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ABSTRACT

The diffusion transport coefficients of a binary granular suspension where one of the components is present in tracer concentration are
determined from the (inelastic) Enskog kinetic equation. The effect of the interstitial gas on the solid particles is accounted for in the kinetic
equation through two different terms: (i) a viscous drag force proportional to the particle velocity and (ii) stochastic Langevin-like term
defined in terms of the background temperature. The transport coefficients are obtained as the solutions of a set of coupled linear integral
equations recently derived for binary granular suspensions with arbitrary concentration [Gémez Gonzalez et al., “Enskog kinetic theory for
multicomponent granular suspensions,” Phys. Rev. E 101, 012904 (2020)]. To achieve analytical expressions for the diffusion coefficients,
which can be sufficiently accurate for highly inelastic collisions and/or disparate values of the mass and diameter rations, the above integral
equations are approximately solved by considering the so-called second Sonine approximation (two terms in the Sonine polynomial expan-
sion of the distribution function). The theoretical results for the tracer diffusion coefficient Dy (coefficient connecting the mass flux with the
gradient of density of tracer particles) are compared with those obtained by numerically solving the Enskog equation by means of the direct
simulation Monte Carlo method. Although the first-Sonine approximation to Dj yields, in general, a good agreement with simulation results,
we show that the second-Sonine approximation leads to an improvement over the first-Sonine correction, especially when the tracer particles
are much lighter than the granular gas. The expressions derived here for the diffusion coefficients are also used for two different applications.
First, the stability of the homogeneous steady state is discussed. Second, segregation induced by a thermal gradient is studied. As expected,
the results show that the corresponding phase diagrams for segregation clearly differ from those found in previous works when the effect of
gas phase on grains is neglected.
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I. INTRODUCTION

The understanding of transport processes occurring in a granular
suspension (granular particles immersed in a fluid, like air or water) is
still a challenging open problem. This is essentially due to the fact that
the corresponding granular flow is a multiphase process involving
quite different spatial and temporal scales. The problem is much more
difficult when one considers multicomponent gas-solid flows (ie.,
when grains have different masses and sizes), in particular when one
intends to describe the granular suspension in terms of a set of coupled
kinetic equations for each one of the one-particle velocity distributions
of different phases.

Thus, because of the complexity embodied in the description of
multicomponent granular suspensions, a coarse-grained approach is
usually adopted where the influence of the background (interstitial)
fluid on grains is accounted for through an effective fluid—solid
force." * This assumption holds true under the condition that the con-
centration of granular particles is sufficiently low, ensuring that the
interstitial gas remains unaffected by the presence of the solid particles.
In simpler terms, the interstitial gas is treated as a thermostat at a con-
stant temperature. In some works,”” the gas-solid force is simply
proportional to the relative mean flow velocity between the solid and
gas phases. A more sophisticated model” accounts for the thermal
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fluctuations arising from the fluid and incorporates a stochastic
Langevin-like term defined in terms of the (known) temperature of
the interstitial gas. The stochastic term takes into account the energy
transferred to grains due to their “interactions” with the background
particles. In this paper, we adopt the latter model, which is incorpo-
rated in the corresponding kinetic equation via a Fokker—Plack term.
Consistent with other studies,” ' our analysis is limited to the regime
of low Reynolds numbers (Stokes flow). In this regime, the inertia of
the fluid is negligible compared to its viscous forces. Consequently, the
virtual mass force resulting from the difference in accelerations of par-
ticle and fluid is not considered. This force could be important when
the solid/gas particle mass ratio is close to unity. However, as recently
showed,'” the transport coefficients derived by explicitly considering
the (elastic) collisions between grains and the molecular gas particles
reduce to that using the Fokker-Planck effective model in the
Brownian limit. This occurs when the solid particles are much heavier
than that of the molecular gas. Therefore, the results reported in this
paper are expected to apply for to situations where the solid/gas parti-
cle mass ratio is large.

The Navier-Stokes transport coefficients of a binary granular sus-
pension have been recently obtained'” in the context of the (inelastic)
Enskog kinetic equation. As in Refs. 7 and 19, a coarse-grained
description has been also adopted and hence, the influence of the
interstitial gas on solid particles is via a viscous drag force plus a sto-
chastic Langevin-like term. The Enskog equation has been solved by
means of the Chapman-Enskog method”” where, in contrast to other
perturbation schemes,”"** the Knudsen number (which measures the
strength of the spatial variations of the hydrodynamic fields on the
scale of the mean free path) and not the degree of inelasticity has been
used as the only relevant perturbation parameter. As a consequence,
although the results reported in Ref. 18 are limited to the
Navier-Stokes order (first order in spatial gradients), they go beyond
the weak dissipation limit and hence can be in principle applicable to a
wide range of coefficients of restitution. In addition, they take into
account the nonequipartition of granular energy and can be easily
extended to any number of components. In this context, the kinetic
theory exposed in Ref. 18 extends the theory developed by Garzé
et al.”** for dry (no gas phase) granular mixtures to gas—solid flows. It
is important to note that the theoretical results for the shear viscosity
coefficient of a binary granular mixture obtained in Refs. 23 and 24
from the Chapman-Enskog solution has been recently shown™*® to
compare much better with computer simulations than those obtained
by assuming Maxwellian distributions for each species.”’

As occurs for elastic™ and inelastic™** collisions, the explicit
forms of the kinetic contributions to the Navier-Stokes transport coef-
ficients displayed in Ref. 18 requires to solve a set of coupled linear
integral equations. The usual way of obtaining these kinetic contribu-
tions consists of approximating the solutions to these integral equa-
tions by Maxwellian distributions (defined at different partial
temperatures) corrected by truncated Sonine polynomial expansions.
For the sake of simplicity, the leading Sonine polynomial (the so-
called first Sonine approximation) is retained in most of the works.
However, although the results obtained from this approximation for
dry granular mixtures compare, in general, quite well with simulations
for not too large values of the coefficients of restitution,””**”” they
exhibit significant discrepancies with computer simulations for strong
inelasticity and/or disparate values of the mass and diameter
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ratios.”””" These differences can be mitigated in part if one retains
second-order terms in the Sonine polynomial expansion (second
Sonine approximation). Thus, it is important to assess the degree of
accuracy of at least the two first Sonine solutions for dense binary
granular suspensions via a comparison of the corresponding theoreti-
cal results with appropriate computer simulations.

Needless to say, the determination of the Navier—Stokes transport
coefficients for gas-solid flows beyond the first Sonine approximation
is a quite cumbersome problem. These technical difficulties increase
considerably when one studies multicomponent systems due in partic-
ular, to the coupling among the different integral equations obeying
the transport coefficients. Thus, in order to gain some insight, one
considers simple situations where explicit results can be in principle
attainable. Here, we consider the so-called tracer limit, namely, a gran-
ular binary suspension where the concentration of one of the species
(of mass m, and diameter ) is much smaller than the other one (of
mass m and diameter ¢). As usual, in the tracer limit, one can assume
that (i) the state of the excess component is not perturbed by the pres-
ence of the tracer particles and (ii) one can also neglect the collisions
among tracer particles in its kinetic equation. In these conditions,
while the distribution function f of the granular fluid obeys a nonlinear
(closed) Enskog equation, the distribution f, of the tracer species veri-
fies the (linear) Enskog-Lorentz equation. The influence of the inter-
stitial gas in both kinetic equations on the distributions f and f; is
accounted for by means of Fokker-Planck terms with different coeffi-
cients of friction y and y,, respectively.

In the tracer limit, the stress tensor and the heat flux of the binary
granular suspension (granular gas plus tracers) are the same as those
for the monodisperse granular suspension. The expressions of these
fluxes were already determined in Ref. 19. Consequently, the mass
transport of tracer particles j, is the relevant flux of the problem. The
constitutive equation of j, to Navier-Stokes order is given by Gomez
Gonzélez et al,,'*

mmy

2
i = — %DOV% Sy )) v %DTVT —DVAU, (1)
where p = mn is the total mass density, # is the number density of the
gas particles, 1, is the number density of tracer particles, T is the gran-
ular temperature, and AU = U — U, with U and U, being the mean
flow velocities of the granular and the interstitial gas, respectively. In
Eq. (1), Dy is the tracer diffusion coefficient, D is the mutual diffusion
coefficient, D" is the thermal diffusion coefficient, and DV is the veloc-
ity diffusion coefficient. One of the main goals of the present paper is
to obtain the diffusion transport coefficients Dy, D, D' and DY up to
the second Sonine approximation in terms of the coefficients of resti-
tution for the tracer-grain (op) and grain-grain () collisions, the
masses and diameters, the solid volume fraction ¢ occupied by the
granular gas, and the background temperature Tex. The expression of
the coefficient Dy has been obtained in a previous work’* where a
complete study of the mean square displacement of an intruder in a
granular suspension has been carried out.

