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ABSTRACT
The exact transfer-matrix solution for the longitudinal equilibrium properties of the single-file hard-disk fluid is used to study the limiting
low- and high-pressure behaviors analytically as functions of the pore width. In the low-pressure regime, the exact third and fourth virial
coefficients are obtained, which involve single and double integrals, respectively. Moreover, we show that the standard irreducible diagrams
do not provide a complete account of the virial coefficients in confined geometries. The asymptotic equation of state in the high-pressure limit
is seen to present a simple pole at the close-packing linear density, as in the hard-rod fluid, but, in contrast to the latter case, the residue is 2.
Since, for an arbitrary pressure, the exact transfer-matrix treatment requires the numerical solution of an eigenvalue integral equation, we
propose here two simple approximations to the equation of state, with different complexity levels, and carry out an extensive assessment of
their validity and practical convenience vs the exact solution and available computer simulations.
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I. INTRODUCTION

Confined fluid systems are an important field of study due to
the great range of applications and situations where they can be
found. Physically interesting systems in biology or chemistry involve
dealing with confined particles, such as carbon nanotubes1,2 or bio-
logical ion channels,3 to cite just a couple of examples. In many
of these systems, the geometry is so restrictive that they become
quasi-one-dimensional (Q1D) systems.

These Q1D systems can be used to model a wide range of
extremely confined two- or three-dimensional systems, in which the
space available along one of the dimensions is much larger than that
along the other ones. The study of this type of fluids is especially
interesting from a statistical–mechanical perspective since many of
them are amenable to exact analytical solutions, therefore providing
insight into the thermodynamic and structural properties of such
systems. An important subset of confined fluids is made of those
under the so-called single-file confinement,4,5 where particles are
inside a pore that is not wide enough to allow particles to either
bypass each other or interact with their second nearest neighbors,
therefore confining them into a single-file formation.

Q1D systems, usually restricted to single-file configurations,
constitute an active field of study for both equilibrium6–25 and non-
equilibrium properties,13,16,26–35 as well as for jamming effects,16,36–39

from different perspectives. In the case of confined two-dimensional
(2D) systems, a simple but, nevertheless, functional way of model-
ing the particle interaction is by means of the hard-disk interaction
potential, in which particles are not allowed to interpenetrate, but
otherwise they do not interact among themselves.

It is important to bear in mind that only the most relevant
(longitudinal) thermodynamic properties of the original confined
2D fluid are mapped onto those of the effective Q1D system.
In this sense, Barker’s solution6,7 for the single-file configuration
with only nearest-neighbor interactions was based on an averaged
potential function for the disk–disk interactions. A perhaps more
insightful solution was found by Kofke and Post via the transfer-
matrix method.10 Most of the subsequent theoretical studies11,16,18–21

also focused on the physical properties of the effective Q1D sys-
tem, while in other works, the transverse properties of the gen-
uine 2D fluid were analyzed as well.13–15,17,22–25 In particular, an
exact analytical canonical partition function for the 2D system has
recently been obtained.23 Even if the theoretical advances refer to the

J. Chem. Phys. 158, 154501 (2023); doi: 10.1063/5.0139116 158, 154501-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0139116
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0139116
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0139116&domain=pdf&date_stamp=2023-April-17
https://doi.org/10.1063/5.0139116
https://orcid.org/0000-0001-9188-8487
https://orcid.org/0000-0002-9564-5180
mailto:anamontero@unex.es
mailto:andres@unex.es
https://doi.org/10.1063/5.0139116


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

effective Q1D system, their validity needs to be tested against
computer simulations on the original 2D system.10,14,16,21,22,25

The exact transfer-matrix thermodynamic solution for the Q1D
fluid10 involves numerical schemes to solve an eigenvalue equa-
tion in order to obtain the equation of state of the system, and
no analytical solution has yet been found. In this sense, several
proposals have been developed during the last few years to obtain
analytically accurate approximations to the exact solution, involving
first-order approximations of the contact distance of the particles,14

virial-coefficient expansions,19–21 or distinguishing between high-
and low-pressure regimes.12,16

In this paper, we revisit the exact transfer-matrix solution10

for the single-file Q1D hard-disk fluid and perform a perturbation
analysis to calculate the exact third and fourth virial coefficients.
Interestingly, they differ from previous evaluations via the standard
diagrammatic method,19–21 the reason being that the textbook can-
cellation of the so-called reducible diagrams does not hold in the case
of confined fluids. We also study the behavior in the high-pressure
limit, finding that the residue of the simple pole at close packing dif-
fers from that in the pure (1D) hard-rod system. In view of this, we
propose two different analytical approximations for the equation of
state and study their behavior against the exact solution and available
computer simulations. Despite its simplicity, our basic uniform-
profile approximation recovers the second virial coefficient, provides
reasonable estimates of the third and fourth virial coefficients, and
predicts the correct close-packing linear density. A more sophis-
ticated (and accurate) exponential-profile approximation improves
the estimates of the third and fourth virial coefficients, reduces to the
exact solution in the close-packing limit, and exhibits an excellent
behavior for intermediate densities. Moreover, the execution times
of the uniform-profile and exponential-profile approximations are
seen to be up to about 105 and 103 times shorter, respectively, than
the exact solution for high pressures and wide pores.

Our paper is organized as follows: Sec. II defines the system
and its exact solution, including an analysis of the low- and high-
pressure behaviors in Secs. II C and II D, respectively. Section III
presents our two analytical approximations to the equation of state,
while an assessment of both approximations vs the exact solution
is carried out in Sec. IV. This paper is closed in Sec. V with some
concluding remarks. The most technical details are relegated to
Appendices A–D.

II. THE CONFINED HARD-DISK FLUID. EXACT
PROPERTIES
A. System

We consider a system of N hard disks of unit diameter con-
fined in a long channel of length L≫ 1 and width w = 1 + ε, with
0 ≤ ε ≤ εmax, where εmax =

√
3/2 ≃ 0.866 in order to ensure the

single-file condition and preclude second nearest-neighbor interac-
tions, as depicted in Fig. 1(a). As illustrated in Fig. 1(b), if the trans-
verse separation between two disks at contact is s, their longitudinal
separation is

a(s) ≡
√

1 − s2. (2.1)

The number of disks per unit area is ρ = N/Lw. However, in
the Q1D configuration of the system, it is convenient to characterize

FIG. 1. Schematic representation of the single-file hard-disk fluid. Panel (a) shows
the maximum allowed value of the pore size, 1 + εmax (with εmax =

√
3/2), beyond

which a disk can interact with its second nearest-neighbors, thus violating the
single-file condition. Panel (b) depicts a case with ε < εmax, where the two disks on
the right show the definition of the longitudinal separation at contact, a(s), while
the three disks on the left illustrate the close-packing configuration.

the number density through the number of particles per unit length,
λ ≡ N/L = ρw. Its close-packing value (given an excess pore width
ε) is λcp(ε) = 1/a(ε), as inferred from Fig. 1(b), at which the parti-
cles occupy the maximum available space, resulting in the pressure
diverging at that value. This divergence will be discussed in depth in
Sec. II D. We note that λcp(εmax) = 2.

