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Abstract: We study a dilute granular gas immersed in a thermal bath made of smaller particles with
masses not much smaller than the granular ones in this work. Granular particles are assumed to
have inelastic and hard interactions, losing energy in collisions as accounted by a constant coefficient
of normal restitution. The interaction with the thermal bath is modeled by a nonlinear drag force
plus a white-noise stochastic force. The kinetic theory for this system is described by an Enskog–
Fokker–Planck equation for the one-particle velocity distribution function. To get explicit results of
the temperature aging and steady states, Maxwellian and first Sonine approximations are developed.
The latter takes into account the coupling of the excess kurtosis with the temperature. Theoretical
predictions are compared with direct simulation Monte Carlo and event-driven molecular dynamics
simulations. While good results for the granular temperature are obtained from the Maxwellian
approximation, a much better agreement, especially as inelasticity and drag nonlinearity increase, is
found when using the first Sonine approximation. The latter approximation is, additionally, crucial to
account for memory effects such as Mpemba and Kovacs-like ones.

Keywords: granular gases; kinetic theory; Enskog–Fokker–Planck equation; direct simulation Monte
Carlo; event-driven molecular dynamics

1. Introduction

Since the late 20th century, the study of granular materials has become of great
importance in different branches of science, such as physics, engineering, chemistry, and
mathematics, motivated by either fundamental or industrial reasons. It is well known
that rapid flows in granular gases in the dilute regime are well described by a modified
version of the classical Boltzmann’s kinetic theory for hard particles. The most widely used
model for the granular particles is the inelastic hard-sphere (IHS) one, in which particles
are assumed to be hard spheres (or, generally, hard d-spheres) that lose energy due to
inelasticity, as parameterized by a constant coefficient of normal restitution.

Theoretical predictions have been tested by different experimental setups in the freely
evolving case [1,2]. However, it is rather difficult to experimentally replicate the latter
granular gaseous systems due to the fast freezing implied by the dissipative interactions.
Then, energy injection is very common in granular experiments [3–10]. In addition, granu-
lar systems are never found in a vacuum on Earth. From a quick but attentive glance at
our close environment, grains might be found, for example, in the form of dust or pollen
suspended in the air, sand, or dirtiness, diving down or browsing through a river, or even
forming part of more complex systems such as soils. Therefore, fundamental knowledge
about driven granular flows contributes to the understanding of a great variety of phe-
nomena in nature. This is one of the reasons why the study of driven granular flows has
become quite important, besides its intrinsic interest at physical and mathematical levels.
Consequently, modeling driven granular flows constitutes a solid part of granular matter
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research, with theorists combining different collisional models and distinct interactions
with the surroundings [11–20].

Recent works [21–23] introduced a model for a molecular gas in which the interaction
of the particles with a background fluid is described by a stochastic force and a drag force
whose associated drag coefficient has a quadratic dependence on the velocity modulus.
This latter dependence is motivated by situations where the particle masses in the gas
and the background fluid are not disparate [24–26]. The nonlinearity of the drag force
implies an explicit coupling of the temperature with higher-order moments of the velocity
distribution function (VDF) of the gas, implying the existence of interesting memory effects,
such as Mpemba or Kovacs-like ones, as well as nonexponential relaxations [21–23]. On
the other hand, the elastic property of the molecular particles implies that the system
ends in an equilibrium state described by the common Maxwell–Boltzmann VDF, unlike
granular gases, both driven and freely evolving [11,12,14,17,18,27–30], where a coupling of
the hydrodynamic quantities with the cumulants of the VDF is always present. To imagine
a real situation, one might possibly consider, for example, a microgravity experiment of
pollen grains in a dust cloud.

Throughout this work, we study the properties of homogeneous states of a dilute
inelastic granular gas immersed in a background fluid made of smaller particles, the
influence of the latter on the former being accounted for at a coarse-grained level by the
sum of a deterministic nonlinear drag force and a stochastic force. This gives rise to a
competition between the pure effects of the bath and the granular energy dissipation. In
fact, we look into expected nonGaussianities from a Sonine approximation of the VDF,
commonly used in granular gases. The theoretical results are tested against computer
simulations, with special attention on the steady-state properties and memory effects.

The paper is organized as follows. We introduce the model for this system and the
associated kinetic-theory evolution equations in Section 2. In Section 3, the Maxwellian and
first Sonine approximations are constructed, and the steady-state values are theoretically
evaluated. Then, Section 4 collects simulation results from the direct simulation Monte
Carlo (DSMC) method and the event-driven molecular dynamics (EDMD) algorithm,
which are compared to the theoretical predictions for steady and transient states, including
memory effects. Finally, some conclusions of this work are exposed in Section 5.

