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In a recent study, Solsvik and Manger1 (referred to as the SM-
theory) have proposed a kinetic theory for granular mixtures where
the velocity distribution functions for each species fiðr; v; tÞ are
assumed to be Maxwellian distributions. Since energy equipartition is
broken for inelastic collisions, those distributions are defined in terms
of the partial temperatures Ti, which are in general different from the
granular temperature T. In addition, in contrast to the previous studies
based on the same assumption, the distributions fi take into account
the differences in the mean flow velocities Ui of the species. Following
this approach, the authors evaluate some of the collision integrals
appearing in the balance equations for the momentum and kinetic
energy. In particular, they obtain corrections to the collision contribu-
tions to the momentum and heat fluxes, which are of order jUi � Ujj2
and jUi � Ujj4.

On the other hand, a different way of analyzing transport proper-
ties in granular mixtures has been carried out in recent years by
Garz�o, Dufty, and Hrenya (the GDH-theory).2 In contrast to the SM-
theory, the GHD-theory solves the Enskog kinetic equation by means
of the Chapman–Enskog method up to the first order in spatial gra-
dients (Navier–Stokes hydrodynamic order). The transport coeffi-
cients are given in terms of the solutions of a set of coupled linear
integral equations, which are approximately solved by considering the
leading terms in a Sonine polynomial expansion. The GDH-theory
extends to granular mixtures the results derived years ago for mono-
component granular gases by established kinetic theory models.3

These theories extend to arbitrary inelasticity the results obtained for
nearly elastic systems in the seminal works of Jenkins and Savage4 and
Lun et al.5 The accuracy of the GDH-theory for granular mixtures has
been tested with computer simulations and even with real

experiments. In the case of computer simulations, the results obtained
in the GDH-theory for the tracer diffusion coefficient6 and the shear
viscosity coefficient of a heated granular mixture7 show a very good
agreement with simulations for conditions of practical interest. In
addition, the hydrodynamic profiles derived from the GHD-theory for
a single granular fluid compare well with experiments of a three-
dimensional system of mustard seeds fluidized by vertical vibrations of
the container.8 All these studies clearly show the applicability of the
GDH-theory for densities outside the low-density regime and values
of inelasticity beyond the quasi-elastic limit.

One of the main deficiencies of the SM-theory is that it does not
attempt to solve any kinetic equation since it supposes that the distri-
bution functions of each species are local Maxwellian distributions
even for inhomogeneous states. In this sense, the SM approach could
be considered as a reasonable approach to estimate the collisional
transfer contributions to the momentum and heat fluxes but not their
kinetic contributions. In particular, the SM-theory yields vanishing
Navier–Stokes transport coefficients for dilute granular mixtures,
which is of course a wrong result.9

Therefore, it would be convenient to assess the degree of reliabil-
ity of the SM-theory by comparing its predictions for the collisional
contributions to the fluxes with those obtained from the GDH-theory
to first-order in spatial gradients. Here, for the sake of concreteness,
we will address our attention to the bulk gb and shear viscosity g coef-
ficients where computer simulations have clearly shown the accuracy
of the GDH-theory, even for strong inelasticity.

According to Eqs. (41) and (77) of Ref. 1, to first order in gra-
dients, the bulk viscosity gb for a binary mixture of inelastic hard
spheres in the SM-theory can be identified as
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where ni is the number density of species i, rij ¼ ðri þ rjÞ=2, ri
and mi being the diameter and mass of particles of species i,
mij ¼ mimj=ðmi þmjÞ, vij is the pair correlation function, aij is the
coefficient of restitution for collisions i-j, and Tð0Þi is the zeroth-order
contribution to the partial temperature of species i. In addition, upon
obtaining Eq. (1), use has been made of the fact that the velocity differ-
ences jUi � Ujj are at least of first order in spatial gradients so that
rUi ¼ rUj ¼ rU and nonlinear terms in jUi � Ujj are neglected in
the Navier–Stokes approximation. Here, U is the mean flow velocity of
the mixture. In the SM-theory, the collisional contribution gc to the
shear viscosity is simply given by

gSMc ¼
3
5
gSMb : (2)