Due to the anisotropy of the original 2D system, the trans-
verse pressure (P�) is different from the longitudinal one (P∥). We,
then, define the (reduced) Q1D pressure as p ≡ P∥w, where, hence-
forth, we take kBT = 1 as unit energy (kB and T being the Boltzmann
constant and the absolute temperature, respectively).

B. Transfer-matrix solution
The exact solution to the Q1D system can be obtained via the

transfer-matrix method. In the thermodynamic limit of large N, the
excess Gibbs free energy per particle, gex

(p), may be written as10

gex
(p) = − ln

ℓ(p)
ε

, (2.2)

where ℓ(p) is the maximum eigenvalue corresponding to the
problem

∫ dy2 e−a(y1−y2)pϕ(y2) = ℓϕ(y1), (2.3)

and ϕ(y) is the associated eigenfunction. Here and henceforth, all
integrations over the y-variable will be understood to run along
the interval −ε/2 ≤ y ≤ ε/2 (where the origin y = 0 is taken at the
centerline) and the integration limits will be omitted. Under the
normalization condition

∫ dy ϕ2
(y) = 1, (2.4)
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ϕ2
(y) represents the probability density along the transverse direc-

tion y within this framework. Multiplying both sides of Eq. (2.3) by
ϕ(y1) and integrating over y1, we obtain

ℓ = ∫ dy1 ∫ dy2 e−a(y1−y2)pϕ(y1)ϕ(y2), (2.5)

where the normalization condition, Eq. (2.4), has been used.
Of course, both ℓ and ϕ(y) are functions of p. Differentiating

both sides of Eq. (2.5) with respect to p, one obtains

∂pℓ = −∫ dy1 ∫ dy2 e−a(y1−y2)pa(y1 − y2)ϕ(y1)ϕ(y2)

+ 2∫ dy1 ∫ dy2 e−a(y1−y2)pϕ(y2)∂pϕ(y1). (2.6)

On account of Eq. (2.3), the second term on the right-
hand side of Eq. (2.6) can be rewritten as 2ℓ ∫ dy1ϕ(y1)∂pϕ(y1)

= ℓ∂p∫ dy1ϕ
2
(y1) = 0. Thus, ∂pℓ is only given by the first term on

the right-hand side of Eq. (2.6).
The compressibility factor Z ≡ p/λ can be obtained from

the Gibbs free energy by the thermodynamic relation Z = 1
+ p∂p gex

(p) = 1 − (p/ℓ)∂pℓ. Making use of Eq. (2.6), one obtains

Z = 1 +
p
ℓ ∫

dy1 ∫ dy2 e−a(y1−y2)pa(y1 − y2)ϕ(y1)ϕ(y2). (2.7)

Taking into account Eq. (2.5), Eq. (2.7) can be rewritten as

Z = 1 + p∫
dy1 ∫ dy2 e−a(y1−y2)pa(y1 − y2)ϕ(y1)ϕ(y2)

∫ dy1 ∫ dy2 e−a(y1−y2)pϕ(y1)ϕ(y2)
. (2.8)

It should be noted that, in contrast to the form (2.7), the eigenfunc-
tion ϕ(y) in the form (2.8) does not need to be normalized. While
both forms are fully equivalent inasmuch as the exact ℓ and ϕ(y) are
used, they differ in the case of approximations.

It is interesting to remark that the solution shown here can also
be obtained by a mapping of the original Q1D system onto a 1D
non-additive mixture of hard rods, as outlined in Appendix A.

It should be noted also that in the limit ε→ 0 (at finite p), one
obtains ϕ(y) → ε−1/2Θ( ε2 − ∣y∣), ℓ→ e−pε, gex

(p) → p, and Z → 1
+ p from Eqs. (2.3), (2.2), and (2.7), respectively, thus recovering the
equation of state of the Tonks gas,40 as expected.

C. Low-pressure behavior
Virial expansions are one of the most common methods to

describe fluids under low-density (or, equivalently, low-pressure)
conditions.41,42 In general, access to the exact virial coefficients of
a given system, at least the lower-order ones, is fundamental to
improve the knowledge of the system and also to test the accuracy
of approximate methods.

The virial coefficients {Bn} are defined from the expansion of
the compressibility factor in powers of density,

Z = 1 +
∞

∑
n=2

Bnλn−1. (2.9)

Analogously, one can introduce the expansion of gex and Z in
powers of pressure,

gex
=
∞

∑
n=2

B′n
n − 1

pn−1, (2.10a)

Z = 1 +
∞

∑
n=2

B′npn−1, (2.10b)

where

B′2 = B2, B′3 = B3 − B2
2, B′4 = B4 − 3B2B3 + 2B3

2, (2.11)

and so on. The second virial coefficient has an analytical expression,
namely,12,43

B2 =
2
3

(1 + ε2

2 )
√

1 − ε2
− 1

ε2 +
sin−1

(ε)
ε

. (2.12)

To the best of our knowledge, the correct third and fourth virial
coefficients have not been evaluated yet. Here, we derive them from
the exact transfer-matrix solution, Eq. (2.7), without assuming the
direct application of the standard diagrammatic method.19–21

Let us introduce the expansion in powers of p of both the
eigenvalue and the eigenfunction in Eq. (2.3) as

ϕ(y) =
∞

∑
n=0

ϕn(y)pn, ℓ =
∞

∑
n=0

ℓnpn. (2.13)

Inserting the expansion of ℓ into Eq. (2.2) and comparing with
Eq. (2.10a), we obtain

B′3 = −2
ℓ2

ε
+ B2

2, B′4 = −3
ℓ3

ε
− 3B2

ℓ2

ε
+ B3

2, (2.14)

where we have used ℓ0 = ε and ℓ1 = −εB2 (see Appendix B). Alter-
natively, the expansion of ϕ(y) provides the expansion of the
integral

I ≡ ∫ dy1 ∫ dy2 e−a(y1−y2)p a(y1 − y2)ϕ(y1)ϕ(y2) =
∞

∑
n=0

Inpn.