2. The Model

We consider a homogeneous, monodisperse, and dilute granular gas of identical
inelastic hard d-spheres of mass m and diameter σ, immersed in a background fluid made
of smaller particles. In a coarse-grained description, the interactions between the grains
and the fluid particles can be effectively modeled by a drag force plus a stochastic force
acting on the grains. If the mass ratio between the fluid and granular particles is not very
small, the drag force becomes a nonlinear function of the velocity [24–26]. The model, as
said in Section 1, has previously been studied in the case of elastic collisions [21–23] but
not, to our knowledge, in the context of the IHS model. Figure 1 shows an illustration of
the system and its modeling.
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Figure 1. Illustration of the system considered in this paper. A granular gas of hard particles
(represented by large yellowish spheres) is coupled to a thermal bath (made of particles represented
by the small grayish spheres) via a drag force Fdrag = −mξ(v)v, where ζ(v) is a velocity-dependent
drag coefficient, and a stochastic force Fnoise = mχ(v)η, where η is a Gaussian white-noise term. In
addition, the granular particles are subjected to binary inelastic collisions, represented by the red
gleam-like lines.

2.1. Enskog–Fokker–Planck Equation

The full dynamics of the system can be studied from the inelastic homogeneous
Enskog–Fokker–Planck equation (EFPE),

∂t f (v; t)− ∂v

[
ξ(v)v +

χ2(v)
2

∂v

]
f (v; t) = J[v| f , f ], (1)

where f is the one-particle VDF, so that n =
∫

dv f (v; t) is the number density, and J[v| f , f ]
is the usual Enskog–Boltzmann collision operator defined by

J[v1| f , f ] ≡ σd−1gc

∫
dv2

∫
+

dσ̂ (v12 · σ̂)
[
α−2 f (v′′1 ) f (v′′2 )− f (v1) f (v2)

]
. (2)

Here, α is the coefficient of normal restitution (see below), v12 = v1 − v2 is the relative
velocity, σ̂ = (r1 − r2)/σ is the intercenter unit vector at contact, gc = limr→σ+ g(r) is the
contact value of the pair correlation function g(r),

∫
+ dσ̂ ≡

∫
dσ̂ Θ(v12 · σ̂), Θ being the

Heaviside step-function and v′′i refers to the precollisional velocity of the particle i. Within
the IHS model, the collisional rules are expressed by [18,30]

v′′1/2 = v1/2 ∓
1 + α−1

2
(v12 · σ̂)σ̂. (3)

From Equation (3), one gets (v12 · σ̂) = −α(v′′12 · σ̂); this relation defines the coefficient of
normal restitution, which is assumed to be constant.

The second term on the left-hand side of Equation (1) represents the action of a net
force F = Fdrag + Fnoise describing the interaction with the particles of the background fluid.
The deterministic nonlinear drag force is Fdrag = −mξ(v)v, where the drag coefficient
ξ(v) depends on the velocity. In turn, Fnoise = mχ2(v)η is a stochastic force, where χ2(v)
measures its intensity, and η is a stochastic vector with the properties of a zero-mean
Gaussian white noise with a unit covariance matrix, i.e.,

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = Iδijδ(t− t′), (4)
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where i and j are particle indices, and I is the d× d unit matrix so that different Cartesian
components of ηi(t) are uncorrelated. The functions ξ(v) and χ2(v) are constrained to
follow the fluctuation-dissipation theorem as

χ2(v) = v2
bξ(v), (5)

vb =
√

2Tb/m being the thermal velocity associated with the background temperature Tb.
The drag coefficient ξ is commonly assumed to be independent of the velocity.

However, a dependence on v cannot be ignored if the mass of a fluid particle is not
much smaller than that of grain [24–26]. The first correction to ξ = const is a quadratic
term [21–23], namely

ξ(v) = ξ0

(
1 + 2γ

v2

v2
b

)
, (6)

where ξ0 is the drag coefficient in the zero-velocity limit and γ controls the degree of
nonlinearity of the drag force.

2.2. Dynamics

It is well known that, in the case of driven granular gases [11,12,14,17–19,31,32], there
exists a competition between the loss and gain of energy due to inelasticity and the action
of the thermal bath, respectively. This eventually leads the granular gas to a steady state, in
contrast to the freely cooling case [18].

The basic macroscopic quantity characterizing the time evolution of the system is the
granular temperature, defined analogously to the standard temperature in kinetic theory as

T(t) =
m
dn

∫
dv v2 f (v; t). (7)

While in the case of elastic collisions, the asymptotic steady state is that of equilibrium
at temperature Tb, i.e., limt→∞ T(t) = Tb, in the IHS model, the steady state is a nonequi-
librium one and, moreover, limt→∞ T(t) = Tst < Tb. From the EFPE, one can derive the
evolution equation of the granular temperature, which is given by

∂tT
ξ0

= 2(Tb − T)
[

1 + (d + 2)γ
T
Tb

]
− 2(d + 2)γ

T2

Tb
a2 −

ζ

ξ0
T, (8)

where
ζ(t) ≡ − m

dT(t)n

∫
dv v2 J[v, f , f ] (9)

is the cooling rate and

a2(t) ≡
d

d + 2
n
∫

dv v4 f (v; t)

[
∫

dv v2 f (v; t)]2
− 1 (10)

is the excess kurtosis (or fourth cumulant) of the time-dependent VDF. The coupling of
T(t) to a2(t) is a direct consequence of the quadratic term in the drag coefficient. As for the
cooling rate ζ(t), it is a consequence of inelasticity and, therefore, vanishes in the elastic
case (conservation of energy). Insertion of Equation (2) into Equation (9) yields [18]

