one
ζeff (“spurious drift”). Note first the mathematical identity

ξ 2ε (v)
∂

∂v
ξ 2(1−ε)(v) f (v) = ∂

∂v
ξ 2(v) f (v) − ε

∂ξ 2(v)

∂v
f (v).

(A5)
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Inserting this into Eq. (A3), one gets

∂t f (v) − ∂

∂v
·
[
ζeff (v)v + ∂

∂v
ξ 2(v)

2

]
f (v) = 0, (A6)

where

ζeff (v) ≡ ζ (v) − ε

2v

∂ξ 2(v)

∂v

= mξ 2(v)

2kBTb
− 1

2v

∂ξ 2(v)

∂v
. (A7)

In the particular case of Eq. (7) and ε = 1, the effective
drag coefficient becomes

ζeff (v) = ζ (v) − 2ζ0γ . (A8)

Thus, the original Langevin equation, Eq. (A1), in the
Klimontovich interpretation is equivalent to the Langevin
equation

v̇(t ) = −ζeff (v(t ))v(t ) + ξ (v(t ))η(t ) (A9)

in the Itô interpretation.

APPENDIX B: DERIVATION OF
THE EVOLUTION EQUATIONS

To write the hierarchy of moment equations, it is con-
venient to introduce dimensionless quantities [36]. First, we
define a rescaled velocity c as

c ≡ v
vth(t )

, vth(t ) ≡
√

2kBT (t )

m
, (B1)

in which vth(t ) is the thermal velocity at time t . Analogously,
the dimensionless VDF is introduced as

φ(c, t ) ≡ vd
th(t )

n
f (v, t ). (B2)

In terms of these reduced quantities, the EFPE, Eq. (3), can
be rewritten as

∂tφ(c, t ) = 1

2θ
∂c · [θ̇c + ζ0(1 + γ θc2)(2θc + ∂c )]φ(c, t )

+ Kd

√
θ I[c|φ, φ], (B3)

where θ is the temperature ratio—as defined in Eq. (12b)—
and

I[c1|φ, φ] =
∫

dc2

∫
+

d σ̂ c12 · σ̂

× [φ(c′
1, t )φ(c′

2, t ) − φ(c1, t )φ(c2, t )] (B4)

is the reduced collision operator with c12 ≡ c1 − c2. In
Eq. (B3), and consistently with the main text, dimensionless
variables are used—recall that the stars on the dimensionless
time t∗ and the zero-velocity drag coefficient ζ ∗

0 are dropped.
Multiplying both sides of Eq. (B3) by c� and defining the

reduced moments

M�(t ) ≡ 〈c�〉 =
∫

dc c�φ(c, t ), (B5)

one obtains the hierarchy of equations [36]

Ṁ�

ζ0
= �

{[
(� − 2)γ + (d + 2)γ θ (1 + a2) − 1

θ

]
M�

− 2γ θM�+2 + d + � − 2

2

M�−2

θ

}
− Kd

ζ0

√
θμ�, (B6)

where we have introduced the collisional moments μ� as

μ� ≡ −
∫

dc c�I[c|φ, φ]. (B7)

Note that M0 = 1, M2 = d
2 , and M4 = d (d+2)

4 (1 + a2) [see
Eq. (14)]. Conservation of mass and energy imply that μ0 =
μ2 = 0, so that Eq. (B6) is obviously consistent with Ṁ0 =
Ṁ2 = 0.

Making use of the explicit form of the collision operator, it
is possible to express the collisional moments as two-particle
averages of the form

μ� =
∫

dc1

∫
dc2 φ(c1)φ(c2)��(c1, c2). (B8)

In particular, �2 = 0 and, after some algebra, one gets

�4(c1, c2) = 2π
d−1

2

�
(

d+5
2

)c12
[
d (C · c12)2 − c2

12C
2
]
, (ABa)

�6(c1, c2) = 3�4(c1, c2)

(
C2 + c2

12

4

)
, (B9b)

where C ≡ 1
2 (c1 + c2) is the center-of-mass reduced velocity.