(2.15)

Since I = −∂pℓ [see Eq. (2.6)], one has

In = −(n + 1)ℓn+1. (2.16)

By inserting the series expansions of Eq. (2.13) into both the
normalization condition, Eq. (2.4), and the eigenvalue equation,
Eq. (2.3), and equating the coefficients with the same powers of p
on both sides of the equation, one can, in principle, obtain as many
terms as desired. Appendix B shows the calculation of {ϕ0,ϕ1,ϕ2}

and {ℓ0, ℓ1, ℓ2}. In addition, ℓ3 can be obtained from I2. Substitution
of ℓ2 and ℓ3 into Eq. (2.14), yields

B′3 = −(1 + 2W2 − 3B2
2 −

ε2

6
)

= −
ε4

80
(1 +

41ε2

126
+

349ε4

2520
+ ⋅ ⋅ ⋅ ), (2.17a)

J. Chem. Phys. 158, 154501 (2023); doi: 10.1063/5.0139116 158, 154501-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

B′4 = −[(12W2 − 10B2
2 +

3
2
−
ε2

4
)B2 − 3W3 +

(1 − ε2
)

5/2
− 1 − 5ε2

15ε2 ]

= −
23ε6

15 120
(1 +

567ε2

920
+

14 823ε4

40 480
+ ⋅ ⋅ ⋅ ), (2.17b)

where W2 and W3 are given by Eqs. (B10) and (B13), requir-
ing to numerically carry out a simple and double integration,
respectively.

The exact expressions derived here for B′3 and B′4 turn out to
differ from those (hereafter referred to as B′3,irr and B′4,irr) obtained
via the integration of standard irreducible diagrams.19–21 In particu-
lar, the leading terms in the expansions in powers of ε of the latter
coefficients are B′3,irr = −

ε4

144 + 𝒪(ε
6
) and B′4,irr = −

ε6

160 + 𝒪(ε
8
), which

contrast with the leading terms in Eq. (2.17).
The origin of the discrepancy between the exact virial coeffi-

cients obtained here from the transfer-matrix solution, Eq. (2.7), and
those derived from the standard diagrammatic scheme19–21 lies on
the implicit assumption of a cancellation of the so-called reducible
diagrams in the latter method. This cancellation is inherently asso-
ciated with the factorization property of the reducible diagrams into
products of irreducible ones,42 as a consequence of the translational
invariance of the position of any particle. While this factorization
property holds in bulk fluids, it fails under confinement, due to
the breakdown of the translational invariance along the confined
directions.

Let us take the coefficient B3 as the simplest example. By assum-
ing cancellation of the reducible diagrams, one would have a single
irreducible diagram, namely,21

(2.18)

On the other hand, the actual result is

(2.19)

Here, the diagrams have its usual meaning,42 except that they are
supposed to be divided by Lεn, n being the number of particles
represented in the diagram. In a bulk fluid, ΔB3 = 0, due to the
factorization property of the reducible diagrams mentioned before.
However, in our confined system, one has

(2.20)

so that ΔB3 = 4(B2
2 −W2) ≠ 0. As a by-product, from Eq. (2.17a), we

obtain

B′3,irr = B′3 − ΔB3 = −(1 − 2W2 + B2
2 −

ε2

6
). (2.21)

This is equivalent to but much more compact than the expression
derived in Ref. 21.

It is worth mentioning that this issue regarding the cor-
rection needed to the irreducible-diagram representation of

the virial coefficients arises also when dealing with flexible
molecules.44

The performance of the virial series truncated after the fourth
coefficient can be inspected by comparison with the exact equation
of state.10,23 The conventional truncated series from Eq. (2.9) would
be Z → Ztr(λ) ≡ 1 + B2λ + B3λ2

+ B4λ3. Alternatively, with the same
amount of information, one can truncate the series at the level of
Eq. (2.10b) to obtain Z → Z′tr(p) ≡ 1 + B2p + B′3p2

+ B′4p3, where the
density dependence of the compressibility factor is defined in para-
metric form (p being the parameter) by the pair Z = Z′tr(p) and
λ = p/Z′tr(p). As Fig. 2 shows, the truncated series Ztr(λ) is reliable
only for λ ≲ 0.4, whereas the truncated series Z′tr(p) is very accurate
even at λ ≈ 1, especially for small pore widths. This is not surpris-
ing given the fact that the exact equation of state for hard rods is
Z = 1 + B2p (with B2 = 1).40 On the other hand, neither Ztr(λ)
nor Z′tr(p) capture the divergence of pressure in the limit λ→ λcp
discussed in Sec. II D.

Before turning to the high-pressure limit in Sec. II D, let us
draw two relevant points from the analysis in this section. First, if
for a given confined fluid with an unknown exact solution one needs
to resort to the virial coefficients (either analytically or numerically),
then the standard irreducible diagrams do not provide the right
answer. Instead, one would need to go back to the derivation steps42

and include the reducible diagrams as well, which fail to cancel if the
translational invariance is broken down. Second, if the first few virial
coefficients are known and a truncated equation of state is employed
as an approximation, the recommendation is to employ the pressure
representation,45 Eq. (2.10b), rather than the density representation,
Eq. (2.9).

D. High-pressure behavior
Solving numerically the eigenvalue problem in Eq. (2.3)

becomes increasingly more difficult as pressure grows and the

FIG. 2. Comparison between the exact compressibility factor (solid lines), the
truncated series Ztr(λ) = 1 + B2λ + B3λ2 + B4λ3 (dashed-dotted lines), and the
alternative truncated series Z′tr(p) = 1 + B2p + B′3p2 + B′4p3 (dashed lines) for
the range 0 ≤ λ ≤ 1.3. The values of the pore width parameter are (from top to
bottom) ε = 0.04, 0.6, and 0.8. On the scale of the figure, the results corresponding
to ε = 0.04 are indistinguishable from those of the Tonks gas (ε = 0).40
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system approaches the close-packing limit. It is, therefore, of inter-
est to study analytically the limit p→∞ (or, equivalently, λ→ λcp)
in order to understand the full behavior of the system.