ζ(t) = (1− α2)
ν(t)√
2dn2

Γ
(

d
2

)
Γ
(

d+3
2

) ∫ dv1

∫
dv2

[
v12

vth(t)

]3
f (v1; t) f (v2; t). (11)

Here, vth(t) =
√

2T(t)/m is the time-dependent thermal velocity and

ν(t) = gcKdnσd−1vth(t), Kd ≡
πd−1

√
2Γ(d/2)

, (12)
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is the time-dependent collision frequency.
Let us rewrite Equation (8) in dimensionless form. First, we introduce the reduced

quantities

t∗ ≡ νbt, θ(t∗) ≡ T(t)
Tb

, ξ∗0 ≡
ξ0

νb
, µ`(t∗) ≡ −

1
nν(t)

∫
dv
[

v
vth(t)

]`
J[v| f , f ], (13)

where νb = gcKdnσd−1vb is the collision frequency associated with the background
temperature Tb. Note that the control parameter ξ∗0 measures the ratio between the charac-
teristic times associated with collisions and drag. In the molecular case, ξ∗0 depends on the
bath-to-grain density, size, and mass ratios, but otherwise, it is independent of Tb [21,26].
In terms of the quantities defined in Equation (13), Equation (8) becomes

θ̇

ξ∗0
= 2(1− θ)[1 + (d + 2)γθ]− 2(d + 2)γθ2a2 −

2µ2

d
θ3/2

ξ∗0
, (14)

where henceforth, a dot over a quantity denotes a derivative with respect to t∗, and we
have taken into account that ζ(t)/ν(t) = 2µ2(t∗)/d and ν(t)/νb = θ1/2(t∗).

Equation (14) is not a closed equation since it is coupled to the full VDF through a2
and µ2. More generally, taking velocity moments on the EFPE, an infinite hierarchy of
moment equations can be derived. In dimensionless form, it reads

Ṁ`

ξ∗0
=`

{[
(`− 2)γ +

µ2

d

√
θ

ξ∗0
+ (d + 2)γθ(1 + a2)−

1
θ

]
M` − 2γθM`+2 +

d + `− 2
2

M`−2
θ

}

− µ`

√
θ

ξ∗0
, (15)

where M`(t∗) ≡ n−1
∫

dv [v/vth(t)]` f (v; t). In particular, M0 = 1, M2 = d
2 , M4 =

d(d+2)
4 (1 + a2), and M6 = d(d+2)(d+4)

8 (1 + 3a2 − a3), a3 being the sixth cumulant.
Equation (15) is trivial for ` = 0 and ` = 2. The choice ` = 4 yields

ȧ2

ξ∗0
=4γθ

[
2(1 + a2)

θ
+ (d + 2)(1 + a2)

2 − (d + 4)(1 + 3a2 − a3)

]
− 4

a2

θ

+
4
d

[
µ2(1 + a2)−

µ4

d + 2

]√
θ

ξ∗0
. (16)

Equations (14)–(16) are formally exact in the context of the EFPE, Equation (1).
Nevertheless, they cannot be solved because of the infinite nature of the hierarchy (15) and
the highly nonlinear dependence of the collisional moments µ` on the velocity moments of
the VDF. This forces us to devise tractable approximations in order to extract information
about the dynamics and steady state of the system.

3. Approximate Schemes
3.1. Maxwellian Approximation

The simplest approximation consists of assuming that the VDF remains very close to
a Maxwellian during its time evolution so that the excess kurtosis a2 can be neglected in
Equation (14), and the reduced cooling rate µ2 can be approximated by [11,12,17,18,28,33,34]

µ2 ≈ µ
(0)
2 = 1− α2. (17)
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In this Maxwellian approximation (MA), Equation (14) becomes

θ̇

ξ∗0
≈ 2(1− θ)[1 + (d + 2)γθ]− 2(1− α2)

d
θ3/2

ξ∗0
. (18)

This is a closed equation for the temperature ratio θ(t∗) that can be solved numerically
for any initial temperature. The steady-state value θst in the MA is obtained by equating
to zero the right-hand side of Equation (18), which results in a fourth-degree algebraic
equation.

3.2. First Sonine Approximation

As we will see later, the MA given by Equation (18) provides a simple and, in general,
rather accurate estimate of θ(t∗) and θst. However, since the evolution of temperature
is governed by its initial value only, the MA is unable to capture memory phenomena,
such as Mpemba- or Kovacs-like effects, which are observed even in the case of elastic
particles [21–23]. This is a consequence of the absence of any coupling of θ with some other
dynamical variable(s).