Sonine approximation

Let us first consider the case of linear drag force, i.e.,
γ = 0. In that case, the LE state defined in Eq. (10) is an
exact solution of the EFPE, Eq. (3). Equivalently, in reduced
variables,

φLE(c) = π−d/2e−c2 ⇒ MLE
2k = [d + 2(k − 1)]!!

2k
, (B10)

becomes an exact stationary solution to Eqs. (B3) and (B6),
because of the properties I[c|φLE, φLE] = 0, μLE

� = 0. More-
over, the solution to Eq. (17) is simply θ (t ) = 1 + [θ (0) −
1]e−2ζ0t , as stated in the main text. Thus, if γ = 0 and the
system is initially prepared in an equilibrium state with a
temperature T (0), its coupling to a bath at temperature Tb

makes the temperature evolve toward Tb but otherwise the
system remains always in local equilibrium, i.e., the VDF is
Maxwellian with the time-dependent temperature.

Going back to the nonlinear case γ �= 0, the VDF can be
represented by the Sonine expansion

φ(c; t ) = φLE(c)

[
1 +

∞∑
j=2

a j (t )L
( d−2

2 )
j (c2)

]
, (B11)

where L
( d−2

2 )
j (c2) are generalized Laguerre (or Sonine)

polynomials and the coefficients a j = [ j!�( d
2 )/�( j +

d
2 )]〈L( d−2

2 )
j (c2)〉 are the cumulants of the nonequilibrium
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VDF. The associated velocity moments are

M2k = MLE
2k

[
1 +

k∑
j=2

(−1) j

(
k

j

)
a j

]
, k � 2. (B12)

In particular,

M6 = d (d + 2)(d + 4)

8
(1 + 3a2 − a3), (B13a)

M8 = d (d + 2)(d + 4)(d + 6)

16
(1 + 6a2 − 4a3 + a4).

(B13b)

The infinite moment hierarchy, Eq. (B6), cannot be solved
in an exact way in general. This is even the case for linear
drag, γ = 0, when the initial state is not a Maxwellian. As a
consequence, the exact evolution of the temperature ratio θ (t )
cannot be obtained from Eq. (17) if γ �= 0.

Let us suppose, however, that the initial condition and
subsequent evolution are sufficiently close to the LE state as
to assume both the cumulants in Eq. (B11) beyond a3 and the
quadratic terms in a2, a3 (i.e., those proportional to a2

2, a2
3, and

a2a3) being negligible. In that case, the two first nontrivial
collisional moments become [100]

μ4 ≈ 2(d − 1)

Kd

(
a2 − a3

4

)
, (B14a)

μ6 ≈ 3(d − 1)(2d + 9)

2Kd

(
a2 − 3a3

4

)
. (B14b)

Within this scheme, Eq. (B6) with � = 4 and � = 6 yields
Eq. (19) in the main text.

APPENDIX C: PARAMETERS IN EQS. (25)

The parameters λ±, Bi, and Ai j are given by

λ± = �11 + �22 ±
√

(�11 − �22)2 + 4�12�21

2
, (C1a)

B1 = θr + �22C1 − �12C2

�11�22 − �12�21
, B2 = �11C2 − �21C1

�11�22 − �12�21
,

(C1b)

A11 = λ+ − �11

λ+ − λ−
, A22 = λ+ − �22

λ+ − λ−
, (C1c)

A12 = �12

λ+ − λ−
, A21 = �21

λ+ − λ−
, (C1d)

where

�11 = 2ζ0[1 + (d + 2)γ (2θr − 1)], (C2a)

�22 = ζ0

[
4

θr
− 8γ + 4(d + 8)γ θr

]
+ 8(d − 1)

d (d + 2)

√
θr,

(C2b)

�12 = 2ζ0(d + 2)γ θ2
r , �21 = 8ζ0γ , (C2c)

C1 = 2ζ0(1 − θr )[1 + (d + 2)γ θr], C2 = 8ζ0γ (1 − θr ).

(C2d)

APPENDIX D: COMPUTER SIMULATION SCHEMES

We have performed DSMC and EDMD simulations of the
model to test the theoretical predictions. In both schemes, the
nonlinear drag is implemented at the level of stochastic equa-
tions of motion by using Eq. (A9) and applying the associated
Wiener process at time t within the interval [t, t + h].