In this high-pressure limit, particles accumulate more and more
near the walls, which means that ϕ(y) becomes non-zero only in two
symmetric layers near y = ± ε

2 . As a consequence, the eigenfunction
ϕ(y) and the eigenvalue ℓ for high values of p adopt the forms (see
Appendix C for details)

ϕ(y) →
1
√
𝒩
[ϕ+(y) + ϕ−(y)], ϕ±(y) ≡ e−a(y± ε

2 )p, (2.22a)

ℓ→
a(ε)
2εp

e−a(ε)p. (2.22b)

In Eq. (2.22a), the normalization constant is

𝒩 →
a(ε)
εp

e−2a(ε)p. (2.23)

It should be noted that, for high p, ϕ
±
(y) is practically nonzero only

inside a region of width of the order of a(ε)/εp, adjacent to the wall
at y = ± ε

2 .
As proved in Appendix C, the high-pressure compressibility

factor becomes

Z → 2 + a(ε)p. (2.24)

Table I shows that exact and MC simulation data21 confirm
the validity of Eq. (2.24) as pressure increases. Recalling that
λcp = 1/a(ε), Eq. (2.24) can be recast as

Z →
2

1 − λ/λcp
. (2.25)

Equation (2.25) embodies two important features of the high-
pressure asymptotic behavior of the compressibility factor. First,
Z presents a simple pole at λ = λcp, as expected. Second, the residue
of the pole is not 1 (as happens in the hard-rod Tonks gas40), but 2.
These two features are made quite apparent in Fig. 3, where the exact
normalized compressibility factor (1 − λ/λcp)Z is plotted as a func-
tion of the scaled density λ/λcp for several values of ε. It can be
observed that the normalized quantity (1 − λ/λcp)Z starts growing
with density, then reaches a peak at a certain value λpeak, and sub-
sequently decays toward its asymptotic value 2. We have checked
that λpeak is slightly higher than 1 for any ε, namely, λpeak ≃ 1 + 1

10 ε
2.

Thus, in the region of small pore width, one has 1 − λ/λcp ≈
2
5 ε

2. It is
then obvious that the limiting value (1 − λ/λcp)Z → 2 requires linear

TABLE I. Comparison between exact and MC values21 of Z and the high-pressure
asymptotic form, Eq. (2.24).

ε p Zexact ZMC 2 + a(ε)p

0.4 12 12.774 12.774 12.998
120 112.04 112.03 111.98

0.8 12 9.6547 9.6548 9.2000
120 74.017 74.016 74.000

FIG. 3. Normalized compressibility factor (1 − λ/λcp)Z vs λ/λcp for (from right to
left) ε = 0.3, 0.4, . . ., 0.8.

densities closer and closer to λcp as ε decreases. In fact, in the Tonks
gas, λcp = 1 and Z = 1/(1 − λ) for any density. This shows that the
limits p→∞ and ε→ 0 do not commute and that a significant dif-
ference between 1D and Q1D systems exists, one of the additional
key differences being the existence of a transverse pressure in the
latter systems.23

III. APPROXIMATE EQUATIONS OF STATE
In order to obtain the exact equilibrium properties of the con-

fined hard-disk system, one needs to solve Eq. (2.3), which, however,
does not seem to have any known analytical solution, so that one
must resort to numerical methods.10 Some authors have proposed
to simplify the model by replacing a(s) by its linear approximation,
Eq. (C2),14 or by means of fitting parameters.12

We propose here an alternative approach that does not rely
on solving Eq. (2.3) or using any fitting parameters, but instead
benefits from the study of the physical properties in the low- and
high-pressure limits. For this purpose, it is convenient to consider
the equation of state as written in Eq. (2.8), where the eigenvalue ℓ
does not appear explicitly and, therefore, ϕ(y) does not need to be
normalized.

In the following discussion, two different analytic approxi-
mations for ϕ(y) will be proposed and discussed, which will be
referred to as the uniform-profile approximation (UPA) and the
exponential-profile approximation (EPA).

A. Uniform-profile approximation
Under low-pressure (and, therefore, low-density) conditions,

particles barely interact with one another and are then allowed to
move almost freely around the available space. This setup yields
a nearly uniform density profile along the transverse direction. In
the limit p→ 0, this density profile is exactly constant, as shown in
Appendix B.

Based on this behavior, we construct here the UPA by tak-
ing ϕ(y) = const not only for p→ 0 but for any value of p. As
we will see, despite its crudeness, the UPA can provide reasonable

J. Chem. Phys. 158, 154501 (2023); doi: 10.1063/5.0139116 158, 154501-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

results, except for very high pressures and/or wide pores. Under this
approximation, Eq. (2.8) yields

ZUPA = 1 + p ∫
dy1 ∫ dy2e−a(y1−y2)pa(y1 − y2)

∫ dy1 ∫ dy2e−a(y1−y2)p
. (3.1)

Then, by setting s = y1 − y2 and using the mathematical identity

∫ dy1 ∫ dy2 F(y2 − y1) = ∫

ε

0
ds[F(s) + F(−s)](ε − s), (3.2)

Eq. (3.1) can be simplified as

ZUPA = 1 + p∫
ε

0 ds a(s)(ε − s)e−a(s)p

∫
ε

0 ds (ε − s)e−a(s)p . (3.3)

Expanding in powers of p in both the numerator and the
denominator of Eq. (3.3), it is not difficult to obtain the virial coef-
ficients in this UPA. As expected, the second virial coefficient B2 is
recovered, while the higher-order virial coefficients are approximate.
In particular,

B′3,UPA = −(1 − B2
2 −

ε2

6
)

= −
7ε4

720
(1 +

31ε2

98
+

261ε4

1960
+ ⋅ ⋅ ⋅ ), (3.4a)

B′4,UPA = B3
2 − B2(

9
8
−
ε2

4
) +

1 − (1 − ε2
)

5/2

20ε2

= −
11ε6

15 120
(1 +

543ε2

880
+

14 259ε4

38 720
+ ⋅ ⋅ ⋅ ). (3.4b)

In the opposite high-pressure limit, an analysis similar to that
described in Appendix C yields ZUPA → 3 + a(ε)p, which implies

ZUPA →
3

1 − λ/λcp
. (3.5)

Thus, the UPA predicts the right pole at λ = λcp but overestimates
the residue by 50%.

B. Exponential-profile approximation
On a different vein, the EPA is constructed by taking ϕ(y) in the

same functional form as in the limit p→∞, Eq. (2.22a), except that
now p is assumed to be arbitrary. It should be noted that in the EPA,
the transverse density decays exponentially near the walls at y = ± ε

2 ,
hence the name of the approximation. Within this approximation,
the compressibility factor becomes

ZEPA = 1 + p∫
dy1 ∫ dy2 e−a(y1−y2)pa(y1 − y2)ϕ+(y1)[ϕ+(y2) + ϕ−(y2)]

∫ dy1 ∫ dy2 e−a(y1−y2)pϕ+(y1)[ϕ+(y2) + ϕ−(y2)]
,

(3.6)
where we have used the symmetry property ϕ

−
(y) = ϕ

+
(−y).