The next simplest approximation beyond the MA consists of incorporating a2 into
the description but assuming it is small enough as to neglect nonlinear terms involving
this quantity, as well as higher-order cumulants, i.e., ak

2 → 0 for k ≥ 2 and a` → 0 for
` ≥ 3. This represents the so-called first Sonine approximation (FSA), according to which
Equations (14) and (16) become

θ̇

ξ∗0
≈ 2(1− θ)[1 + (d + 2)γθ]− 2(d + 2)γθ2a2 −

2
[
µ
(0)
2 + µ

(1)
2 a2

]
d

θ3/2

ξ∗0
, (19a)

ȧ2

ξ∗0
≈4γθ

[
2

1 + a2

θ
+ (d + 2)(1 + 2a2)− (d + 4)(1 + 3a2)

]
− 4

a2

θ

+
4
d

{
µ
(0)
2 −

µ
(0)
4

d + 2
+

[
µ
(0)
2 + µ

(1)
2 −

µ
(1)
4

d + 2

]
a2

}√
θ

ξ∗0
, (19b)

where we have used [11,12,17,18,28,33,34]

µ2 ≈ µ
(0)
2 + µ

(1)
2 a2, µ4 ≈ µ

(0)
4 + µ

(1)
4 a2, (20)

with

µ
(1)
2 =

3
16

µ
(0)
2 , µ

(0)
4 =

(
d +

3
2
+ α2

)
µ
(0)
2 , (21a)

µ
(1)
4 =

3
32

(
10d + 39 + 10α2

)
µ
(0)
2 + (d− 1)(1 + α). (21b)

Equations (19) make a set of two coupled differential equations. In contrast to the MA, now
the evolution of θ(t∗) is governed by the initial values of both θ and a2. This latter fact
implies that the evolution of temperature depends on the initial preparation of the whole
VDF, this being a determinant condition for the emergence of memory effects, which will
be explored later in Section 4.1.

3.2.1. Steady-State Values

The steady-state values θst and ast
2 in the FSA are obtained by equating to zero the

right-hand sides of Equations (19), i.e.,
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The FSA predictions of ast
2 are displayed in Figure 3. First, it is quite apparent that the

departure from the Maxwellian VDF (as measured by the magnitude of ast
2 ) is higher in 2D

than 3D. It is also noteworthy that ast
2 starts growing with increasing γ, reaches a maximum

at a certain value γ = γmax(α, ξ∗0), and then it decreases as γ increases beyond γmax(α, ξ∗0);
this effect is more pronounced for small α.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3. FSA predictions for the steady-state value of the excess kurtosis ast
2 as a function of the

coefficient of normal restitution α and of the nonlinearity control parameter γ with ξ∗0 = 1. The
dimensionality of the system is d = 3 in panel (a) and d = 2 in panel (b). The contour lines are
separated by an amount of ∆ast

2 = 0.005. The thickest black line corresponds to the contour ast
2 = 0.

Another interesting feature is that ast
2 takes negative values (in the domain of small

inelasticity) only if γ is smaller than a certain value γc. Of course, ast
2 (α, γ)

∣∣
α=1 = 0 for any

γ (since the steady state with α = 1 is that of equilibrium), but ∂αast
2 (α, γ)

∣∣
α=1 < 0 if γ < γc

and ∂αast
2 (α, γ)

∣∣
α=1 > 0 if γ > γc. Thus, the critical value γc is determined by the condition

∂αast
2 (α, γc)

∣∣
α=1 = 0. Interestingly, the result obtained from the FSA, Equation (24), is quite

simple, namely

γc =
1

3(d + 2)
, (25)

which is independent of ξ∗0 .

3.2.2. Special Limits
Absence of Drag

Let us first define a noise temperature Tn as Tn = Tbξ∗2/3
0 ∝ (ξ0Tb)

2/3, so that θ3/2/ξ∗0 =

(T/Tn)3/2. Now we take the limit of zero drag, ξ0 → 0, with finite noise temperature Tn.
This implies Tb → ∞, and thus, the natural temperature scale of the problem is no longer
Tb but Tn, i.e., θst → 0 but Tst/Tn = finite. From Equations (23) we see that F0(0) = d,
F1(0) = 0, G0(0) = 0, and G1(0) = −d. Therefore, Equations (22) reduce to

θ̇ = 0⇒ d
(

Tn

Tst

)3/2
=µst

2 , (26a)

ȧ2 = 0⇒ −d
(

Tn

Tst

)3/2
ast

2 =
µst

4
d + 2

− µst
2 (1 + ast

2 ), (26b)

where, for the sake of generality, we have undone the linearizations with respect to ast
2 .

By the elimination of
(
Tn/Tst)3/2, one simply gets (d + 2)µst

2 = µst
4 , from which one

can then obtain ast
2 upon linearization [11,12]. The steady-state temperature is given by

Tst/Tn = (d/µst
2 )

2/3.
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Homogeneous Cooling State

If, in addition to ξ0 → 0, we take the limit Tn → 0, the asymptotic state becomes the
homogeneous cooling state. In that case, T does not reach a true stationary value, but a2
does. As a consequence, Equation (26a) is not applicable, but Equation (26b), with Tn = 0,
can still be used to get (d + 2)µst

2 (1 + ast
2 ) = µst

4 , as expected [11,12,17].

