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a b s t r a c t

In a previous work, a simple approach to derive the jamming packing fraction of a
hard-sphere mixture from the knowledge of the random close-packing fraction of the
monocomponent system was proposed. Now, an extension of that approach is applied to
provide an approximate formula for the densest packing fraction of a given hard-sphere
mixture in terms of the fcc close-packing fraction of a monocomponent hard-sphere
system and of a single parameter encapsulating the dependence on the size ratios and
the number of spheres in the unit cell. Comparison with recent results for such densest
packing fraction of binary and ternary systems is performed and reasonable agreement
is obtained.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The search for simplicity and wide range of applicability of analytical results in physical problems has been a
ongstanding goal. This is of course not alien to sphere packing problems which, starting with Kepler’s conjecture and
espite many interesting developments (some very recent ones), still represent a considerable challenge [1].
In our previous works with hard-sphere (HS) systems, we have addressed the problem of mapping the equation of

tate of an arbitrary fluid mixture of given size distribution and composition at a certain packing fraction onto the one of
n effective one-component HS fluid [2–7]. In this endeavor, we have been relatively successful in providing simple rules
o, on the one hand and using only two well defined parameters, derive the equation of state of a mixture (either discrete
r polydisperse) once the one of the monocomponent system is available; and, on the other hand, and using only one of
he previous parameters (as specified below), to provide an estimate for the jamming packing fraction of the mixture from
he known random close-packing fraction of the monocomponent system [6,7]. We refer to this as the surplus approach,
hich will be sketched below, a detailed account of which for d-dimensional HS may be found in Chapter 3 of the book
y one of us [5] and in Ref. [6].
It is fair to acknowledge here also the work of the Princeton group on the densest binary sphere packings (DBSP) [8–10],

s well as the fairly recent one by Koshoji et al. [11–13] on the same system and on densest ternary sphere packings (DTSP),
hich rely heavily on geometrical arguments and constructions. It is clear that increasing the number of components also

ncreases the difficulty of such constructions and, therefore, although admittedly well beyond the range where the surplus
pproach worked for fluid systems, it is not unreasonable to ask if following a similar approach may shed some light on
ts usefulness also for the densest packings. The aim of this paper is to address such a question.
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The organization of the paper is as follows. In Section 2, and in order to make the paper self-contained, a rather brief
account of the surplus approach for fluid mixtures is presented, thus providing the necessary background material for
the subsequent development. This is complemented by the extension of the previous ideas to derive an approximate
formula to compute the densest packing fraction of any given mixture in terms of the close-packing fraction of the
monocomponent system. Section 3 contains the comparison of the results of our approximate (heuristic) formula with the
recent ones derived with geometric arguments and its corresponding discussion. Finally the paper is closed in Section 4,
where we provide some concluding remarks.

2. The surplus approach

We begin this section by presenting the main ideas behind the surplus approach for fluid mixtures [5]. The starting
oint is that the excess Helmholtz free energy per particle, aexmixt(φ), and the compressibility factor, Zmixt(φ) = p/ρkBT

(where p is the pressure, ρ is the number density, kB is the Boltzmann constant, and T is the absolute temperature),
of a multicomponent (either discrete or polydisperse) HS mixture at a packing fraction φ ≡

π
6 ρ

∑
i xiσ

3
i (where xi and

σi are the mole fraction and the diameter of spheres of species i, respectively) may be constructed from the ones of the
monocomponent HS fluid, aex(φeff) and Z(φeff), calculated at an effective packing fraction φeff. Assuming that the Helmholtz
ree energy per particle is truncatable (i.e., it depends only on the first three moments of the size distribution) [14,15],
nd applying certain consistency conditions, one may derive the following relationships [5–7],

aexmixt(φ)
kBT

+ ln(1 − φ) =
µ

λ

[
aex(φeff)

kBT
+ ln(1 − φeff)

]
, (1a)

φ

[
Zmixt(φ) −

1
1 − φ

]
= µφeff

[
Z(φeff) −

1
1 − φeff

]
, (1b)

here the effective packing fraction is defined by
φ

1 − φ
= λ

φeff

1 − φeff
. (2)

In Eqs. (1) and (2), the scaling parameters µ and λ are

µ ≡
M3

1M3

M3
2

, λ ≡
M1M3

M2
2

, (3)

the moments Mn being defined as Mn ≡
∑

i xiσ
n
i .