Even though the EPA is inspired by the exact high-pressure
behavior, Eq. (3.6) makes sense even for low p. In fact, since
limp→0 ϕ±(y) = 1, both the EPA and the UPA yield the exact second

virial coefficient. Expanding the numerator and the denominator of
Eq. (3.6) in powers of p, and after some algebra, one finds

B′3,EPA = −[1 −
ε2

6
− 2B2

2 − 2B2
1 − (1 − ε2

)
3/2

3ε2 + 2U2]

= −
ε4

80
(1 +

8ε2

21
+

58ε4

315
+ ⋅ ⋅ ⋅ ), (3.7a)

B′4,EPA =
15
4

B3
2 − B2(

4 + 2ε2
+ ε4

4ε2 + 6U2) +
2
3
+U3

+ (7B2
2 −

1
3
− 4U2 +

2
ε2 B2)

1 − (1 − ε2
)

3/2

3ε2

= −
ε6

504
(1 +

279ε2

400
+

2041ε4

4400
+ ⋅ ⋅ ⋅ ), (3.7b)

where

U2 ≡
1
ε ∫

dyψ1(y)a(y +
ε
2
)

= 1 −
ε2

4
−

13ε4

720
−

23ε6

3360
+ ⋅ ⋅ ⋅ , (3.8a)

U3 ≡
1

2ε2 ∫ dy1 ∫ dy2 a(y1 − y2)a(y1 +
ε
2
)

× [a(y2 +
ε
2
) + a(y2 −

ε
2
)]

= 1 −
5ε2

12
−

17ε6

2880
+ ⋅ ⋅ ⋅ . (3.8b)

In Eq. (3.8a), the function ψ1(y) is defined by Eq. (B1a).

IV. ASSESSMENT OF THE UNIFORM-PROFILE
AND EXPONENTIAL-PROFILE APPROXIMATIONS

The main idea behind both the UPA and EPA consists in
replacing the actual eigenfunction ϕ(y) in the numerator and
denominator integrals of Eq. (2.8) by simple approximate functions.
It is now convenient to study how well the system is described by
these two approximations, as well as their range of validity. For
that purpose, we analyze, in this section, several properties of the
system, comparing the proposed approximations with the numer-
ical solution corresponding to the exact description presented in
Sec. II. Some technical details about our numerical solution of the
eigenvalue problem, Eq. (2.3), and the numerical evaluation of the
compressibility factor from Eqs. (2.7), (3.3), and (3.6) are given in
Appendix D.

A. Transverse density profiles
Figure 4 shows a comparison between the exact (numerical)

transverse density profile coming from Eq. (2.3) and the EPA analyt-
ical profile, Eq. (2.22a), for ε = 0.4 and some representative values of
p. It should be noted that here the normalization constant 𝒩 is not
given by Eq. (2.23) but is instead obtained by requiring fulfillment
of Eq. (2.4). Although this normalization constant is not needed in
Eq. (3.6), it is used in Fig. 4.
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FIG. 4. Plot of the transverse density profile ϕ2(y) as obtained from the numerical
solution of Eq. (2.3) (solid lines) and as given by the EPA, Eq. (2.22a) (dashed
lines), for ε = 0.4 and several values of p. In panels (a) and (b), the vertical axis
is in normal and logarithmic scales, respectively. It should be noted that, due to
symmetry, only the region 0 ≤ y ≤ ε

2
is considered.

We observe that, even though the EPA was based on the exact
high-pressure limit behavior, a good agreement with the numeri-
cal solution is reached for all pressure ranges, including the low-
pressure regime, where the solution ϕ ≈ const is recovered. In fact,
we find that the worst agreement is centered around the medium
pressure regime. Similar results can also be found for other values of
the width parameter ε.

B. Virial coefficients
Figure 5 compares the exact and approximate values of B′3/ε4

and B′4/ε6. As can be observed, the EPA predictions are more accu-
rate than the UPA ones. On the other hand, since B′3 and B′4 are
rather small, the conventional virial coefficients B3 and B4 are dom-
inated by B2

2 and B3
2, respectively [see Eq. (2.11)]. Thus, the impact

on B3 and B4 of the deviations observed in Fig. 5 is very small. At
the maximum excess width, εmax =

√
3/2 ≃ 0.866, we have observed

that the relative deviations in B3 are approximately 0.3% (UPA)
and −0.03% (EPA), while, in the case of B4, they are approximately
−0.5% (UPA) and 0.04% (EPA).

C. Equation of state
The equation of state involves performing the integrals in

Eq. (2.8) once the density profiles (either exact or approximate) are
known.

Figure 6 depicts the comparison between the two proposed
approximations and the results coming from both the numerical
evaluation of the exact solution for the Q1D fluid and independently
calculated MC simulations for the original confined 2D system.21 It
shows a good agreement with the UPA under low-pressure and/or
narrow-pore conditions, and a very good agreement with the EPA
for practically all ranges of pressure and pore sizes. In the case of
the EPA, the results disagree visibly from the exact solution only
within a small region of medium pressures for large values of the
pore size. It is interesting to note that the compressibility factor,
especially with an excess pore width ε = 0.80, presents two inflection

FIG. 5. Plot of (a) B′3/ε
4 and (b) B′4/ε

6 as functions of the excess pore width ε. The
solid, dashed, and dashed-dotted lines correspond to the exact, EPA, and UPA
results, respectively.

FIG. 6. Compressibility factor as a function of the longitudinal density λ for different
values of the excess pore width ε. The circles represent MC data,21 while the
solid, dashed, and dashed-dotted lines correspond to exact, EPA, and UPA results,
respectively. The vertical lines denote the locations of λcp.

points, a feature captured even by the UPA. Although the system
lacks a true phase transition, those two inflection points can be seen
as precursors of the phase transition in genuine 2D systems.16,46

Even though the transfer-matrix solution and our approxima-
tions were developed only for nearest-neighbor interactions (single-
file condition), which precludes an excess width of the channel larger
than εmax =

√
3/2, it is also of interest to study how well the theoret-

ical treatments behave when this limit is exceeded.10 In that case, the
function a(s) defined by Eq. (2.1) must be supplemented as a(s) = 0
if s > 1.10 A comparison with MC simulation data10 for ε = 1 and
1.118 is shown in Fig. 7. We observe that, as density or pressure
increases, none of the three methods is accurate. Paradoxically, how-
ever, the UPA performs a reasonable job and is perhaps the most
reliable approximation in the case ε = 1.118.
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FIG. 7. Compressibility factor as a function of the longitudinal density λ for two
values of ε beyond the nearest-neighbor condition: ε = 1 and 1.118. The symbols
represent MC data,10 while the solid, dashed, and dashed-dotted lines correspond
to results from the solution of the eigenvalue problem, Eq. (2.3), the EPA, and the
UPA, respectively.

D. Execution times
In the transfer-matrix formalism, as well as in our approxima-

tions, the final computation of Z must be performed numerically
(see Appendix D). It is then worth studying the different execution
times (the so-called wall times47) in order to assess the cost of using
the exact solution against any of the two approximations proposed
in this paper.