Linear Drag Force

If the drag force is linear in velocity (i.e., γ = 0), we have F0(θ) = d(1− θ), F1(θ) = 0,
G0(θ) = 0, and G1(θ) = −d. Using Equation (22b), ast

2 is given by

ast
2 = − µ

(0)
4 − (d + 2)µ(0)

2

µ
(0)
4 − (d + 2)

[
µ
(0)
2 + µ

(1)
2 − dξ∗0 /(θst)3/2

] , (27)

thus recovering previous results [31,32].

Collisionless Gas

If the collision frequency νb is much smaller than the zero-velocity drag coefficient ξ0,
the granular dynamics is dominated by the interaction with the background fluid and the
grain–grain collisions can be neglected; therefore, the grains behave as Brownian particles.
In that case, the relevant dimensionless time is no longer t∗ = νbt but τ = ξ0t = ξ∗0 t∗ and
the evolution equations (19) become

dθ

dτ
≈ 2(1− θ)[1 + (d + 2)γθ]− 2(d + 2)γθ2a2, (28a)

da2

dτ
≈ 4γθ

[
2

1 + a2

θ
+ (d + 2)(1 + 2a2)− (d + 4)(1 + 3a2)

]
− 4

a2

θ
, (28b)

It is straightforward to check that the steady-state solution is θst = 1 and ast
2 = 0, regardless

of the value of γ, as expected.

4. Comparison with Computer Simulations

We have carried out DSMC and EDMD computer simulations to validate the the-
oretical predictions. The DSMC method is based on the acceptance-rejection Monte
Carlo Metropolis decision method [35] but adapted to solve the Enskog–Boltzmann equa-
tion [36,37], and the algorithm is, consequently, adjusted to agree with the inelastic colli-
sional model [12,17] and reflect the interaction with the bath [23]. On the other hand, the
EDMD algorithm is based on the one exposed in Ref. [23], but is adequated to the IHS
collisional model. The main difference between DSMC and EDMD is that the latter does
not follow any statistical rule to solve the Boltzmann equation but solves the equations of
motion of the hard particles. Simulation details about the characteristics of the schemes
and numerical particularities can be found in Appendix A.

In Figure 4, results from simulations are compared with the theoretical predictions of
θst (from MA and FSA) and of ast

2 (from FSA) in a three-dimensional (d = 3) IHS system
with ξ∗0 = 1. It can be observed that both the DSMC and EDMD results agree with each
other. From Figure 4a, one can conclude that, as expected, FSA works in the prediction
of θst much better than MA for values of γ close to γmax(α, ξ∗0) (which corresponds to the
maximum magnitude of ast

2 ). Moreover, FSA gives reasonably good estimates for the values
of ast

2 , although they get worse for increasing inelasticity, i.e., decreasing α. One might also
think that the increase in γ produces a poorer approach; however, according to the theory,
the performance of FSA improves if γ > γmax(α, ξ∗0), which corresponds to a decrease in
|ast

2 |. Of course, nonlinear terms or higher-order cumulants might play a role that is not
accounted for within FSA.
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Figure 4. Plots of the steady-state values of (a) the temperature ratio θst and (b) the excess kurtosis
ast

2 vs. the coefficient of normal restitution α for ξ∗0 = 1, d = 3, and different values of the nonlinear
parameter: γ = 0, 0.01, 0.1, 0.2. The symbols stand for DSMC (�, 4, �, ◦) and EDMD (Y, +, ∗, ×)
simulation results, respectively. Dashed (– –) and solid (----) lines refer to MA (only in panel (a)) and
FSA predictions, respectively. The horizontal gray dotted lines (· · · ) correspond to the steady-state
values in the elastic limit. As representative values, note that, at ξ∗0 = 1, one has γmax = 0.25, 0.19, 0.17
for α = 0.8, 0.5, 0.2, respectively.

Apart from the steady-state values, we have studied the temporal evolution of θ and a2,
starting from a Maxwellian VDF at temperature Tb, i.e., θ(0) ≡ θ0 = 1 and a2(0) ≡ a0

2 = 0.
Note that this state is that of equilibrium in the case of elastic collisions (α = 1), regardless
of the value of the nonlinearity parameter γ. The theoretical and simulation results are
displayed in Figure 5 for d = 3, ξ∗0 = 1, and some characteristic values of α and γ.
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Figure 5. Plots of the time evolution of (a–d) the temperature ratio θ(t∗) and (e–h) the excess kurtosis
a2(t∗) for ξ∗0 = 1, d = 3, and different values of the coefficient of normal restitution (α = 0.8, 0.5, 0.2)
and the nonlinearity parameter: (a,e) γ = 0, (b,f) γ = 0.01, (c,g) γ = 0.1, and (d,h) γ = 0.2. The
symbols stand for DSMC (◦, �,4) and EDMD (×, ∗, +) simulation results, respectively. Dashed (– –)
and solid (----) lines refer to MA (only in panels (a–d)) and FSA predictions, respectively. All states
are initially prepared with a Maxwellian VDF at the bath temperature, i.e., θ0 = 1 and a0

2 = 0.