To check the accuracy of both Sonine approximations, the theo-
retical predictions for the tracer diffusion coefficient D, are compared
with numerical solutions of the Enskog equation obtained from the
direct simulation Monte Carlo (DSMC) method.”” As in previous
papers,””""*” the coefficient D, is computed from the Einstein for-
mula connecting the tracer diffusion coefficient with the mean square
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displacement of intruders in a granular suspension in a homogeneous
steady state. Here, to complement the simulations performed in Ref.
32 (which were carried out for mixtures with « = o), we consider sit-
uations where both coefficients of restitution are different (o # o).
Comparison between theory and simulations shows an excellent
agreement, especially in the case of the second Sonine approximation
for systems with high degree of inelasticity and/or very disparate mass
and diameter ratios.

The knowledge of the complete set of diffusion coefficients opens
up the possibility of applying our results to specific problems. As a first
application, we perform a linear stability analysis of the homogeneous
steady state of the mixture. This study is important by itself and also
because this state plays the role of the reference state in the
Chapman-Enskog expansion. Since the linearized hydrodynamic
equations associated with the hydrodynamic fields of the granular gas
(n, U, and T) are decoupled from the tracer density o, the stability
analysis (involving d + 3 differential equations) is quite simple since a
previous study'” has shown that the d + 2 equations corresponding to
the fields , U, and T are linearly stable. The fact that the coefficient D,
is positive implies automatically the stability of the homogeneous
steady state of the system (tracer plus granular gas). As a second appli-
cation, thermal diffusion segregation of an intruder immersed in a
granular suspension is analyzed. A segregation criterion showing the
transition between the well-known Brazil-nut effect (BNE) and the
reverse Brazil-nut effect (RBNE) by varying the parameters of the sys-
tem is derived. The present study complements a previous analysis
recently carried in the low-density regime.”* As expected, our results
show that the form of the phase-diagrams for the BNE/RBNE transi-
tion depends sensitively on the presence of the interstitial gas.

The plan of the paper is as follows. In Sec. 11, the Enskog kinetic
equation for the granular suspension is introduced and the homoge-
neous steady state is analyzed. Section III deals with the
Enskog-Lorentz kinetic equation for the tracer particles immersed in a
granular suspension. We study first the corresponding homogeneous
steady state for intruders where it is shown that their partial tempera-
ture is different from that of the granular gas. The set of integral equa-
tions obeying the diffusion transport coefficients is displayed in Sec.
IV while the first and second Sonine approximations to these coeffi-
cients are obtained in Sec. V. These coefficients are explicitly deter-
mined in terms of both the granular and the background
temperatures, the volume fraction, the coefficients of restitution, and
the masses and diameters of the mixture. Some technical details of the
calculations are offered in four appendixes. The dependence of the dif-
fusion coefficients on the parameter space is illustrated in Sec. VI
where the theoretical predictions of the coefficient D, are also com-
pared with Monte Carlo simulations. The stability analysis of the
homogeneous steady state is carried out in Sec. VI while the thermal
diffusion segregation is studied in Sec. VIII. We close the paper in Sec.
VII with a brief discussion of the results reported in this work.

Il. GRANULAR SUSPENSION

Let us consider a set of solid particles of mass m and diameter o
with collision rules according to the smooth hard sphere model. In
this case, collisions among solid particles are inelastic and are charac-
terized by a positive constant coefficient of normal restitution o < 1,
where o=1 corresponds to elastic collisions (ordinary gases). We
assume that grains are immersed in a molecular gas of viscosity 7.

pubs.aip.org/aip/pof

The system is subjected to the action of the gravitational field, and
hence, each particle feels the action of the force mg, where g is the
gravity acceleration.

As said in Sec. I, we adopt here a coarse-grained description and
the influence of the interstitial gas on solid particles is via an instanta-
neous fluid force. For low Reynolds numbers, this force is composed of
two independent terms. The first term accounts for the friction of grains
on the surrounding molecular gas and hence, it is proportional to the
particle velocity v (viscous drag force). The second term tries to model
the energy gained by the solid particles due to their “collisions” with the
more energetic particles of the gas phase.”” Both terms are represented
in the Enskog equation by a Fokker—Planck collision operator.™

According to this way of modeling a granular suspension, at
moderate densities, the one-particle velocity distribution function of
solid particles f(r, v; ) obeys the Enskog kinetic equation,”
of o o 9 Tex Of
0

hell CVf — 9AU - L D Vf -
t+v vf VU8v+g8v 7 vf /mavz

= ][r>vlf(t)>f(t)]1 2

where T is the background temperature, AU = U — Uy, U, being
the mean fluid velocity of the gas phase and

U(r,t) = Jdvvf(r7 v, t) (3)

n(r, 1)
is the mean particle velocity. In addition, the Enskog collision operator
J[x,vlf, flis
T wlf(0).5(0) = o' [ dvs [ d6 €66 )6 )
X [a’zx(rl,rl —o)f(r1,v]; t)f (r1 — 6,V5; 1)
=(r1, 11+ @)f (r, vis )f (11 + 6, v231) |

)

where d is the dimensionality of the system (d =2 for disks and d=3
for spheres), 6 = 06, ¢ being a unit vector, ® is the Heaviside step
function, and g;, = v; — v,. The double primes on the velocities in
the Enskog operator (4) denote the initial values {v},v}} that lead to
{v1,v,} following a binary collision:

1 - .
vi=w _§(1+a71)(0'812)07 @)
1
Vi =v, +E(1+fx71)(6’~g12)&. (6)
In addition, y[r, r*+a|n(t)] is the equilibrium pair correlation function

at contact as a functional of the nonequilibrium density field n(r, t)
defined by

n(r,t) = J avf(r,v,t). (7)

Apart from n and U, the other relevant hydrodynamic field is the
granular temperature T(r, t) defined as

(e, t) = %Jdv V2 (e v, 8), 8)

r,t)

where V = v — U is the peculiar velocity.
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It is important to note that the Enskog equation (2) still assumes
the validity of the molecular chaos assumption. This means that we
neglect correlations between the pre-collisional velocities of colliding
particles. However, spatial correlations between those particles are
taken into consideration through the pair correlation function y.
Therefore, it is imperative to evaluate the reliability of the Enskog
equation through computer simulations. The theoretical results have
shown good agreement with molecular dynamics simulations for all o
at densities n6®=<0.25 and for moderately high densities at
= 0.9.” " Within the scope of this paper, moderately dense systems
refer to those that meet the above requirements.”'

As in previous worl ,'1% the drift (or friction) coefficient 7 is
assumed to be a scalar quantity for the sake of simplicity. It is propor-
tional to the gas viscosity #,. Given that in the dilute regime, every par-
ticle is only subjected to its respective Stokes drag force, then for hard
spheres (d = 3) v is defined as

3mai,

©)

= Vst m
For moderate densities and very low Reynolds numbers, y can be writ-
ten as

7 = 75R(9), (10)

where R(¢) is a function of the solid volume fraction,

7l

24-1417 (ﬁ)
2

The calculations performed along this paper are extended to systems
with a general dimensionality d. Nonetheless, in order to obtain
explicit results, it is necessary to know the form of the function R(¢).
The density dependence of the dimensionless function R can be
inferred from computer simulations. It should be noted that the avail-
able literature primarily offers simulations exclusively for three-
dimensional systems (d = 3). We are not aware of any expression in
the granular literature of R for hard disks (two-dimensional systems
d=2) or hard rods (one-dimensional systems d=1). Based on the
current state of knowledge, a good approximation for R is given by
Van der Hoef et al.,*” Beestra et al,"” and Yin and S. Sundaresan,"*

no®. (11)

¢

R($) = (118‘@)) +(1— ¢)3(1 + 1.5\/$>. (12)

A more sophisticated model incorporates a parameter in R that
mimics lubrication forces between two approaching particles.””'”**
However, this model only applies in principle for monocomponent
granular gases. Given our intention to study granular mixtures in
which one species is present in tracer concentration, the selection
of R(¢) is made to ensure the recovery of the same drift coefficient
y for intruders and grains when the particles are mechanically
identical. We expect our findings to exhibit weak dependence on
the choice of R.

The macroscopic balance equations for the granular suspension
are obtained when one multiplies the Enskog equation (11) by
{1, mv,mv*} and integrates over velocity. After some algebra, one
achieves the balance equations,
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Din+nV-U=0, (13)
DU+ p 'V-P=g—7AU, (14)

DtT+%(V-q+ P:VU)=29(Tex — T)—(T. (15)
In the above equations, D; = 0y + U - V is the material derivative.
The cooling rate  is proportional to 1 — o and is due to dissipative
collisions. The pressure tensor P(r, ¢) and the heat flux q(r, t) have
both kinetic and collisional transfer contributions, i.e., P = Pk 1 pc
and q = ¢* + q°. The microscopic expressions of {, P, and q in
terms of f can be found in Ref. 18. They will be omitted here for
brevity.