Figure 8 shows the UPA-to-exact and EPA-to-exact wall time
ratios. We clearly see that both approximations are much faster than
the exact evaluation for all ranges of pressure and pore sizes, and that
this wall time advantage increases with the increasing pressure and
pore width. For the EPA, this is especially relevant in the case of large
pore sizes and high pressures, where the performance of the EPA is
excellent (see Fig. 6). In the case of the UPA, the gain in wall time is

FIG. 8. Wall time ratios between both approximations and the exact solution vs p
for some representative values of ε. Closed and open symbols represent the UPA
and EPA values, respectively. Lines are guides to the eye.

still very remarkable even for small pore sizes and small or moder-
ate pressures, where both the exact solution and the UPA practically
yield the same results (see again Fig. 6).

V. CONCLUDING REMARKS
In this work, we have started from the exact equation of state of

the single-file hard-disk confined fluid, as derived from the transfer-
matrix method.10 We showed that exactly the same result is also
obtained by mapping the original system onto a 1D polydisperse
mixture of non-additive hard rods with a common chemical poten-
tial, in contrast to previous approximate mappings to hard-rod
additive mixtures.9

From the exact solution, we then explored the low-pressure
regime by using a perturbation scheme to obtain the exact third
and fourth virial coefficients, which, to the best of our knowledge,
were still unknown. The results differ from a recent alternative
derivation21 based on the standard irreducible diagrams, thus show-
ing that the conventional cancellation of the reducible diagrams
does not hold for confined fluids, a fact usually overlooked in the
literature.19–21

The high-pressure regime, near the close-packing region, was
also studied in order to get the asymptotic behavior of the equation
of state, which is seen to present a simple pole at the close-packing
linear density with a residue equal to 2, in contrast to the residue
equal to 1 in the 1D Tonks gas.40

The study of the exact physical properties of the system allowed
us to propose two different approximations for the equation of state,
namely, the UPA and the EPA. The first one has a much simpler
form than the second one but its range of validity is restricted to nar-
row pores and/or low pressures, whereas the EPA is valid throughout
the entire range of pore sizes and pressures, yielding results which
are virtually indistinguishable from the exact solution, except in a
small region of high pore sizes and intermediate pressures.

The usefulness and reliability of the approximations were tested
for different quantities, such as the transverse density profile, the
virial coefficients, and the equation of state. In the case of the latter
quantity, we also considered situations beyond the nearest-neighbor
constraint ε ≤ εmax and even beyond the single-file condition ε ≤ 1.
Tests regarding execution times of the exact solution, on the one
hand, and the two approximations, on the other hand, were per-
formed in order to assess the practical convenience of using the
approximate methods instead of the exact solution. Execution times
for the approximate compressibility factors were found to be 10–103

times and 102–105 times faster in the cases of the EPA and UPA,
respectively.

We plan to exploit the 1D mapping to obtain the structural cor-
relation functions of the confined hard-disk fluid. In addition, the
extensions of the UPA and EPA for the hard-sphere fluid confined
in a narrow cylindrical pore will be undertaken in the near future.

ACKNOWLEDGMENTS
The authors acknowledge financial support from Grant

No. PID2020-112936GB-I00 funded by MCIN/AEI/10.13039/
501100011033 and from Grant No. IB20079 funded by Junta de
Extremadura (Spain) and by ERDF “A way of making Europe.”

J. Chem. Phys. 158, 154501 (2023); doi: 10.1063/5.0139116 158, 154501-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

A.M.M. is grateful to the Spanish Ministerio de Ciencia e Innovación
for a predoctoral fellowship PRE2021-097702.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Ana M. Montero: Formal analysis (equal); Investigation (equal);
Methodology (equal); Software (lead); Writing – original draft
(lead). Andrés Santos: Conceptualization (lead); Formal analysis
(equal); Funding acquisition (lead); Investigation (equal); Method-
ology (equal); Supervision (lead); Writing – original draft (support-
ing); Writing – review & editing (lead).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

APPENDIX A: MAPPING ONTO A ONE-DIMENSIONAL
POLYDISPERSE MIXTURE OF NON-ADDITIVE HARD
RODS

When one focuses on the longitudinal properties, the original
system under study can be mapped onto a 1D polydisperse hard-
rod non-additive mixture, where the transverse coordinate −ε/2
≤ y ≤ ε/2 of each disk plays the role of the dispersity para-
meter. Under this framework, two hard rods of different species
y and y′ interact with an effective hard-core distance a(y − y′)

=

√

1 − (y − y′)2. The equation of state of such a system can, in
principle, be obtained exactly.

Let us consider first a discrete M-component mixture, where
each 1D component i represents disks with a transverse coordinate

yi = −
ε
2
+ (i − 1)δy, i = 1, 2, . . . , M, δy ≡

ε
M − 1

. (A1)

In that case, the hard-core distance between two rods of species i and
j is

ai j ≡ a(yi − y j) =

√

1 − [(i − j)δy]2. (A2)

It is worth noting that aii = 1 but aij < 1 if i ≠ j so that the hard-rod
mixture is negatively non-additive.

From the classical theory of liquids,42 one can derive the
equation of state as given by

−
1
λ
= ∑

i, j

√
xix jAiA jΩ′i j(p), xi =

Ni

N
, (A3)

where N i is the number of particles of species i, Ω′i j(p)
= −Ωi j(p)(ai j + 1/p) is the derivative of Ωi j(p) = e−ai j p/p, and the
coefficients Ai are related to the mole fractions by

∑
j

√
x jAiA jΩi j(p) =

√
xi. (A4)

From Eq. (A4), one has

∑
i, j

√
xix jAiA jΩi j(p) = 1. (A5)

As a consequence, Eq. (A3) can be rewritten as

Z = 1 +∑
i, j

√
xix jAiA jai je−ai j p. (A6)

In an ordinary 1D mixture, the mole fractions {xi} are indepen-
dent variables and the coefficients Ai must be found from Eq. (A4) as
functions of the mole fractions and the pressure. In our case, how-
ever, since the original Q1D system is made of identical disks, the
mole fractions of the mapped 1D fluid are constrained by the con-
dition that the chemical potential of all the components must be the
same. It can be checked that this condition implies that all Ai = A are
equal. In that case, Eqs. (A4) and (A6) become

∑
j

√
x je−ai j p =

p
A2
√

xi, (A7a)

Z = 1 + A2
∑
i, j

√
xix jai je−ai j p. (A7b)

Finally, identifying xi → ϕ2
(yi)δy and A2

→ (p/ℓ)δy, and then
taking the continuum limit (M →∞), where δy∑i → ∫ dy, one
obtains Eqs. (2.3) and (2.7) from Eqs. (A7a) and (A7b), respectively.