Note that the ratio φ/(1 − φ) represents a rescaled packing fraction, namely it is the ratio between the fraction of
volume, φ, occupied by the spheres and the fraction of void volume, 1 − φ. Further, φ[Z(φ) − 1/(1 − φ)] represents
(reduced) modified excess pressure with respect to a modified ideal-gas value corresponding to the fraction of void
olume 1 − φ. We refer to it as the surplus pressure, the nomenclature having been introduced to avoid confusion with
he usual excess pressure.

It is important to point out that, as discussed in Refs. [5,6], the surplus approach may be generalized to deal with any
-dimensional HS system with dimensionality d ̸= 3. In this instance, one may still use Eqs. (1) and (2) with the packing

fraction φ = vdMd, where vd ≡ ( π
4 )

d/2/Γ
(
1 +

d
2

)
is the volume of a d-sphere of unit diameter. The parameters µ and λ

are determined by imposing consistency with the second and third virial coefficients of the mixture, leading to

µ = λ2 B̄2 − 1
b2 − 1

, λ =
B̄2 − 1
b2 − 1

b3 − 2b2 + 1
B̄3 − 2B̄2 + 1

, (4)

where B̄n ≡ Bn/(vdMd)n−1 and bn ≡ Bn/(vdσ
d)n−1 are reduced virial coefficients of the mixture and the monocomponent

fluid, respectively (Bn being the standard virial coefficients). The approach has been applied to d = 2 [6] and d = 4, 5 [16]
with satisfactory results. Nevertheless we will restrict ourselves to three-dimensional systems in this paper.

In the particular case of a ternary system with sizes σ1 ≤ σ2 ≤ σ3, one has

λ =
(x1α1 + x2α2 + x3)(x1α3

1 + x2α3
2 + x3)

(x1α2
1 + x2α2

2 + x3)2
≤

(1 + α1)2

4α1
, (5)

where α1 ≡ σ1/σ3 and α2 ≡ σ2/σ3. The upper bound in Eq. (5) corresponds to the limits x1 → 1/(1 + α2
1), x2 → 0.

Now we return to our main subject. If Eq. (1b) is extended to the metastable fluid region and extrapolated to the
jamming point, where the compressibility factor diverges, one has that the random close packing fraction (φrcp) of the
monocomponent system and the jamming packing fraction (φJ ) of the multicomponent system are (approximately) related
by Eq. (2), i.e.,

φJ
≈ λ

φrcp
, (6)
1 − φJ 1 − φrcp

2
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Fig. 1. Plot of (a) φ and (b) φ/(1 − φ) as functions of λ [cf. Eq. (3)]. The (red) circles are simulation results for the jamming packing fraction φJ of
polydisperse mixtures [7,20], while (green) triangles and (blue) diamonds correspond to simulation results for the densest packing fraction φmax of
binary and ternary and mixtures, respectively, as reported in Refs. [12,13]. In each panel, the (red) solid line represents the ansatz (6), the (blue)
dashed line represents the ansatz (7), and the (blue) dash-dotted line represents the modified ansatz (8) with b =

4
5 .

with φrcp ≃ 0.644 [17–19]. The simple ansatz (6) allows for a weak and a strong interpretation. According to the weak
interpretation, those mixtures sharing the same value of λ would have (approximately) the same values of φJ ; the strong
interpretation states that the scaled packing fraction φJ/(1 − φJ ) is a linear function of λ.

Of course, Eq. (6) does not account for more sophisticated effects, such as the existence of rattlers, which can have a
dramatic effect on the jammed packing fractions [10]. Notwithstanding this, the simple ansatz (6) was found to provide an
overall reasonable account of the scatter of empirical values of φJ for discrete and continuous polydisperse mixtures [7,20].