1. Direct simulation Monte Carlo

The implementation of DSMC for this system is based on
the pioneering work by Bird [103,104], except for our taking
into account of both the nonlinear drag and white-noise forces
during the free-streaming stage of the algorithm [105].

Let us assume a homogeneous system of N particles, where
their dynamics is just controlled by their velocities {vi} with
i = 1, . . . , N , and positions are obviated. The discrete VDF of
such a system of particles is given by

n−1 f (v, t ) = 1

N

N∑
i=1

δ(vi(t ) − v). (D1)

At the initialization of the system, the squared mod-
uli of the particles velocities {v2

i (0)} are drawn from a
gamma distribution parameterized by 〈v2(0)〉 = dkBT 0/m
and 〈v4(0)〉 = d (d + 2)(kBT 0/m)2(1 + a0

2). Next, the veloc-
ity vectors {vi(0)} are constructed from these moduli, with
random directions. To enforce a vanishing initial total momen-
tum, the velocity of every particle is subsequently subtracted
by the amount N−1 ∑

i vi(0).
After initialization, velocities are updated from t to t + h

(where the time step h is much smaller than the mean free
time) by splitting the algorithm into two different stages:
collisions and free streaming.

During the collision stage, a number 1
2 Nωmaxh of pairs

are randomly chosen with uniform probability, where ωmax

is an upper bound estimate for the collision rate of one
particle. Then, given a pair i j, the collision is accepted
(acceptance-rejection Metropolis criterion) with probabil-
ity �(vi j · σ̂ i j )ωi j/ωmax, where σ̂ i j a random vector in the
unit d-sphere and ωi j = �dσ

d−1ngc|vi j · σ̂ i j | with �d =
2πd/2/�(d/2) being the d-dimensional solid angle. If the
collision is accepted for the given pair, then postcollisional
velocities are assigned following the collisional rules for elas-
tic hard spheres, namely vi, j → vi, j ∓ (vi j · σ̂ i j )̂σ i j . If ωi j >

ωmax in one of the sampled pairs, then the collision is accepted
and the estimate is updated as ωmax = ωi j .

During free streaming, velocities are updated according to
the scheme given by (B9), namely

vi(t ) → vi(t + h) ≈ vi(t ) − ζeff (vi(t ))vi(t )h

+ ξ (vi(t ))
√

hYi + O(h3/2), (D2)

where Yi is a random vector drawn from the Gaussian proba-
bility distribution

P(Y) = (2π )−d/2e−Y 2/2. (D3)

In our DSMC algorithm we took N = 104 three-
dimensional particles (d = 3) and chose a time step h =
10−2λ/

√
2kBTb/m, where λ = (

√
2πnσ 2)−1 is the mean free

path.
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FIG. 15. Evolution of the collisional moments μ4 and μ6 for ζ0 = 1, γ = 0.1, d = 3, and initial conditions a0
2 = 0.5 and [(a) and (b)]

θ 0 = 10, [(c) and (d)] θ0 = 3.15, [(e) and (f)] θ0 = 2, [(g) and (h)] θ0 = 1.5, [(i) and (j)] θ0 = 1.05, [(k) and (l)] θ0 = 1.01, and [(m) and (n)]
θ 0 = 0.91. Symbols correspond to simulation data for DSMC (◦) and EDMD (×) schemes, while lines represent the theoretical predictions
for ESA (—) and BSA (· · · ).

2. Event-driven molecular dynamics

EDMD algorithms are based on the evolution driven by
events which can be particle-particle collisions, boundary
effects, or other more complex interactions. Between two con-
secutive events, there is a free streaming of particles. Again,
the stochastic and drag forces directly influence the particle
dynamics. Whereas in DSMC positions were not required, in
EDMD they are essential and are affected by the nonlinear
noise, as explained below.