We observe that the relaxation of θ is accurately predicted by MA, except for the later
stage with small α and/or large γ, in accordance with the discussion of Figure 4. This is
remedied by FSA, which exhibits an excellent agreement with simulation results in the
case of θ and a fair agreement in the case of a2, again in accordance with the discussion
of Figure 4. It is also worth mentioning the good mutual agreement between DSMC and
EDMD data, even though fluctuations are much higher in a2 than in θ because of the rather
small values of |a2|.
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4.1. Memory Effects

Whereas the temperature relaxation from Maxwellian initial states is generally accurate
from MA, it misses the explicit dependence of the temperature evolution on the fourth
cumulant (see Equation (14)), which, however, is captured by FSA (see Equation (19a)).
This coupling of θ to a2 is a signal of preparation dependence of the system, hence, a signal
of memory effects, as occurs in the elastic case reported in Refs. [21–23].

4.1.1. Mpemba Effect

We start the study of memory effects with the Mpemba effect [38–42]. This counterintu-
itive phenomenon refers to situations in which an initially hotter sample (A) of a fluid—or,
more generally, a statistical-mechanical system—cools down sooner than an initially colder
one (B) in a cooling experiment. We will refer to this as the direct Mepmba effect (DME).
Analogously, the inverse Mpemba effect (IME) occurs in heating experiments if the initially
colder sample (B) heats up more rapidly than the initially hotter one (A) [21,23,40,41,43]. In
the special case of a molecular gas (i.e., α = 1), an extensive study of both DME and IME
has recently been carried out [21,23].

Figure 6a,b present an example of DME and IME, respectively. As expected, FSA
describes the evolution and crossing for temperatures of samples A and B very well. On
the contrary, MA does not predict this memory effect. In addition, from Figure 6c,d we can
conclude that FSA captures the relaxation of a2 toward ast

2 6= 0 quite well.

0.0 0.5 1.0 1.5 2.0
t∗

1.00

1.03

1.06

1.09

1.12

1.15

θ/
θs

t

(a)

A (DSMC,EDMD)

B (DSMC,EDMD)

MA (A,B)

FSA (A,B)

0.0 0.5 1.0 1.5 2.0
t∗

0.88

0.91

0.94

0.97

1.00

θ/
θs

t

(b)

0.0 0.5 1.0 1.5 2.0
t∗

−0.4

−0.2

0.0

0.2

0.4

a
2

(c)

0.0 0.5 1.0 1.5 2.0
t∗

−0.4

−0.2

0.0

0.2

0.4

a
2

(d)

Figure 6. Time evolution of (a,b) θ(t∗)/θst and (c,d) a2(t∗) for two samples (A and B) with α = 0.9,
ξ∗0 = 1, d = 3, and γ = 0.1. Panels (a, c) illustrate the DME with initial conditions θ0

A = 1.1 ' 1.15θst,
a0

2A = 0.4, θ0
B = 1 ' 1.04θst, a0

2B = −0.35, while panels (b, d) illustrate the IME with initial conditions
θ0

A = 0.9 ' 0.94θst, a0
2A = 0.4, θ0

B = 0.85 ' 0.89θst, a0
2B = −0.35. The symbols stand for DSMC (◦,

�) and EDMD (×, ∗) simulation results, respectively. Solid (----) and dashed (– –) lines correspond
to FSA predictions for samples A and B, respectively, whereas black dotted (· · · ) and dash-dotted
(– · –) lines in panels (a,b) refer to MA predictions for samples A and B, respectively. The gray thin
horizontal lines correspond to the steady-state values. Note that ast

2 6= 0, despite what panels (c,d)
seem to indicate because of the vertical scale.



Entropy 2022, 24, 1436 12 of 16

4.1.2. Kovacs Effect

Next, we turn to another interesting memory effect: the Kovacs effect [44,45]. In
contrast to the Mpemba effect, the Kovacs effect has a well-defined two-stage protocol
and does not involve a comparison between two samples. In the context of our system,
the protocol proceeds as follows. First, the granular gas is put in contact with a bath
at temperature Tb1 and initialized at a temperature T0 > Tst

1 , Tst
1 = θstTb1 being the

corresponding steady-state temperature (note that θst is independent of Tb1 at fixed ξ∗0 ). The
system is allowed to relax to the steady state during a time window 0 < t < tK, but then, at
t = tK, the bath temperature is suddenly modified to a new value Tb, such that T(tK) = Tst,
Tst = θstTb being the new steady-state value. If the system did not retain a memory of its
previous history, one would have T(t) = Tst for t > tK, and this is, in fact, the result given
by the MA. However, the temperature exhibits a hump for t > tK, before relaxing to Tst.
This hump is a consequence of the dependence of ∂tT on the additional variables of the
system. According to Equation (14), and maintained in the FSA, Equation (19a), the first
relevant quantity to be responsible for a possible hump is the excess kurtosis of the VDF, as
occurs in the elastic limit [22]. In fact, at time t∗ = t∗K, such that θ(t∗K) = θst, the slope of the
temperature according to FSA, Equation (19a), reads

θ̇(t∗K) ≈ 2θst

[
(d + 2)ξ∗0 γθst +

µ
(1)
2
d

√
θst

][
ast

2 − a2(t∗K)
]
. (29)

Thus, a nonzero difference ast
2 − a2(t∗K) implies the existence of a Kovacs-like hump, its

sign being determined by that of this difference; that is, we will obtain an upward hump if
a2(t∗K) < ast

2 or a downward hump if a2(t∗K) > ast
2 .