A. Homogeneous steady state

Let us assume that the granular suspension is in a homogeneous
steady state. In this state, U = U, Vi =VT =0, on=0,T=0,
and hence, there is an exact balance between the cooling effects (com-
ing from the viscous friction and the inelasticity of collisions) and the
energy gained by grains due to their interaction with particles of
the bath. The balance equation (15) for the granular temperature T
reads as

2)(Teoe — T) = TL. (16)

For elastic collisions (x=1), (=0, and T = T, as expected.
Moreover, it is quite simple to show that the Maxwellian distribution
at the temperature Ty is a solution of the Enskog equation (2) This is
a consequence of the fluctuation-dissipation theorem.’® For inelastic
collisions (o # 1), it follows from dimensional analysis that f(v) has
the scaling form,

f(v) = nn= v %0(c), (17)

where vy, = /2T /m is the thermal velocity of the granular gas and
¢ = v/vg. The exact form of the scaling distribution ¢ is not known
to date. On the other hand, previous calculations'” has shown that the
fourth-cumulant (measuring the deviation of f from its Maxwellian
form) is, in general, very small. Thus, a good estimate for the tempera-
ture T can be made by approximating f by the Maxwellian

distribution,
/2 2
m mv
=n(— ). 1
Julv) ”<2nT) exP( 2T> (18)

In this case, the cooling rate { is

Vanld-1/2

l V4
2

v =no" \/— (20)

(= (1— o), (19)

where

is an effective collision frequency. Equation (16) can be more explicitly
written when one takes into account Eq. (19) for {. In dimensionless
form, Eq. (16) can be rewritten as

22071207 = 1) = ¢, (21)
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where 0 = T/Te, (" = (/v,and
Vi R(g)
24dr (d)¢> VTx

2

A=

(22)

In Eq. (22), the (reduced) bath temperature T} = Te/(mo?yd).
Equation (21) is a cubic equation for the (reduced) temperature 6. It
physical solution gives 0 in terms of the density ¢, the (reduced) back-
ground temperature T7;, and the coefficient of restitution o. It must
satisfy the requirement 0 =1 for « = 1 and any value of ¢ and T7,. In
contrast, for inelastic collisions, 0 < 1 since the granular temperature
is smaller than that of the interstitial gas. More explicitly, the physical
solution to Eq. (21) is given by Gémez Gonzilez et al,””

(31/3 +Efl/3 _ 1)2

0= 23
o2 ; (23)

where ¢ = (*/2/ and
= 3V3V27et — 482 42787 -2 (24)

2

For elastic collisions (¢ =1), ¢ — 0, and Eq. (22) yields 0 — 1 as
expected.

I1l. TRACER PARTICLES IMMERSED IN A GRANULAR
SUSPENSION

Let us suppose now that a few tracer or intruder particles of mass
my and diameter o, are added to the granular suspension. Since the
concentration of the tracer particles is negligible, their presence does
not have any effect on the state of the granular suspension. This
implies that the velocity distribution function f (v) of the granular par-
ticles still obeys the (nonlinear) Enskog equation (2) In addition, the
balance equations for the macroscopic flow velocity U and tempera-
ture T for the multicomponent granular suspension composed of the
(monocomponent) granular suspension plus the tracer particles are
the same as those for the granular suspension, namely they are given
by Egs. (14) and (15), respectively. Under these conditions, the velocity
distribution function fy(r, v, t) of the tracer species satisfies the linear
Enskog-Lorentz kinetic equation,

% Yo g %O
o TV VI = 00AU- 2 g o =Yg Vo
Tex O*fo
0 Gz LAGAGNIGIE (25)

where the Enskog-Lorentz collision operator Jo[v|fo(¢), f ()] is

Jolervilfy(8),£(8)] = 51 Jdvz Jd& 0@ £,)(6 - £12)

% (o5 110 = @), ¥ 0f (11 — 6,¥%5 1)
~o(r1, 11+ 8 )fo (1, Vi )f (1 + 8. vs1)].
(26)

Here,6 = 66,7 = (0o + 0)/2, 09 < 1 is the (positive) coefficient of
restitution for tracer-gas collisions, and j is the pair correlation func-
tion for tracer-gas pairs at contact. The relationship between the pre-
collisional ~velocities {v{,v5} and the postcollisional velocities

{v1 , v2} is

pubs.aip.org/aip/pof

Vi=vi—M(1+o")(6-g,)0, (27)
vy =va+ My(1+0,")(6 - g,,)0, (28)

where M = m/(m + my) and My = mg/(m + mp). To summarize
and clarify, a collision diagram along with the forces acting on the
grains can be seen in Fig. 1.

The number density for the tracer particles is defined as

no(r,t) = J avfo(r,v,t). (29)

The tracer or intruder may freely lose or gain momentum and energy
in its interactions with the particles of the granular gas. This means
that these quantities are not invariants of the collision operator
Jo[¥|fo,f]. Only the number density n, is conserved; its continuity
equation is directly obtained from the Enskog-Lorentz equation (15),

Do+ m V- U4 Yo g (30)
mo
where
Jo(x, 1) = my Jdefo(r, v, 1) (31)

is the mass flux for the tracer particles relative to the mean local flow
U of the granular gas. Apart from #y, an interesting quantity at a
kinetic level is the local temperature of the intruder T, It is defined as

Ty(r,t) = —

_ 2
- s J v V(e v, £). (32)

The partial temperature T, measures the mean kinetic energy of the
intruders; it is, in general, different from that of the granular gas
(T # To).

The friction coefficient 7y, takes into account the “interaction”
between the tracer particles and the background molecular gas. As the
coefficient y, it can be written as y, = y,Ro(¢) where for hard
spheres (d=3) '

3naon Gom
g =20 (33)
my amy

Yost =

FIG. 1. A sketch representation of a collision between a particle of species i and a
particle of species j together with the drag and stochastic gas—solid forces acting
on these particles.
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As in the case of the function R, one must chose an specific form of R,
to get explicit results. Computer simulations** ** indicate that a reli-
able choice for the function Ry is

ao O'%
Ry=1+(R—-1)|a—+(1-a)=2|, (34)
g g
where

a(¢) =1 —2.660¢ + 9.096¢> — 11.338¢°. (35)

Note that for mechanically equivalent particles, Ry = R as expected. It
must be remarked that our results apply for any specific choice of the
functions R and R,

A. Homogeneous steady state

As in the case of the granular gas, the study of the homogeneous
steady state for the tracer particles is a crucial step since this state plays
the role of the reference state in the Chapman-Enskog perturbative
method.”” In the absence of spatial gradients, the Enskog-Lorentz
equation (25) becomes

0
Yo 8"
where use has been made of the identity U = U, for homogeneous

states. The equation for the (steady) partial temperature T, can be eas-
ily obtained from Eq. (36) as

T Ofo
mg Ov?

VfO —% = ]O[fo(t)vf(t)}v (36)

ZVO(Tex - TO) - TOCOv (37)
where
_ 1 2
o= o | dvmod® lff G9)

is the partial cooling rate characterizing the rate of energy dissipated
by tracer-grain collisions. As in the case of the granular suspension, for
elastic collisions (0g = o0 = 1), {; = 0, Tex = T, and the Maxwellian
distribution is an exact solution of Eq. (36). Again, for inelastic colli-
sions (o # 1), the solution is not known to date. However, since the
corresponding cumulant associated with the distribution fy(v) is, in
general, very small,"” an accurate estimate of {; is obtained from the
Maxwellian distribution defined at the partial temperature T, i.e.,

d/2 2
Jom(v) =mno (221;0) exp <— %) (39)

In this approximation,

(d-1)/2 5\ 4! 1/2
=2 y X(()O)M(%) (—1 J[; ﬁ) (1+ o)
ar(9)
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In dimensionless form, Eq. (37) reads as
220071207 = 79) = G0, (42)

where 7y = Ty /T is the temperature ratio, {; = {y/v, and
;»() T ;». (43)
15

We recall that /4 is defined by Eq. (22). When intruder and granular
gas particles are mechanically equivalent (m=m,, ¢ = gy, and
o =up), 4= 4o, (" ={; T=Toy and hence, energy equipartition
applies. However, in the general case (namely, when collisions are
inelastic and intruder and grains are mechanically different), the solu-
tion to the cubic equation (42) provides the temperature ratio 7, in
terms of the parameter space of the system. As in the free cooling case,
there is a breakdown of the energy equipartition (7o # 1) as expected.

IV. DIFFUSION TRANSPORT COEFFICIENTS

The diffusion transport coefficients associated with the mass flux
jo of intruders can be obtained by solving the Enskog-Lorentz equa-
tion (25) by means of the Chapman-Enskog method™ conveniently
adapted to account for the inelastic character of collisions."' This long
and hard task has been recently carried out in Ref. 18 up to first-order
in spatial gradients and arbitrary concentration. Using those results,
we consider here the tracer limit (xo = n9/n — 0) of the linear inte-
gral equations obeying the corresponding diffusion transport
coefficients.