In order to implement the effect of the Langevin dynam-
ics in our EDMD simulations, we have followed the AGF
algorithm proposed in Ref. [106]. Since ṙi(t ) = v(t ), Eq. (D2)
must be supplemented by [106]

ri(t ) → ri(t + h) ≈ ri(t ) + vi(t )h

[
1 − ζeff (vi(t ))

2
h

]
+ 1

2
ξ (vi(t ))h3/2Wi + O(h5/2), (D4)
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FIG. 16. Evolution of the collisional moments μ4 and μ6 for ζ0 = 1, γ = 0.1, d = 3, and initial conditions a0
2 = −0.35 and [(a) and (b)]

θ 0 = 9, [(c) and (d)] θ0 = 1.8, [(e) and (f)] θ0 = 1.27, [(g) and (h)] θ0 = 1.1, and [(i) and (j)] θ0 = 0.99, [(k) and (l)] θ0 = 0.96, [(m) and (n)]
θ 0 = 0.85, and [(o) and (p)] θ0 = 0.82. Symbols correspond to simulation data for DSMC (◦) and EDMD (×) schemes, while lines represent
the theoretical predictions for ESA (—) and BSA (· · · ).

with

Wi = Yi +
√

5

3
Ȳi, (D5)

where we have particularized the algorithm to the three-
dimensional geometry, Yi is the random vector appearing in
Eq. (D2), and Ȳi is an independent random vector, also drawn
from the Gaussian distribution (D3). Notice that, since the
equation for vi(t ) is expanded up to O(h3/2) and ri(t + h) −

ri(t ) ∼ vi(t )h, then the equation for ri(t ) needs to be ex-
panded up to O(h5/2).

In our EDMD simulations, we deal with a system of N =
1.065×104 spheres and reduced number density nσ 3 = 10−3.
The time step is h = 10−3λ/

√
2kBTb/m, and periodic bound-

ary conditions are used.

3. Test of the time evolution of the collisional moments μ4 and μ6

Let us present now a comparison between the collisional
moments μ4 and μ6 measured in simulations and those
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FIG. 17. Same as in Fig. 11, except that the quantities plotted are
a2 and a3.

provided by the ESA and the BSA. In the ESA, those colli-
sional moments are given by Eqs. (B14), complemented with
the numerical solution of Eqs. (17) and (19). Analogously, in
the BSA, the collisional moments are given by Eqs. (B14)
with a3 → 0, complemented with the numerical solution of
Eqs. (17) and (19a), again with a3 → 0.

In the simulations (both DSMC and EDMD), the following
numerical scheme has been used to address the computation of
the collisional moments [105,107]. We randomly choose N ′ =
106 pairs of particles out of the total number N (N − 1)/2 =
5×107 and approximate the collisional moments as

μ� = 1

N ′

N ′∑
i j

��(ci, c j ), (D6)

where �4 and �6 are given by Eqs. (B9).
Figures 15 and 16 show the time evolution of μ4 and μ6,

as measured in our DSMC and EDMD simulations and as
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FIG. 18. Same as in Fig. 12, except that the quantities plotted are
a2 and a3.

predicted by the BSA and ESA, for a number of representative
initial conditions. A very good agreement between DSMC and
EDMD is found; the small differences between them could
explain the deviations observed in Figs. 10–12. There is also a
general good agreement with the ESA results, while the BSA
predictions exhibit important deviations in the initial stage,
especially in the case of μ6. The deviations of the BSA and
ESA are due to the nonnegligible role played by nonlinear
terms of the form a2

2, a2
3, and a2a3, as well as by higher-order
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FIG. 19. Same as in Fig. 13, except that the quantities plotted are
a2 and a3.

cumulants. Interestingly, those deviations are more relevant
for negative a0

2 than for positive a0
2 and tend to increase as the

initial temperature θ0 grows—in accordance with the results
in Ref. [37] for a quench to low temperatures.
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FIG. 20. Same as in Fig. 14, except that the quantities plotted are
a2 and a3.

APPENDIX E: EVOLUTION OF
THE CUMULANTS a2 AND a3

In this Appendix we present a comparison between the
simulation results for the cumulants a2 and a3, and the the-
oretical predictions BSA (for a2 only) and ESA. The results
are displayed in Figs. 17–20.
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