The expressions of gGDHb and gGDHc in the GDH-theory are more
intricate. For d-dimensional granular mixtures, the bulk viscosity
gGDHb can be written as

gGDHb ¼ g0b þ g00b ; (3)

where2,10
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Here, lji ¼ mj=ðmi þmjÞ and -i refers to the first-order contribu-
tions to the partial temperatures Ti. The quantities -i have been deter-
mined in Ref. 10 in terms of the parameter space of the mixture. The
collision contribution gGDHc to the shear viscosity is2,11
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where the kinetic contributions gki obey the set of algebraic equations
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The expressions of the zeroth-order cooling rate fð0Þ and the collision
frequencies sij are given by Eqs. (5.51) and (5.65)–(5.66), respectively

of Ref. 11. In addition, the temperature ratio Tð0Þ1 =Tð0Þ2 is determined

by equating the partial cooling rates fð0Þ1 ¼ fð0Þ2 ¼ fð0Þ. It is important
to remark that for elastic collisions (aij ¼ 1) and hard spheres (d¼ 3),
Eqs. (3)–(7) of the GDH-theory agree with the results derived many
years ago from the Enskog kinetic theory for multicomponent molecu-
lar mixtures.12

A comparison between Eqs. (1) and (2) and (3)–(7) shows that in
general the results obtained for gb and gc from the SM-theory differ
from those derived from the GDH-theory, even for elastic collisions.
On the other hand, when both the first-order contributions to the par-
tial temperatures -i and the kinetic contributions gki are neglected in
Eqs. (3) and (6), then the SM and GDH theories agree for elastic colli-
sions for d¼ 3. To illustrate the differences between both theories for
inelastic collisions, for the sake of simplicity, we consider the case of a
common coefficient of restitution (a11 ¼ a22 ¼ a12 � a) of an equi-
molar mixture [x1 ¼ n1=ðn1 þ n2Þ ¼ 1

2] with r1=r2 ¼ 2. Moreover,
for spheres,
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where / is the total solid volume fraction and Ms ¼
P

i xir
s
i .

Figures 1 and 2 show the a-dependence of the reduced coefficients
gbðaÞ=gbð1Þ and gcðaÞ=gcð1Þ for / ¼ 0:1 and two values of the mass
ratio. Here, gbð1Þ and gcð1Þ refer to the bulk and shear viscosities,
respectively, for elastic collisions. It is quite apparent that while the
SM-theory reproduces quite well the dependence of gb on a (in partic-
ular for m1=m2 ¼ 10), important quantitative discrepancies appear in
the case of gc for strong dissipation. Much more significant differences
between the SM and GDH theories are present in Fig. 3 where the
density dependence of the ratio gcða;/Þ=gcð1;/Þ is plotted for two
values of a. While the SM-theory predicts a tiny density dependence

FIG. 1. Plot of the (reduced) bulk viscosity gbðaÞ=gbð1Þ vs the common coefficient
of restitution a for d¼ 3, x1 ¼ 1

2, r1=r2 ¼ 2; / ¼ 0:1, and two different values of
the mass ratio: m1=m2 ¼ 0:5 (solid line for the GDH-theory and dashed line for the
SM-theory) and m1=m2 ¼ 10 (dashed-dotted line for the GDH-theory and dotted
line for the SM-theory).
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of the ratio gcða;/Þ=gcð1;/Þ for any a, the GDH-theory shows that
this ratio decreases with increasing density. The weak influence of the
overall solid volume fraction / on the (reduced) collisional shear vis-
cosity in the SM-theory is essentially due to the fact that the density
dependence of the ratio gcða;/ÞSM=gcð1;/ÞSM is only via the partial
temperatures Tð0Þi (whose dependence on / is very small). On the
other hand, in the GDH-theory, the dependence of gcða;/ÞGDH=
gcð1;/ÞGDH on / not only occurs through Tð0Þi but also through the
kinetic contributions gki . In particular, in the limiting case of mechani-
cally equivalent particles (m1¼m2, r1 ¼ r2, and aij ¼ a), while the
SM-theory predicts that gcða;/ÞSM=gcð1;/ÞSM ¼ ð1þ aÞ=2 (namely,
it is independent of /), the GDH-theory yields the result

gcða;/ÞGDH=gcð1;/ÞGDH ¼ Aða;/Þ½ð1þ aÞ=2�, where the function
A exhibits in general a complex dependence on both a and /. In this
context, it is worthwhile recalling that the results of the GDH-theory
for the shear viscosity g agree quite well with computer simulations
for moderate densities and/or strong inelasticity (see, for instance,
Figs. 6–8 of Ref. 7).

In summary, as expected I have shown that the SM-theory is not
able to completely capture the dependence of the bulk and shear vis-
cosities on inelasticity in binary granular mixtures at moderate densi-
ties. However, despite these inadequacies, the SM-theory can be still
considered as a valuable approach for estimating the collisional contri-
butions to the fluxes since it captures at least qualitatively well (see
Figs. 1 and 2) the a-dependence of gb and gc.
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