The first-order contribution j(()l) to the mass flux is given by Eq.
(1) where the diffusion transport coefficients DY, Dy, D, and DY are
defined, respectively, as

DT:_@[dvao(v), (44)
pd.
Dy = ——F Jde~BO(V), (45)
mol’lod
D:—Hdvv-co(vx (46)
and
DY — f%Jde CE(V). (47)

For arbitrary concentration xo, the quantities Ay (V), By(V), Co(V),
and &y (V) are the solutions of the set of coupled linear integral equa-
tions given by Egs. (73), (74), and (77), respectively, of Ref. 18. In
order to write this set of integral equations in the limit xy — 0, one
has to take into account that while in the tracer limit Dy is independent
of xo, the coefficients D, DT, and DY are proportional to xo. This

2 dependence must be then self-consistently confirmed. This means that
1 Ay o xg, Cy o xg, and &y o xp. Thus, in the tracer limit (xy — 0)
X |1 —=M(1+ 1+« , 40 0 0y ©0 0> 0 0 > 0 >
{ 2 (1+A) 0)} v (40) the set of coupled linear integral equations for the unknowns A (V),
where 7" is the tracer-gas pair correlation at zeroth-order and Bo(V), Co(V), and £(V) are 5 LA
1
moT (290! —(0)>A—“—~VA L Sl
[),: 0 (41) ("/ +2C 0 /Oav ( 0) ))Omo O?
mTO
_jo <o>} _ ©) [ © }
is the ratio between the mean square velocities of intruders and grains. Jo ['Ao’f =Aoth oAl (48)
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T By (o) ] _

gy (VBy) - /om—o o2 —Jo {Bo,f ] = By, (49)
d Texaz
BRI, oy

1

CIITY: _mmﬂ_ D227 4, (50
0 (0)

_VOW' (V&) — 81)2 —]0 {507]((0)] = Eo. (51)

In the integral equations (48)-(51), C is the zeroth-order approxima-
tion to the cooling rate {, and ]é ) [X, Y] is the operator,

1Y = 70 [dve [ 5006 g6 - 80)
X [2*X(V)Y (V) = X(V)Y(V2)],  (52)
where X(()O) is the intruder-gas pair correlation function at zeroth order.
The inhomogeneous terms appearing in Eqgs. (48)-(51) are given by

PV R 90
Ay(V) = —VT g"T *%%*’CO {T (J;T}, (53)
F) (0)
By(V) = —Vng afio , (54)
_ v, R e’ (o)
GoV) = on " on oV X(()‘))T
uy ()
(aqb)m'c‘)[f ) 9
) (0)
Eo(V) = (00 - v)g%,- (56)
In Egs. (53)-(56),
p=nT[14+292700(1 + )] (57)

is the pressure, ® = 0y /0 is the size ratio, L is the chemical potential
of the intruder, and the operator /Cy[X] is defined as

KColX] = 5% [dvz [do' O -g,)(6-g,)6

<[5 1O VXV + £O (VX (V)] (58)

In addition, upon wrmng Eq. 55) we have neglected the non-
Gaussian corrections to f© and f , have taken into account that
I o< Xo — 0 and have used the exp11c1t form of I, given by Garzd
et al”® and Garzé,"!

«(f

L =—"0
2 Tgd y

auo) oy
(871 - 2—n i (59)

The explicit expressions of the quantities I;; for a binary mixture can
be found in the Appendix A of Chap. 5 of Ref. 41.

Note that in Egs. (48), (50), and (51), the quantities A((V) and
Co(V) associated with the tracer particles are coupled with their corre-
sponding counterparts A (V) and C(V) of the host granular gas. A

pubs.aip.org/aip/pof

direct consequence of this coupling is that the mass flux j(()l) inherits
terms coming from the autonomous host integral equations (those
proportional to the spatial gradients V and VT). The expressions of
A and C up to the second Sonine approximation are displayed in
Appendix A.

V. SECOND SONINE POLYNOMIAL APPROXIMATION

As for ordinary (elastic) mixtures,”’ the integral equations
(48)—-(51) are solved by expanding the unknowns Ay, By, Cp, and &,
in a complete set of orthogonal polynomials with a Gaussian measure.
In kinetic theory, one employs the Sonine (or generalized Laguerre)
polynomials. On the other hand, for practical purposes, to achieve
explicit results one has to resort to some kind of truncation in the
series expansion. Usually, the leading term in the above series expan-
sion is retained. In this paper, as said in Sec. I, to provide accurate
results for the diffusion transport coefficients for quite inelastic sys-
tems and/or mixtures with quite disparate masses and diameters, we
will consider two terms in the series expansion. This approximation is
referred to as the second Sonine approximation. In this case, the quan-
tities Ay, By, Co, and & are given by

Ao(V) = —fom(V) {ﬁ VD' + aoso(V)} . (60)
Bo(V) = —fym(V) Lm—foVDo + bOSO(V)], (61)
Co(V) = —foma(V) L% VD + COSO(V)} , 62)
Ey— —fO.M(V) I:iToVD + eoSo(V ):| (63)
where
So(V) = G myV? — d : 2 To) Vv, (64)

and fo (V) is the Maxwellian distribution (39) with the change
v — V. While the diffusion coefficients are defined by Eqgs. (44)-(47),
the second Sonine coefficients ag, by, ¢y, and e, are defined as

w - ﬁi}”%]dvso( ) AV), (69
by — ﬁ n:)n% J dvSo(V) - Bo(V), (66)
o= Ve, @
o — 7@%] dv (V) - E(V). (68)

The transport coefficients Dy, D, D™ and DY as well as the second
Sonine coefficients ay, by, ¢y and e, are determined by substitution of
Egs. (60)-(63) into the integral equations (48)-(51), multiplication of
these equations by m,V and by So(V), and integration over velocity.
Some technical details on these calculations are given in Appendix B.

To provide the final expressions, it is convenient to write them in
dimensionless form. Let us introduce the reduced transport
coefficients,
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» pv L mgU
D =L_Dp!' Di=—2D,, 69
noT 0 PT 0 ( )
L. mov Y _
D :KOTD D}, = py'DY, (70)

where p, = mgny is the mass density of the intruders and v is defined
by Eq. (20).

According to the results exposed in Appendix B, the first Sonine
approximations D"*[1], D;[1], D*[1], and Dj;[1] can be written as

X1

D™*[1] = 1 , 71)
vi— 207" — EC* +7
. T
D;[1] :V*—+0y*’ (72)
1 0
. Yy
D[1] = et (73)
S« y() _V
Dyl =2——. (74)
v v+ %o

In Egs. (71)-(74), X}, a* = vT?a, Y;, and ¢* = vnTc are given by
Egs. (B17), (A5), (BZS) and (A6), respectively. The dimensionless
cooling rate {* = (%) /v is defined by Eq. (19) while the expressions of
the (reduced) collision frequencies v} = v;/v are displayed in
Appendixes C. The forms of the second Sonine approximations
D™ (2], D;[2], D*[2], and Dj;[2] are given by Egs. (B19), (B22), (B24),
and (B30), respectively.

In the low-density limit (¢ — 0), the first Sonine approximations
to the diffusion coefficients reduce to

To + HAo,o — mo/m

D™ 1] = : (75)

— 1* *
VT—Z’})*(‘) I—EC +'J/0
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To

D) =—2, 76

ol1] e (76)
DT (1] —

pra) = £ R = mo/m (77)
v+ 7%

where v} is given by Eq. (C1) with yoo = 1 while Eq. (D3) gives the
derivative Ay = 919/0p. Th1s derivative arises from the fact that the
zeroth-order distribution fo depends not only on hydrodynamic quan-
tities but, in addition, on the partial temperature 7. Therefore, when per-
forming the Chapman-Enskog expansion around f0 O there are
contributions to the transport coefficients coming from the derivatives of
the kinetic quantities in the vicinity of the steady state. These contribu-
tions can be seen as a measure of the departure of the perturbed time-
dependent state from the steady reference state. The derivatives of 7, can
be found in Appendixes D. The expressions (75)—(77) are consistent with
those obtained in a previous work™* from the Boltzmann equation.”

It is quite apparent that, in general, the first and second Sonine
approximations to the diffusion transport coefficients have a complex
dependence on the coefficients of restitution, the mass and diameter
ratios, the solid volume fraction, and the background temperature.
Thus, before studying this dependence, it is quite instructive to con-
sider some special limits.

In the limiting case of mechanically equivalent particles (1o = m,
Gy =0, 0y =0, 7="7), as expected, one gets D'*[2] = Dj[2]
=0, D;j[2] = —D*[2] and so,

nT
jo = == Dj[2)V. (78)

The expression of Dj[2] for arbitrary d and finite ¢ is still a very long

expression. In the particular case of a dilute (¢p = 0), suspension of
hard spheres (d=3), Dj[2] is

90\/—

98 + 047 + 30 (4ot — 13)] +

Dy[2] =

Ve (79)

4/ 21
3

(1 + o)?[50 + o(4ex — 25)] + y*{(1 + ) [218 + 30(4e — 17)] +

90,2 }
\/E v

Apart from Dj[2], the first Sonine approximation Dj[1] reaches the simple form,

D1

N | '
3

! (80)

+a) + 9"

In the case of elastic collisions (z = oy = 1) but mechanically different particles, 7o = 0 = 1 and the tracer diffusion coefficient for a three-

dimensional dilute system reads as

Dyl1]

Dyl2] = =2 (81)
2 45 o - 2, %
1- <1 +2uMy (1 + o) 2«;0) (30u2 + (16 +\/—%M My (1 + ) Zyo),u+ 13)
where u = my/m is the mass ratio and
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-1
WM (14 o) 95| (82)

e

Dl = |2

Here, w = g¢/0 is the diameter ratio. When y* = 7§ = 0, the expres-
sion (81) agrees with the one derived many years ago for a gas mixture
of elastic hard spheres.””*" All these results show the self-consistency
of the present results with those reported in previous works in some
limiting cases.