For simplicity, in our study of the Kovacs-like effect, we replace the first stage of
the protocol (0 < t∗ < t∗K) by just generating the state at t∗ = t∗K with θ(t∗k ) = θst and
a2(t∗K) 6= ast

2 (see Appendix A). The effect is illustrated in Figure 7 for the same system as in
Figure 6 with the choices a2(t∗K) = −0.35 < ast

2 and a2(t∗K) = 0.4 > ast
2 . Again, the DSMC

and EDMD results agree with each other and with the theoretical predictions. However, in
the case a2(t∗K) = −0.35 (upward hump), Figure 7a, we observe that the theoretical curve
lies below the simulation results. This might be caused by a nonnegligible value of the sixth
cumulant a3(t∗K) = −0.375, as reported in Ref. [23] in the elastic case. Apart from this small
discrepancy, FSA captures the magnitude and sign of the humps, as well as the relaxation
of the fourth cumulant, very well.
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Figure 7. Time evolution for t∗ > t∗K of (a) θ(t∗)/θst and (b) a2(t∗) for a system with α = 0.9, ξ∗0 = 1,
d = 3, and γ = 0.1. The figure illustrates Kovacs-like effects with conditions θ(t∗K) = θst and either
a2(t∗K) = −0.35 (◦, �, —) or a2(t∗K) = 0.4) (×, ∗, - - -). The symbols stand for DSMC and EDMD
simulation results, while the lines refer to FSA predictions.

5. Conclusions

In this work, we have looked into the dynamics of a dilute granular gas immersed in a
thermal bath (at temperature Tb) made of smaller particles but with masses comparable to
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those of the grains. To mathematically characterize this system, we have worked under
the assumptions of Boltzmann’s kinetic theory, describing the system by the one-particle
VDF, whose evolution is monitored by the EFPE, Equation (1), for the IHS model of hard
d-spheres. The action of the bath on the dynamics of the granular gas is modeled by a
nonlinear drag force and an associated stochastic force. At a given dimensionality d, the
control parameters of the problem are the coefficient of normal restitution (α), the (reduced)
drag coefficient at zero velocity (ξ∗0), and the nonlinearity parameter (γ).

After a general presentation of the kinetic theory description in Section 2, we obtained
the evolution equation of the reduced temperature θ(t∗) ≡ T(t)/Tb (Equation (14)), which
is coupled explicitly with the excess kurtosis, a2, and depends on every velocity moment
through the second collisional moment µ2 (which is nonzero due to inelasticity). Therefore,
the whole dynamics in the context of the EFPE is formally described by Equation (14)
and the infinite hierarchy of moment equations given by Equation (15). In order to give
predictions, we proposed two approximations. The first one is MA, which consists of
assuming a Maxwellian form for the one-particle VDF, whereas the second one, FSA
consists of truncating the Sonine expansion of the VDF up to the first nontrivial cumulant
a2. Their evolution equations are given by Equations (18) and (19), respectively. The
predictions for the steady-state values are exposed in Figures 2 and 3, which show some
small discrepancies in θst between MA and FSA as we increase the inelasticity (decreasing
α). Moreover, we observed that, for fixed α and ξ∗0 , ast

2 gets its maximum value when the
nonlinearity parameter is γ = γmax(α, ξ∗0). Another interesting feature is the existence of a
critical value γc, such that for γ > γc, the values of ast

2 are always positive for every value
of α, while for γ < γc, we find ast

2 < 0 for inelasticities small enough. Interestingly, the
value of γc given by Equation (25) is found to be independent of ξ∗0 . In addition, some
already known limits are recovered in Section 3.2.2.

Furthermore, in order to check the predictions from MA and FSA equations, we
carried out DSMC and EDMD simulations for hard spheres (d = 3) with fixed ξ∗0 = 1
(which corresponds to comparable time scales associated with drag and collisions). First,
from Figure 4a, we can conclude that, whereas MA provides good predictions of θst, except
for large inelasticities and values of γ close to γmax, FSA is much more accurate because
it takes into account the influence of ast

2 . The latter approach is generally reliable for ast
2 ,

as observed in Figure 4b, although, not unexpectedly, it slightly worsens as |ast
2 | grows.

Relaxation curves starting from a Maxwellian initial state in Figure 5 show that FSA agrees
very well with both DSMC and EDMD; however, MA exhibits good agreement during the
first stage of the evolution but becomes less reliable as the steady state is approached.