The exact mapping described here differs from the approximate
one in Ref. 9, since in the latter reference, each rod has a different size
and the mixture is assumed to be additive.

APPENDIX B: VIRIAL SERIES EXPANSION

Let us start by listing here some integrals involving the function
a(s) that will be useful later on

ψ1(y1) ≡
1
ε ∫

dy2 a(y1 − y2) =
1
2ε
[ψ̄(y1) + ψ̄(−y1)], (B1a)

ψ̄(y) ≡ (
ε
2
+ y)

√

1 − (
ε
2
+ y)

2
+ sin−1

(
ε
2
+ y), (B1b)

1
ε ∫

dy2 a2
(y1 − y2) = 1 −

ε2

12
− y2

1, (B1c)

1
ε2 ∫ dy1 ∫ dy2 a(y1 − y2) =

1
ε ∫

dyψ1(y) = B2, (B1d)

1
ε2 ∫ dy1 ∫ dy2 a2

(y1 − y2) = 1 −
ε2

6
, (B1e)
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Q ≡
1
ε2 ∫ dy1 ∫ dy2 a3

(y1 − y2)

=
3
4

B2 −
(1 − ε2

)
5/2
− 1

10ε2 , (B1f)

S ≡
1
ε ∫

dyψ1(y)y2
= (

1
8
+
ε2

12
)B2 +

(1 − ε2
)

5/2
− 1 − 20ε2

180ε2 .

(B1g)

In Eqs. (B1d), (B1f), and (B1g), B2 is given by Eq. (2.12).
Now we proceed to the derivation of ϕ0(y), ϕ1(y), ϕ2(y), ℓ0, ℓ1,

and ℓ2. Insertion of Eq. (2.13) into Eqs. (2.3) and (2.4) yields

∫ dy2 ϕ0(y2) = ℓ0ϕ0(y1), (B2a)

∫ dy2 [ϕ1(y2) − a(y1 − y2)ϕ0(y2)] = ℓ0ϕ1(y1) + ℓ1ϕ0(y1), (B2b)

∫ dy2 [ϕ2(y2) − a(y1 − y2)ϕ1(y2) +
1
2

a2
(y1 − y2)ϕ0(y2)]

= ℓ0ϕ2(y1) + ℓ1ϕ1(y1) + ℓ2ϕ0(y1), (B2c)

∫ dy ϕ2
0(y) = 1, (B3a)

∫ dy ϕ0(y)ϕ1(y) = 0, (B3b)

∫ dy [ϕ2
1(y) + 2ϕ0(y)ϕ2(y)] = 0. (B3c)

Equation (B2a) implies that ϕ0(y) is a constant, and using the
normalization condition, Eq. (B3a), we obtain

ϕ0(y) =
1
√
ε

, ℓ0 = ε. (B4)

Next, we note from Eq. (B2b) that

ϕ1(y) = −
1
√
ε
[ψ1(y) − α1], α1 ≡

1
√
ε ∫

dy ϕ1(y) −
ℓ1

ε
. (B5)

From the definition of α1, we obtain ℓ1 = −εB2, while use of Eq. (B3b)
implies that α1 = B2. Therefore,

ϕ1(y) = −
1
√
ε
[ψ1(y) − B2], ℓ1 = −εB2. (B6)

Finally, we evaluate ϕ2(y) and ℓ2. Equation (B2c) gives

ϕ2(y) =
1
√
ε
[ψ2(y) − 2B2ψ1(y) −

1
2

y2
+ α2], (B7)

where

ψ2(y1) ≡
1
ε ∫

dy2 a(y1 − y2)ψ1(y2), (B8a)

α2 ≡
1
√
ε ∫

dy ϕ2(y) +
1
2
(1 −

ε2

12
) + B2

2 −
ℓ2

ε
. (B8b)

The definition of α2 yields

ℓ2 = ε(
1
2
+W2 − B2

2 −
ε2

12
), (B9)

where

W2 ≡
1
ε ∫

dyψ2(y) =
1
ε ∫

dyψ2
1(y)

= 1 −
ε2

6
−

ε4

120
−

13ε6

5040
+ ⋅ ⋅ ⋅ . (B10)

Using now the normalization condition in Eq. (B3c), one also
obtains

α2 =
5
2

B2
2 −

3
2

W2 +
ε2

24
. (B11)

It should be noted that the function ψ2(y) and the constant W2
defined by Eqs. (B8a) and (B10), respectively, must be obtained
numerically. It can easily be checked that Eqs. (B4), (B6), (B7), (B9),
and (B11) are consistent with Eq. (2.5).

Once we have determined {ϕn} and {ℓn} for n = 0, 1, 2, we
can expand the integral I, as defined by Eq. (2.15), resulting in
I0 = −ℓ1 and I1 = −2ℓ2, in agreement with Eq. (2.16). Furthermore,
the determination of I2 allows one to obtain ℓ3 = −I2/3 as

ℓ3 = −ε[W3 + B2(2B2
2 − 3W2 +

ε2

12
) +

Q
6
− S], (B12)

where

W3 ≡
1
ε ∫

dyψ1(y)ψ2(y)

=
1
ε2 ∫ dy1 ∫ dy2 a(y1 − y2)ψ1(y1)ψ1(y2)

= 1 −
ε2

4
−

ε4

720
−

71ε6

30 240
+ ⋅ ⋅ ⋅ . (B13)

APPENDIX C: LIMIT p →∞

Here, we prove Eqs. (2.22) and (2.24) in the limit p→∞. Let us
first obtain the normalization constant 𝒩 from Eq. (2.22a):

𝒩 = ∫ dy [e−2a(y+ ε
2 )p
+ e−2a(y− ε

2 )p
]

= 2∫
ε

0
ds e−2a(s)p, (C1)

where we have taken into account that the cross term ϕ
+
(y)ϕ

−
(y)

can be neglected vs the diagonal terms ϕ2
±(y). To further determine

𝒩 for high p, we note that the maximum value of e−a(s)p is located at
s = ε and expand a(s) about that point,

a(s) = a(ε) +
ε

a(ε)
(ε − s) + ⋅ ⋅ ⋅ . (C2)

Therefore,

𝒩 → 2e−2a(ε)p
∫

ε

0
ds e−

2εp
a(ε) (ε−s)

→
a(ε)
εp

e−2a(ε)p. (C3)

This yields Eq. (2.22).
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To prove that the high-pressure solution of Eq. (2.3) is given by
Eq. (2.22), we note that

J±(y1) ≡ ∫ dy2 e−a(y1−y2)pϕ±(y2)

= ∫

ε

0
ds ϕ±(y1 ∓ s)e−a(s)p

→ e−a(ε)p
∫

ε

0
ds ϕ±(y1 ∓ s)e−

εp
a(ε) (ε−s). (C4)