VI. SOME ILLUSTRATIVE SYSTEMS AND COMPARISON
WITH COMPUTER SIMULATIONS

The expressions derived in Sec. IV for the (reduced) diffusion
coefficients depend on many parameters: {d,mg/m,aq/a, o, o,
¢, T: }. This complexity appears in the elastic limit as well, except for
the dependence on the coefficients of restitution o and a,. Thus, as we
have done in previous papers,””' we normalize the transport coeffi-
cients with respect to their values for elastic collisions (o = op = 1).
This will show us more clearly the impact of inelasticity in collisions
on the diffusion transport coefficients. Also, for the sake of simplicity,
we consider the physical case of hard spheres (d=3) and in some
plots we take a common coefficient of restitution o = 0. This reduces
the parameter space of the system to five independent quantities:
{mo/m7 oo/0, 0, P, T:x}.

In order to get the explicit dependence of the transport coeffi-
cients on the above parameters one has to give the forms of the pair
correlation functions 7(® and ;{éo) for a three-dimensional system. In
this case, a good approximation for y© is provided by the
Carnahan-Starling form,”

1
w_'73°
0

1= (83)

(1-¢)

while the intruder-gas pair correlation function is given by Boublik™*
1 ® w? ’

O S ¢ 0 (84)

=0 THou—¢7 Urera-¢

The expression for the chemical potential of the intruder consistent
with the approximation (84) is Ref. 53,

#—;:C3+lnn0—ln(1—¢)+3w%
2 _ d)(zid))
+3w* |In (1 (f))+4(l_d))2:|
—o® [2111(1 —¢)+‘/’(1(_1L¢+)33¢2) , (85)

where Cs is a constant.

Figures 2-5 show the dependence of the diffusion transport coef-
ficients on inelasticity for two different systems. As said before, each
transport coefficient has been reduced with respect to its elastic value
consistently obtained in each approximation. The dashed and solid
lines refer to the first and second Sonine approximations, respectively.
We observe first that, in general, both Sonine approximations yield
quite similar results even for strong inelasticity and quite disparate val-
ues of the mass and/or diameter ratios. These results clearly differ

ARTICLE pubs.aip.org/aip/pof

Dy(a)/Dy(1)
S

1.00

FIG. 2. Plot of reduced tracer diffusion coefficient Dy(:) /Do (1) as a function of the
(common) coefficient of restitution o for the systems (my/m = 4,00/0 = 2) (a)
and (mo/m = 0.5, 09/0 = 0.8) (b) in the case of a three-dimensional gas with
¢ =0.1and T;, = 0.1. The solid lines correspond to the second Sonine approxi-
mation while the dashed lines refer to the first Sonine approximation. Here, Dy (1)
is the elastic value of the tracer diffusion coefficient consistently obtained in each
approximation.

from those reported in the case of dry (no gas phase) granular mix-
tures [see, for instance, Figs. 1-3 of Ref. 30 for the same mixture
parameters] where both Sonine approximations lead to quite different
results in the range of large inelasticity when the tracer particles are
lighter than the particles of the granular gas. This means that the
Sonine polynomial expansion exhibits a better convergence for granu-
lar suspensions than in the dry granular case.

With respect to the influence of inelasticity on diffusion coetfi-
cients, we observe that the impact of o on the diffusion transport coef-
ficients is in general relevant (since their forms differ clearly from their
elastic counterparts), although less important than in the dry granular

1.4
1.3 \
1.2 N (b)

1.1 AN

D(a)/D(1)

1.0 @)

09 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

[0

FIG. 3. Plot of reduced mutual diffusion coefficient D(c) /D(1) as a function of the
(common) coefficient of restitution o for the systems (my/m =4, a9/ = 2) (a)
and (mo/m = 0.5, 59/0 = 0.8) (b) in the case of a three-dimensional gas with
¢ =0.1and T;, = 0.1. The solid lines correspond to the second Sonine approxi-
mation while the dashed lines refer to the first Sonine approximation. Here, D(1) is
the elastic value of the tracer diffusion coefficient consistently obtained in each
approximation.
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FIG. 4. Plot of reduced thermal diffusion coefficient D' (c) /D' (1) as a function of
the (common) coefficient of restitution o for the systems (u =4, w = 2) (a) and
(=05, =0.8) (b) in the case of a three-dimensional gas with ¢ = 0.1 and

T = 0.1. The solid lines correspond to the second Sonine approximation

while the dashed lines refer to the first Sonine approximation. Here, D™ (1) is the
elastic value of the thermal diffusion coefficient consistently obtained in each
approximation.

case. The comparison of Figs. 2-4 with Figs. 1-3 of Ref. 30 reveals
important differences for diffusion between the results obtained with
and without the gas-phase. Thus, while the (scaled) tracer diffusion
coefficient Dy(x)/Dy(1) exhibits in some cases a non-monotonic
dependence on inelasticity for gas-solid flows, this reduced coefficient
increases with decreasing o in the dry granular limit. In addition, Fig.
2 also shows the tiny dependence of Dy(a)/Dy(1) on both the mass
and diameter ratios. In the case of the (scaled) coefficients D(o)/D(1)
and D'(a)/D"(1), qualitative differences between the predictions
with and without the gas phase are observed for large mass and/or

1.08

1.061 )

(a)
1.04 1

DY%w)/DY(1)

1.02 1

1.00 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

o

FIG. 5. Plot of reduced velocity diffusion coefficient DV (o) /DY (1) as a function of
the (common) coefficient of restitution o for the systems (u =4, = 2) (a) and
(=05, =0.8) (b) in the case of a three-dimensional gas with ¢ = 0.1 and
Te, =0.1. The solid lines correspond to the second Sonine approximation
while the dashed lines refer to the first Sonine approximation. Here, DY(1) is the
elastic value of the velocity diffusion coefficient consistently obtained in each

approximation.
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diameter ratios. At a more quantitative level, we find that the effect of
o on those coefficients is more significant in dry granular mixtures.
The reduced velocity diffusion coefficient DY () /DY (1) is not present
in the dry case. Figure 5 shows, in general, a weak influence of inelas-
ticity on this coefficient.

There are several competing effects involved in the mechanisms
in the diffusion of tracer particles in a granular suspension. On the one
hand, the collisional effects are accounted for in the cooling rate (*
and the (reduced) collision frequencies v;. On the other hand, the
influence of the interstitial gas on mass transport appears through the
(reduced) friction coefficients y* and 7;, which forms also depend on
the volume fraction ¢, the mass and diameter ratios, and the (reduced)
background temperature T7,. Given the size of the parameter space of
the problem (six independent parameters), it is generally difficult to
predict which effect (collisions between grains or interstitial gas)
dominates.

In summary, as already noted in previous papers on granular
mixtures,'’ the diffusion transport coefficients for a binary granular
suspension where one of the species is present in tracer concentration
differ in general significantly from those obtained for dry granular
mixtures.” """ These differences between both systems increase with
increasing inelasticity in some cases, and depending on the cases, the
influence of both mass and diameter ratios can be important.

A. Tracer diffusion coefficient: DSMC results

It is quite apparent that the accuracy of the Sonine approxima-
tions must be assessed via a comparison with computer simulation
results. Here, as in a previous work,”” we have numerically solved the
Enskog equation by means of the DSMC method ™ for the tracer par-
ticles immersed in a granular suspension in the homogeneous steady
state. In this situation, AU = 0, Vn = VT = 0, and hence, Eq. (30)
yields

ox _
ot

myDy

2d

V2xo, (86)

where use has been made of the constitutive equation (1). Equation
(86) is a standard diffusion equation with the time-independent diffu-
sion coefficient 1Dy / p. It follows that the mean square displacement
of the tracer particles after a time interval ¢ is Ref. 54,

0 oD

G K0 = x(0)F) = 20722,
Here, |r(t) — r(0)] is the distance traveled by the tracer particles from
t=0 until time ¢. Equation (87) is the Einstein formula relating the
tracer diffusion coefficient D, with the mean square displacement. The
relation (87) is also employed in Monte Carlo simulations to obtain
the coefficient D,.

Since we want to numerically solve the Enskog-Lorentz kinetic
equation (25) under steady conditions, we slightly adapt the method
proposed by Montanero and Garzé ™~ oriented to model freely cooling
granular mixtures. The main changes to be taken into account are
three: (i) the intruders are in tracer concentration, and so we do not
need to account for collisions among intruder particles themselves; (ii)
if a granular-intruder collision is accepted, only the velocities of the
intruders are updated; and (iii) to account for the action of the intersti-
tial fluid on grains we update the velocity vy of every single grain of

(87)
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species i (intruder or granular particles) after each time step 6t accord-
ing to the rule:™

67, Tt /2
’—) 0 (88)

1

Vi — e 70y + (

Here, ¢, is a random vector of zero mean and unit variance. The
Fokker-Planck equation is recovered when the time step Jt is much
shorter than the mean free time between collisions.”