A relevant feature of these systems, as already studied in the elastic case [21–23], is
the emergence of memory effects, which are not contemplated by MA. FSA predicts the
emergence of the Mpemba effect very well for both DME and IME, as can be seen in Figure 6.
Analogously, Kovacs-like humps, both upward and downward, are correctly described
by FSA, as observed in Figure 7, although the FSA humps are slightly less pronounced
(especially the upward one) than the simulation ones. This is presumably due to the role
played by a3 and higher-order cumulants, as occurs in the elastic limit reported in Ref. [23].

To conclude, we expect that this work will motivate research about this type of system
and the emergence of memory effects. For instance, one can extend the study to other
collisional models (such as that of rough spheres), to nonhomogeneous states, or to a more
detailed description of the memory effects observed.
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Abbreviations
The following abbreviations are used in this manuscript:

DME Direct Mpemba effect
DSMC Direct simulation Monte Carlo
EDMD Event-driven molecular dynamics
EFPE Enskog–Fokker–Planck equation
FSA First Sonine approximation
IHS Inelastic hard spheres
IME Inverse Mpemba effect
MA Maxwellian approximation
VDF Velocity distribution function

Appendix A. Simulation Details

Throughout the elaboration of this work, we have used two different algorithms
to simulate the considered system: DSMC and EDMD methods. Whereas the former is
based on statistical properties and subjected to the assumptions of the Boltzmann equation,
such as Stosszahlansatz, the latter solves the trajectory of each particle without any extra
assumption. On the other hand, the original algorithms are slightly modified for the proper
collisional model and the interaction with the thermal bath, as explained below.

In general, the simulation results shown in this work are obtained from averaging over
100 samples in both simulation schemes, and steady-state results come from averaging over
50 points in the mean trajectory once stationary behavior is observed.

Appendix A.1. Direct Simulation Monte Carlo

The DSMC algorithm used in this work is based on the original works of G.A.
Bird [36,37], but modified for the IHS collisional model and the implementation of the
nonlinear drag. As we considered homogeneous states, only the velocities of the N gran-
ular particles, {vi}N

i=1, are used to numerically solve the EFPE. Whereas initial velocities
for results in Figures 4 and 5 were drawn from a Maxwellian VDF with θ0 = 1; in the case
of Figures 6 and 7, velocities were initialized from a Gamma VDF (see Refs. [23,30] for
additional details). After initialization, particles were updated with a fixed time step, ∆t,
much smaller than the mean free time. The method is properly divided into two stages:
collision and free streaming [12].

In the collision stage, a number b 1
2 Nωmax∆tc of pairs are randomly chosen with

equiprobability—the ignored decimals in the rounding are saved for the next iterative
step—ωmax being an upper bound estimate for the one-particle collision rate. Then, given
a chosen pair ij, a collision is accepted with probability Θ(vij · σ̂ij)ωij/ωmax, where σ̂ij is
a random vector drawn from a uniform probability distribution in the unit d-sphere, and
ωij =

2πd/2

Γ(d/2) gcnσd−1|vij · σ̂ij|. Acceptance implies that the velocities are updated according

to the collisional rules in Equation (3), i.e., vi/j(t)→ vi/j(t + ∆t) = vi/j ± 1+α
2 (vij · σ̂ij).

https://github.com/amegiasf/GranularNonlinearDrag


Entropy 2022, 24, 1436 15 of 16

In the free-streaming stage, each particle velocity is updated according to an Euler
numerical algorithm of a Langevin-like equation derived from an Itô interpretation of the
Fokker–Planck part of the EFPE (see Ref. [23]),

vi(t)→ vi(t + ∆t) = vi(t)− [ξ(vi(t))− 2ξ0γ]vi∆t + χ(vi(t))
√

∆tYi, (A1)

where Yi is a random vector drawn from a Gaussian probability distribution with unit
variance, P(Y) = (2π)−d/2e−Y2/2.

In the implementations of the DSMC algorithm, we used N = 104 hard spheres (d = 3)
and a time step ∆t = 10−2λ/vb, λ = (

√
2πnσ2)−1 being the mean free path.

Appendix A.2. Event-Driven Molecular Dynamics

EDMD methods compute the evolution of particles driven by events: particle–particle
collisions, boundary effects, or other more complex interactions. Analogously to the
splitting described in the DSMC algorithm, free streaming of particles occurs between two
consecutive events. Here, we need to consider the influence of the stochastic and drag
forces not only in the velocities but also in the positions of the N granular particles, {ri}N

i=1.
In order to account for this, we followed the approximate Green Function algorithm proposed
in Ref. [46]. Whereas the velocities are updated according to Equation (A1), the positions
follow

ri(t)→ ri(t + ∆t) = ri(t) + vi(t)∆t
[

1− ∆t
ξ(vi(t))− 2γξ0

2

]
+

1
2

χ(vi(t))∆t3/2Wi, (A2)

where Wi = Yi +
√

5/3Y′i, Y′i being another random vector drawn from P(Y) = (2π)−d/2

e−Y2/2.
In the EDMD simulations, we defined a set of N = 8× 103 hard spheres (d = 3),

with a reduced number density nσ3 = 10−3, implying a box length L/σ = 2× 102, and
used a time step ∆t ≈ 10−3λ/vb. Periodic boundary conditions were imposed, and no
inhomogeneities were observed.
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