In the first step, the change in the variable s = ε
2 ± y2 has been per-

formed, while Eq. (C2) has been used in the second step. Next, we
expand the function a(y1 ∓ s ± ε

2) appearing in ϕ
±
(y1 ∓ s) about

s = ε, i.e.,

a(y1 ∓ s ±
ε
2
) = a(y1 ∓

ε
2
) ∓

y1 ∓
ε
2

a(y1 ∓
ε
2)
(ε − s) + ⋅ ⋅ ⋅ , (C5)

so that

ϕ±(y1 ∓ s) → ϕ∓(y1)e
±

y1∓ ε
2

a(y1∓ ε
2 )
(ε−s)p

→ ϕ∓(y1)e
−

εp
a(ε) (ε−s). (C6)

In the second step, we have located the function accompanying
ϕ
∓
(y1) at y1 = ∓

ε
2 . Inserting Eq. (C6) into Eq. (C4) and integrating,

we finally arrive at

J±(y1) → ϕ∓(y1)e−a(ε)p
∫

ε

0
ds e−

2εp
a(ε) (ε−s)

→ ϕ∓(y1)e−a(ε)p a(ε)
2εp

. (C7)

Therefore, in the limit p→∞, J±(y1) ∝ ϕ
∓
(y1). This proves that

Eq. (2.22a) satisfies Eq. (2.3) in that limit, with ℓ given by Eq. (2.22b).
As a consistency test, let us reobtain Eq. (2.22b) from Eq. (2.5),

ℓ→
2
𝒩 ∫

dy1 ∫ dy2 e−a(y1−y2)pϕ+(y1)ϕ−(y2), (C8)

where we have taken into account that, in the limit p→∞, the inte-
grand is highly maximized when y1 is close to ε

2 and y2 is close to
− ε

2 , or vice versa. By expanding a(y1 − y2), a(y1 +
ε
2), and a(y2 −

ε
2)

around y1 − y2 = ε, y1 =
ε
2 , and y2 = −

ε
2 , respectively, one has

a(y1 − y2) + a(y1 +
ε
2
) + a(y2 −

ε
2
)

→ 3a(ε) +
2ε

a(ε)
(ε − y1 + y2) + ⋅ ⋅ ⋅ . (C9)

Therefore,

ℓ→
2
𝒩

e−3a(ε)p
∫ dy1 ∫ dy2 e−

2εp
a(ε) (ε−y1+y2)

=
2
𝒩

e−3a(ε)p
[∫ dy e−

2εp
a(ε) (

ε
2−y)
]

2

→
2
𝒩

e−3a(ε)p
[

a(ε)
2εp
]

2

. (C10)

Taking into account Eq. (C3), the result (2.22b) is recovered.

Let us now look into the high-pressure equation of state. By
using the same steps as in Eqs. (C8) and (C10), the integral defined
by Eq. (2.15) becomes

I →
2
𝒩

e−3a(ε)p
∫ dy1 ∫ dy2 e−

2εp
a(ε) (ε−y1+y2)

[a(ε) +
ε

a(ε)
(ε − y1 + y2)]

→ a(ε)ℓ +
2
𝒩

e−3a(ε)p 2ε
a(ε)
[∫ dy e−

2εp
a(ε) (

ε
2
−y)
]

× [∫ dy (
ε
2
− y)e−

2εp
a(ε) (

ε
2
−y)
]

→ a(ε)ℓ +
2
𝒩

e−3a(ε)p

p
[

a(ε)
2εp
]

2

→ ℓ[a(ε) +
1
p
]. (C11)

Insertion into Eq. (2.7) yields Eq. (2.24).

APPENDIX D: NUMERICAL DETAILS

In order to solve Eq. (2.3) numerically, we discretize ϕ(y) into
M − 1 intervals, each one of size δy = ε/(M − 1) [see Eq. (A1)],
which implies ϕi ≡ ϕ(yi), i = 1, 2, . . . , M. Therefore, Eq. (2.3)
becomes

M

∑
j=1

Ki jϕ j = ℓϕi, Ki j ≡ δy e−ai j p, (D1)

or, equivalently,

K ⋅ ϕ = ℓϕ, (D2)

where K is the M ×M matrix of the K ij, which is symmetric, and
ϕ is the vector of ϕi. The solution of Eq. (D2) was obtained by
using standard eigensolver routines for self-adjoint matrices from
the C++ EIGEN library and then extracting the largest eigenvalue
ℓ and its corresponding (normalized) eigenvector ϕ. Once obtained
the solution, the compressibility factor is computed as

Z = 1 +
p
ℓ
(δy)2

M

∑
i=1

M

∑
j=1

e−ai j pai jϕiϕ j. (D3)

An open-source C++ code to solve Eq. (D2) and evaluate Eq. (D3)
can be accessed from Ref. 48.

In the case of our approximations [see Eqs. (3.3) and (3.6)],
there is no need to solve Eq. (D2). The corresponding compressibil-
ity factor may be computed as

ZUPA = 1 + p∑
M
i=1 a(si)(ε − si)e−a(si)p

∑
M
i=1(ε − si)e−a(si)p

, si ≡ (i − 1)δy, (D4a)

ZEPA = 1 + p
∑

M
i=1∑

M
j=1 e−ai j pai jϕ+,i(ϕ+, j + ϕ−, j)

∑
M
i=1∑

M
j=1 e−ai j pϕ+,i(ϕ+, j + ϕ−, j)

, (D4b)

where ϕ
±,i ≡ ϕ±(yi). However, we used, instead, the Gauss–Kronrod

quadrature formula,49 as implemented in the C++ BOOST library.
In the transfer-matrix solution and in our two approxima-

tions, we chose M = odd, so that the middle point yi = 0 with
i = (M + 1)/2 was included. In the three cases, the optimal value
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FIG. 9. Optimal value (Mopt) of the number of discretization points for the exact
solution (solid lines), the UPA (dashed-dotted lines), and the EPA (dashed lines)
as a function of p for different values of ε.

M =Mopt was selected by the condition that the relative difference
between Z(Mopt) and Z(Mopt−2) was smaller than 10−6, where Z(M)

denotes the compressibility factor evaluated with M discretization
points. This optimal value is plotted in Fig. 9 as a function of p for
some representative values of ε. It can be seen that Mopt increases
in the three cases with the increasing pressure and increasing pore
width. Regardless of this, it is quite apparent that Mopt is typically
an order of magnitude smaller in the UPA and EPA than that in
the transfer-matrix solution. We have observed that the disparity in
the values of Mopt becomes more pronounced as the tolerance in the
relative error decreases.
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