To complement the simulation results displayed in Ref. 32 that
were obtained considering a common coefficient of restitution o = o,
we simulate here systems where o # ay. Moreover, to assess the influ-
ence of o in the tracer diffusion coefficient Dy, the same mixtures as
in Sec. V C of Ref. 32 are studied. However, we consider denser sus-
pensions (¢ = 0.2) to enlarge the difference between the first and sec-
ond Sonine approximations to Dj.

Figure 6 depicts the temperature ratio Tp/T vs the coefficient of
restitution o for d=3, « = 0.9, T;, = 1, and ¢ = 0.2. Two different
mixtures with the same mass density (m/¢> = my/a?) are considered.
As in the case of a common coefficient of restitution, we find a small
influence of the mechanical properties (masses and sizes) on To/T
when the mass densities are equal. However, we observe an enhance
breakdown of energy equipartition when o # ay, as expected. This
occurs because Ty ~ T when oy ~ « since the loss of energy is compa-
rable in both species. Using similar arguments to those presented in
Sec. VIB of Ref. 32, we conclude that for moderately dense suspen-
sions, the action of the external bath is accentuated when w increases
and/or p decreases. Although a combined effect of both masses and
sizes is observed, we can conclude that the influence of the diameter
ratio @ on the breakdown of energy equipartition is more relevant
than the one caused by the mass ratio p. This is due to the action of
the interstitial gas resulting from gas-solid collisions, whose depen-
dence on particle size (7, o 69/0) can be inferred from the change
of an effective surface, which overcomes the inertial forces determined
by particle masses. For this reason, the bath thermalizes the larger spe-
cies more effectively causing its temperature to rise and therefore, the
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1.00+

< 0.95 -
&O . (a)

0.90- (b)

0.85 T T T T
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a

0

FIG. 6. Plot of the temperature ratio To/T as a function of the intruder-grain coeffi-
cient of restitution o for the systems (u1=8, w=2) (a) and (u= 0.5,
» = 0.5"%) (b) in the case of a three-dimensional gas with o = 0.9, ¢ = 0.2,
and Ty = 1. The solid lines correspond to the theoretical results whereas the sym-
bols refer to DSMC results.
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curve (a) of Fig. 6 (w > 1) appears above the curve (b) of Fig. 6
(o < 1). Furthermore, we note that a departure from energy equipar-
tition occurs when oy = 1. In contrast to Fig. 4 of Ref. 32, where
Tex = To =T for oy =1, here we still observe energy dissipation
since o # 1. Specifically, the loss of kinetic energy when oy = 1
(o = 0.9) is greater for grains than for intruders, resulting in Ty > T.
Figure 6 also highlights an excellent agreement between theory and
DSMC results, ensuring the reliability of the Maxwellian approxima-
tions (18) and (39) taken for the distribution functions.

We now consider two different mixtures in Fig. 7. In contrast to
the prior case depicted in Fig. 6, the systems under consideration pos-
sess different mass densities, accentuating the disparity between the
temperature ratios. Similar to the observations made in Fig. 6, we note
that for larger intruders, the thermalization of the temperature by the
bath occurs more efficiently. Thus, the action of the bath facilitates the
classification of diverse mixtures based on their mechanical properties
and deviation from energy equipartition. For moderate mass densities
(1 ~ ), the curves exhibited in both Figs. 6 and 7 display a bottom-
to-top ordering as the value of @ increases. We can also analyze the
temperature ratio Tp/T in the specific case in which a = oy = 0.9.
While energy equipartition practically holds for the system considered
in Fig. 6, a more noticeable breakdown appears in Fig. 7. This result
has been previously discussed in Ref. 32 and is due in part to the
mechanical differences between the mixtures. We can conclude again
that the theoretical results perfectly reproduce the DSMC simulations,
as demonstrated in Fig. 7.

Finally, the accuracy of the first and second Sonine approxima-
tions to the tracer diffusion coefficient D, is evaluated by performing
DSMC simulations. The ratio Dy(ot9) /Do(1) is plotted in Figs. 8 and 9
as a function of the intruder-grain coefficient of restitution o,
(o # o). Here, Dy(1) denotes the tracer diffusion coefficient value
when oy = 1. Initially, it is observed that the tracer diffusion coeffi-
cient Dy exhibits minimal sensitivity to the mechanical properties of
the particles when the mass densities are equal. However, in Fig. 9, sig-
nificant qualitative differences in the behavior of D, for the two
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FIG. 7. Plot of the temperature ratio To/T as a function of the intruder-grain coeffi-
cient of restitution o for the systems (u=10, @ =5) (a) and (u = 0.5, w = 0.5)
(b) in the case of a three-dimensional gas with o = 0.9, ¢ = 0.2, and T} = 1.
The solid lines correspond to the theoretical results whereas the symbols refer to
DSMC results.
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mixtures are evident. It is also quite apparent that a non-monotonic
trend in the oy-dependence of Dy is consistently observed in both
cases. Furthermore, a deliberate selection of a density value of ¢ = 0.2
and a reduced background temperature of T, = 1 allows for a larger
discrepancy between both Sonine approximations, enabling a clearer
assessment of their accuracy through simulations. As seen in the dry
granular case when o = o, the convergence between both Sonine
approximations is practically achieved when the intruders possess
both greater mass and size compared to the grains. Although notice-
able deviations are observed as o and p decrease, these discrepancies
are smaller than those observed in the dry granular case." The distinc-
tions between the Sonine approximations are used to evaluate their
accuracy in comparison to simulations. Thus, Figs. 8 and 9 provide
clear evidence that the second Sonine approximation for the ratio
Dy (ct9) /Do (1) improves the theoretical predictions of the first Sonine
approximation, yielding excellent agreement with the simulation
results.

VII. STABILITY ANALYSIS OF THE HOMOGENEOUS
STEADY STATE

The knowledge of the diffusion transport coefficients along with
the Navier-Stokes transport coefficients of the granular suspension
opens up the possibility of solving the hydrodynamic equations for the
densities 7y and n, the flow velocity U, and the granular temperature T
for states near to the homogeneous steady state. This solution will give
us information on the linear stability of the above homogeneous state.
The linearized hydrodynamic equations are obtained when one substi-
tutes the constitutive equations for the mass flux, pressure tensor, and
heat flux into Egs. (13)-(15), and (30). These equations are given by

Dyng+ 1V -U=V- (%Dowo +?Dw n pTDTVT),

mo

(89)
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FIG. 8. Plot of the reduced tracer diffusion coefficient Dy (ct9)/Do(1) as a function
of the intruder-grain coefficient of restitution o for the systems (=8, @ =2) (a)
and (1 =05, w=05"3 (b) in the case of a three-dimensional gas with
=09, ¢ =0.2 and T} = 1. Solid and dashed lines are for the second and
first Sonine approximations, respectively, whereas the symbols refer to DSMC
results. Here, Do(1) is the value of the tracer diffusion coefficient consistently
obtained in each approximation when og = 1.
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FIG. 9. Plot of the reduced tracer diffusion coefficient Do (ctg)/Do(1) as a function
of the intruder-grain coefficient of restitution g for the systems (=10, w =5) (a)
and (u=0.5 o =0.5) (b) in the case of a three-dimensional gas with
=109, ¢ =02, and T;, = 1. Solid and dashed lines are for the second and
first Sonine approximations, respectively, whereas the symbols refer to DSMC
results. Here, Dy(1) is the value of the tracer diffusion coefficient consistently
obtained in each approximation when o = 1.

Din+nV-U=0, (90)
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2
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Here, 17 and 1, are the shear and bulk viscosities, respectively, « is the
thermal conductivity, u is the diffusive heat conductivity, and {;; is the
first-order contribution to the cooling rate. All these quantities have
been determined in Ref. 19 as functions of the coefficient of restitution
o, the volume fraction ¢, and the background temperature Tey.

In the homogeneous steady state, the hydrodynamic fields take
the homogeneous steady values g4 = const., ng = const., T
= const., and Uy = U = 0. The subscript s means that the quantities
are evaluated in the steady state. For small spatial gradients, we assume
that the deviations Jyp(r,t) = yp(r,t) —yp, are small, where
Oyp(r,t) denotes the deviations of the hydrodynamic fields
{yp;B=1,...,d +3} = {ng,n,U, T} from their values in the
homogeneous steady state. Moreover, as usual we also suppose that
the interstitial fluid is not perturbed and hence, U, =U=0.