In what concerns the densest structures in ℓ-component mixtures with a given set of size ratios {αi; i = 1, . . . , ℓ − 1},
they are identified by the number of spheres {ni; i = 1, . . . , ℓ} in the unit cell. This implies that the densest packing
fraction φmax({αi}, {ni}) changes with 2ℓ − 1 parameters. A number of {n1, n2} structures for the (single-phase) DBSP
ℓ = 2) at several size-ratio values α1 have been reported in Refs. [8,9,11]. This has been recently complemented by
n1, n2, n3) structures for the (single-phase) DTSP (ℓ = 3) at several size-ratio pairs {α1, α2} [12,13]. For each structure
ound, the associated densest packing fraction φmax has been obtained. In the case of the DBSP, the values of φmax change
ith no clear pattern as the three parameters α1 and {n1, n2} change. The situation is of course much more involved in
he case of the DTSP, since now φmax changes with five parameters: {α1, α2} and {n1, n2, n3}.

It then seems interesting to explore the possibility that the parameter λ, as defined by Eq. (3) with the replacement
i → ni, becomes useful in this context and assess to what extent φmax({αi}, {ni}) is roughly a function of the set of size
atios {αi} and the set of numbers {ni} through this single parameter. According to this ansatz,

φmax

1 − φmax
≈ λ

φccp

1 − φccp
, φccp =

π

6

√
2 ≃ 0.7405, (7)

in analogy with Eqs. (2) and (6). The results of this exploration are presented in the following section.

3. Results

Fig. 1(a) shows the values of φJ (diverse polydisperse mixtures) and φmax (DTSP and DBST) versus the parameter λ.
s expected, the ansatzes (6) and (7) are not strictly satisfied. However, it is certainly true that the single parameter
provides a useful ordering criterion for both the random and the densest packing fraction, as predicted by the weak

nterpretation described below Eq. (6). In fact, the degree of scatter observed for φmax is comparable with that already
nown for φJ [7,20]. Moreover, the results displayed in Fig. 1(b) show that the scaled quantities φJ/(1 − φJ ) and
max/(1 − φmax) present an almost linear dependence on λ (strong interpretation). On the other hand, it is also clear
hat Eq. (7) tends to overestimate the values of φmax, a better performance being observed by the modified relationship

φmax

1 − φmax
≈ [1 + b(λ − 1)]

φccp

1 − φccp
, (8)

with the choice b =
4
5 . Note that the form of Eq. (8) comes naturally from the requirement that the bracketed quantity

must become 1 in the limit λ → 1, and that such equation reduces to Eq. (7) if b = 1.
It is also worth noticing that the agreement with Eqs. (7) or (8) for the DBSP is generally worse than for the DTSP,

especially if λ ≃ 1.1. Actually, it can be observed that the performance of Eqs. (7) and (8) clearly tends to improve as λ
ncreases, that is, as the mixture deviates more from the monocomponent system.
3
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Given the fact that the degree of scatter in the λ-representation is smaller in the ternary case than in the binary one,
we can conjecture that the usefulness of the parameter λ increases as the number of components in the alloys increases.
Moreover, this conjecture relies on the fact that, as said before, in an ℓ-component system, φmax depends on 2ℓ − 1
parameters, all of them being encapsulated in the single parameter λ.

4. Concluding remarks

The results of the previous section deserve some further comments. One should point out that the approximate
formulae in Eqs. (7) and (8) rest on the choice of the reference densest monodisperse packing, which we have chosen
to be the fcc crystalline close-packing value φccp. Since it is known that the densest monodisperse packing fraction
corresponds to an infinitely degenerate set of structures, namely fcc and its infinite set of stacking variants, such a choice is
problematic; fcc is a Bravais lattice, but the densest packings are no longer Bravais lattices as one increases polydispersity
from monodispersity. Thus, there exist much more variation in the densest packing fractions than suggested by the ansatz
(7) [or its extension, Eq. (8)]. Nevertheless, given the heuristic character of our approach, it turns out to be both simple
enough and rooted in the values of common structures.

It is tempting to conjecture that Eqs. (6) and (7), supplemented with φrcp for d = 2 [19,21–23] and φccp =
√
3π/6,

respectively, might also be useful as ordering criteria in the case of hard disks [with λ given by Eq. (4) with d = 2]. While
it seems worthwhile investigating this issue in the future, it lies beyond the scope of the present work.

Therefore, in conclusion, one may state that, given the simplicity of the surplus approach, its application far outside
he density region in which it was originally introduced provides a fair ordering of the available data and may serve to
dentify and look for geometric structures that have not been reported up to now.
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