It is quite apparent that the hydrodynamic equations (90)-(92)
for n, U, and T are decoupled from Eq. (89) for n,. This is a conse-
quence of the tracer limit. Equations (90)-(92) were already solved
in the Fourier space in Ref. 19 showing that this set of equations is
linearly stable. This means that the corresponding perturbations
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(6n, 06U, 07T) tend to zero for sufficiently long times. In this case, Eq.
(89) becomes an autonomous differential equation for d#y. To solve it,
as in Ref. 19, we introduce the following space and time variables:

1 T, 1
' =-ne?t /2t ¥ =gt r (93)
2 m 2
The dimensionless timescale ¢’ measures the average number of colli-
sions per particle in the time interval between 0 and t. The unit length
r’ is proportional to the mean free path of solid particles. Moreover,

57’10 k( )

No,s

Pox(t) = (94)

denotes the Fourier transformed dimensionless tracer density where
dngx(t) = Jdr’e’ik"’éno(r’, 7). (95)

Note that here the wave vector k is dimensionless. In terms of the
above dimensionless variables, p, ; () verifies the equation,

o 1 m _,
o Pox = —mm—oDokzpoAky (96)

whose solution is

/ 1 m w2y

pll) = pon(@) exp (~ 5 D). o)
The first Sonine approximation to Dj given by Eq. (72) clearly shows
that Djj[1] is always positive. As expected, a careful analysis of the
dependence of the second Sonine approximation Dj[2] on the param-
eter space of the system also shows that D [2] > 0. As a consequence,
Pox tends to zero for ¥ — oo and hence, the homogeneous steady
state for the system (tracer plus granular suspension) is linearly stable.

VIill. THERMAL DIFFUSION SEGREGATION

Another nice and interesting application of the results derived in
Secs. IV and V is the study of thermal diffusion segregation of an
intruder in a granular suspension. The understanding of the physical
mechanisms involved in segregation and mixing of dissimilar grains is
likely one of the most challenging problems in granular mixtures. In
addition, the problem is relevant not only from a fundamental point
of view but also from a more practical perspective. Needless to say,
segregation has been widely studied in recent years for dry granular
mixtures. Among the different segregation problems, the so-called
Brazil-nut effect (BNE) is perhaps one of the most famous examples of
(size) segregation in vertically vibrated mixtures. In the Brazil-nut
effect, a relatively large part1cle (intruder) tends to climb to the top of
the sample against gravity.””” On the other hand, another different
experimental works””" have observed the reverse buoyancy effect: the
so-called reverse Brazil-nut effect (RBNE) where the intruder may also
sink to the bottom of the sample under certain conditions. Several the-
oretical”**"*” and computational” " works have attempted to
explain the segregation induced by the presence of a thermal gradient
(thermal diffusion segregation) and/or the gravitational force. All these
results refer to situations where the effect of the interstitial gas (bath)
on the dynamics of tracer particles has been neglected. Our objective

pubs.aip.org/aip/pof

here is to assess the influence of the background gas on the segregation
criterion.

Thermal diffusion is the transport of matter caused by the presence
of a thermal gradient. As a result of the motion of the species of the mix-
ture, a steady state is finally achieved where the remixing effect of ordinary
diffusion is balanced by the segregation effect arising from thermal diffu-
sion.”” The amount of segregation parallel to the thermal gradient may be
characterized by the so-called thermal diffusion factor A. This quantity is
defined in an mhomogeneous non-convecting (U = U, = 0) steady
state with zero mass flux (]0 ! = 0) through the relation,

OlnT 0 I

where only gradients along the z axis have been assumed for the sake
of simplicity. Let us assume that the tracer is larger than the particles
of the granular gas (6 > ¢) and also that gravity and the thermal gra-
dient point in parallel directions (i.e., the bottom plate is hotter than
the top plate, 0;In T' < 0, see Fig. 10). If the temperature gradient is
sufficiently small, one can assume that A is practically constant over
the relevant ranges of composition and temperature of the system.
Thus, according to Eq. (98), when A > 0 the intruders (or tracer par-
ticles) tend to rise with respect to the particles of the granular gas (i.e.,,
0, In (ng/n) > 0) and hence, the intruder particles tend to accumulate
near the cold plate (BNE). On the other hand, when A < 0 the
intruders tend to fall with respect to the particles of the granular gas
(ie., 0;In(ng/n) < 0) and so, the intruder particles tend to accumu-
late near the hot plate (RBNE).

Let us determine the thermal diffusion factor. The mass flux Jé P
of tracer particles is given by Eq. (1) with AU = 0. Since ]((,Z) =0in
the steady state and U = U, = 0, then the momentum balance equa-
tion (14) yields 0,p = —pg. In the dimensionless form, this relation
can be written as

op*\ O:lnn |

where p* =p/(nT) and g* = pg/nd,T <0 is a dimensionless
parameter measuring the gravity relative to the thermal gradient. The

TNE @

FIG. 10. lllustration of the behavior of the gas-solid system. The small circles in the
diagram represent granular particles, while the large circles depict intruders. All of
them are immersed in a sea of molecular particles (very small particles).
Specifically, the BNE (RBNE) effect occurs when the intruder rises (falls) to the top
(bottom) plate of the system.

Phys. Fluids 35, 083318 (2023); doi: 10.1063/5.0164179
Published under an exclusive license by AIP Publishing

35, 083318-13

158851 €202 1snbny g|


pubs.aip.org/aip/phf

Physics of Fluids

condition ](()IZ) = 0 along with Eq. (99) allows one to express the factor
A in terms of the (dimensionless) diffusion coefficients Dy, D*, and

D™ as

DT — (Dy + DY)(g" +p7)

A=
eD; ’

(100)

where & = p* 4 ¢pJyp”. The dependence of A on the parameters of
the system can be obtained when one substitutes the expressions of
the (reduced) pressure p* [Eq. (57)] and the (reduced) diffusion trans-
ports coefficients into Eq. (100). Since we have seen that the first
Sonine approximation to these coefficients is quite accurate in the
complete range of values of the coefficients of restitution, we will con-
sider henceforth those expressions for the sake of simplicity. In this
approximation, the coefficients D™*, D, and D* are given by Egs.
(B9), (B21), and (B23), respectively.

As expected, it is quite apparent from Eq. (100) that the influence
of the parameter space of the system on the sign of A is quite complex,
given the large number of parameters involved. On the other hand,
since Eq. (B21) clearly shows that Dj > 0, then the condition A =0
yields the relation,

¢D" = (D + DY) (g +p7). (101)
Equation (101) gives the curves delineating the regimes between the
segregation toward the cold and the hot wall (BNE/RBNE transition).
However, the explicit dependence of the segregation criterion (101) on
the parameter space is still cumbersome even if one employs the first
Sonine solution to the diffusion transport coefficients. For this reason,
to disentangle the different competing mechanisms appearing in the
segregation problem, it is first convenient to consider some simple sit-
uations where a more simple criterion may be offered.

A. Mechanically equivalent particles

In this limit case (my=m, g9 =0, x =0, Y =7Yy), To =1
and according to Egs. (B9), (B21), and (B23), DT =0 and
Dj = —D* = (v} +7*)"". Thus, Eq. (101) holds for any value of the
coefficients of restitution, masses, diameters, and volume fraction. In
this case, as expected, no segregation is possible.

B. Low density limit

Let us consider a binary granular suspension in the low-density
regime (¢ — 0) and in the absence of gravity (¢* = 0). In this regime,
p* =1, &=1, and the diffusion coefficients are given by Egs.
(75)-(77). According to these expressions, the segregation criterion
(101) yields

TR D
(ro—u)(zxf —2y"0 1_5(: +Vo)
= (] + 75— U) (10 + 0Agp — p). (102)

The segregation criterion (102) is still quite a complex relation in com-
parison with the one obtained in the absence of gas phase (dry limit)
where A=0 when u=1,."""" For elastic collisions, {* =0, 0
= 79 = 1 and hence, Eq. (102) becomes

(1= (¥ = 20" +75) = (v +75)Avo. (103)
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As for inelastic collisions, Eq. (103) clearly differs from the one derived
many years ago for molecular mixtures of hard spheres’” where the
line separating the segregation toward the cold or hot wall is simply
=1 in the first Sonine approximation.

In the case that the inhomogeneities in both the temperature and
the mixture volume fraction are neglected (0,7 — 0) but gravity is
different from zero, then |g*| — oo (thermalized systems). In this
case, the segregation dynamics of the intruders is essentially driven by
the gravitational force. This situation (gravity dominates the tempera-
ture gradient) can be achieved in the shaken or sheared systems
employed in numerical simulations and physical experiments.”"* "
Under these conditions (|g*| — o0), the criterion (102) leads to
Df 4+ D* = 0. In the low-density limit, one gets

70+ 0Ago — 11 *
vi =207 =30+

To— = (104)
For elastic collisions, {* = 0 and Eq. (104) reduces to 1 — u = 0, as
expected.

C. Dense granular suspensions
1. Absence of gravity (|g*| — 0)

Let us now study the segregation dynamics for moderately dense
systems. We analyze first situations where the influence of gravity can
be neglected (|g*| — 0). In this particular scenario, the determination
of the segregation criterion is exclusively governed by the temperature
gradient.

Let us consider first a three dimensional dry molecular mixture
(o0 = 09 = 1) at moderate densities (¢p = 0.2); this is illustrated by the
dashed line of Fig. 11. In this case, the particles of the molecular fluid
(“grains”) that are close to the hot plate move faster. When tracer par-
ticles are introduced, they undergo substantial velocity changes upon
colliding with the grains as they approach to the hot plate. As the size
of the intruder particles increases (keeping the mass ratio 1y /m fixed),

8
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£
£ 4]
2
1.0 1.5 2.0 2.5 3.0
c,/c

FIG. 11. Plot of the marginal segregation curve (A=0) for d=3, o= og
=1,¢=02,T; =0.1,and |g*| — 0. The solid line corresponds to the segre-
gation criterion for molecular suspensions while the dashed line refers to the one
derived for molecular mixtures (no gas phase). The points below the curve corre-
spond to A < 0 (RBNE), while the points above the curve correspond to A > 0

(BNE).
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collisions between grains and intruders become more frequent due to
the larger effective surface area of the intruders. Consequently, these
collisions cause the intruders to rebound and migrate back to the
colder side of the system (RBNE). On the other hand, if we increase
the mass ratio mg/m (keeping the size ratio o/ = fixed), the inertia
of the massive particle leads it to retain its initial trajectory upon colli-
sion. Consequently, a greater number of collisions is required to mod-
ify the trajectory of the intruder. The application of a thermal gradient
implicitly induces a gradient in particle density (9;n > 0) because the
grains experience a higher frequency of collisions in the hot plate,
resulting in a lower density compared to the cold plate. As a conse-
quence of this density gradient, collisions between the intruder and
grains increase in the cold plate, impeding the progress of the massive
particle and causing it to migrate toward the hotter zone (BNE).

When the mixture is immersed in an interstitial gas, we observe
that the RBNE zone is expanded, as depicted in the solid line of Fig.
11. This phenomenon can be understood by considering the argu-
ments previously discussed in Sec. V1. First, the presence of the inter-
stitial gas facilitates the thermalization of the temperatures T and T,
leading to an equipartition of the kinetic energy (T = Ty = Tex).
Thus, when grains are located in the hotter (colder) region, the inter-
stitial gas tends to decrease (increase) its mean kinetic energy to estab-
lish thermal equilibrium. This effect is more pronounced when larger
particles are present, as their increased surface amplifies the action of
the interstitial gas (7 s, o< do/0). When larger intruders are located in
the hotter region, the interstitial gas undergoes a faster temperature
decrease compared to that of the gas particles. This leads to an
increased disparity in the mean velocities between grains and
intruders. This discrepancy enables the grains to more effectively mod-
ify the trajectory of the intruders, causing them to move back toward
the colder zone. As a result, the cooling effect caused by the presence
of the bath combines with the size effect observed in a dry gas and the
region where the RBNE effect occurs expands. Conversely, when the
intruders are heavier than the grains, the influence of the interstitial
gas on intruders is weakened (g, o< (110/ m) "), thereby accentuat-
ing the inertial effects observed in the dry case. This explains the
reduction of the BNE region for suspensions when smaller size ratios
are considered.

The effects of the inelasticity in collisions on segregation are illus-
trated in Fig. 12 in the case of the common coefficient of restitution
o = ap = 0.8. Notably, in contrast to the elastic case (depicted in the
dashed line of Fig. 11), we observe a pronounced enhancement of the
RBNE for dry granular mixtures; this enhancement is more significant
within the region where the intruders exhibit larger sizes. The inelastic
nature of collisions leads to a consequent loss of kinetic energy and a
decrease in temperature. Given the higher collision frequency in the
hot plate, the dissipative nature of these collisions becomes more pro-
nounced. This phenomenon bears similarity to the thermalizing influ-
ence exerted by the interstitial gas on particles located in the hotter
zone. Consequently, when considering larger intruders, the BNE/
RBNE diagram in a dry granular gas exhibits a closer resemblance to
the corresponding diagram observed in a granular suspension.
Interestingly, we find that the RBNE zone exhibits a reduction in size
as the degree of inelasticity increases in the case of granular suspen-
sions (solid line of Fig. 12). This is attributed to the bath’s ability to
lower the temperature of the intruder particles near the hot plate,
which in turn reduces their collision frequency. As a result, it becomes
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FIG. 12. Plot of the marginal segregation curve (A =0) for d=3, « = ap = 0.8,
¢ =0.2, T:, =0.1,and |g*| — 0. The solid line corresponds to the segregation

7 ex
criterion for granular suspensions while the dashed line refers to the one derived

for dry granular mixtures. The points below the curve correspond to A < 0
(RBNE), while the points above the curve correspond to A > 0 (BNE).

more challenging for the tracer particles to undergo collisions that
result in rebound and subsequent return to the colder plate.

2. Thermalized systems (9,T — 0)

We now consider the situation where the segregation dynamics is
essentially driven by the gravitational force. In this case, |g*| — oo
and hence, the temperature gradient can be neglected (0, T — 0). This
condition can be achieved in experimental setups and numerical simu-
lations involving shaken or sheared systems.”"”” " Consequently, it is
worthwhile to explore the influence of the interstitial gas on the segre-
gation criterion in this particular case. Figures 13 and 14 show the
marginal segregation curve for the same systems as depicted in Figs.
11 and 12. As apparent from Figs. 13 and 14, we observe that the
impact of the gravitational force on segregation is much more
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FIG. 13. Plot of the marginal segregation curve (A=0) for d=3, o = oy = 1,
¢ =02, T;, =0.1,and |g*| — oo. The solid line corresponds to the segregation
criterion for granular suspensions while the dashed line refers to the one derived
for dry granular mixtures. The points below the curve correspond to A > 0 (BNE),

while the points above the curve correspond to A < 0 (RBNE).
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FIG. 14. Plot of the marginal segregation curve (A =0) for d=3, « = ap = 0.8,
¢ =0.2, T:, =0.1,and |g*| — oo. The solid line corresponds to the segregation

) Tex

criterion for granular suspensions while the dashed line refers to the one derived
for dry granular mixtures. The points below the curve correspond to A > 0 (BNE),
while the points above the curve correspond to A < 0 (RBNE).

important than that of the interstitial gas. In fact, both curves (with
and without gas phase) practically collapse in a common curve.
Furthermore, similar to granular mixtures driven by a stochastic exter-
nal force (see Figs. 4 and 6 of Ref. 69), we see that the presence of grav-
ity completely reverses the RBNE/BNE transition found in the phase
diagrams in the absence of gravity. Regarding the effect of inelasticity
in collisions, our results clearly indicate that this effect is also negligi-
ble, even less significant than that observed in a driven granular
mixtures.”’

Therefore, to provide an explanation for BNE/RBNE transition,
we focus on the influence of gravity rather than dissipative dynamics
or the force exerted by the interstitial gas. Evidently, when the intruder
particles are heavier, they accumulate at the bottom of the container,
leading to the observation of the RBNE effect. This explains the left
region of Figs. 13 and 14. Conversely, as the size ratio /0 increases,
the tracer particles suffer more collisions per time. The main conse-
quence of these collisions is the existence of a “buoyancy” effect on the
intruder, resulting from the pressure exerted by the sea of granular
particles in the colder region. As a consequence, the intruder is lifted
against gravity, and the BNE effect is observed.

3. General case

Finally, we consider the general case where the effect of the tem-
perature gradient is comparable to that of gravity. To illustrate it, Fig.
15 shows the marginal segregation curve for |g*| = 1, a (common)
coefficient of restitution o = o9 = 0.7, T, = 0.1, and two values of
the volume fraction ¢: 0.1 and 0.2. We observe that the effect of grav-
ity in the segregation dynamics overcomes that of the temperature gra-
dient, as seen from the reversion in the RBNE/BNE transition
(compare Figs. 11 and 12 with Fig. 15). This finding is consistent with
the previous results obtained for dry granular mixtures.”” We also see
that the effect of the interstitial gas is to enhance the BNE effect, since
the buoyancy increases with the diameter ratios g /g. With regard to
density, an increase in shaking strength mimics the effect of decreasing
the volume fraction ¢ in the BNE/RBNE transition.”"* Figure 15 also
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FIG. 15. Plot of the marginal segregation curve (A =0) for d=3, « = ap = 0.7,
Ts, = 0.1, |g°| = 1, and two values of ¢. The solid line corresponds to the segre-
gation criterion for granular suspensions while the dashed line refers to the one
derived for dry granular mixtures. The points below the curve correspond to A > 0
(BNE), while the points above the curve correspond to A < 0 (RBNE).

illustrates that the BNE effect is intensified as density increases (or
shaking strength is reduced). This behavior was observed in driven
granular mixtures””’ and we see that is also applicable to both dry gran-
ular mixtures and suspensions.

IX. DISCUSSION

In this paper, the Enskog-Lorentz kinetic equation has been con-
sidered as the starting point to obtain the diffusion transport coeffi-
cients of a binary granular suspension where one of the species is
present in tracer concentration. As in previous works, * the influence
of the interstitial gas on grains has been accounted for via a drag force
plus a stochastic Langevin term defined in terms of the (known) back-
ground temperature Tec. For the arbitrary concentration, the corre-
sponding set of kinetic equations for the binary mixture were solved in
a previous work'® by means of the Chapman-Enskog method”’ up to
the first order in spatial gradients. From this solution, the
Navier-Stokes transport coefficients of the mixture are given in terms
of the solutions of a set of coupled linear integral equations. In particu-
lar, in the case of the mass flux, there are four relevant diffusion trans-
port coefficients obeying integral equations that are usually solved by
considering only the leading term in a Sonine polynomial expansion.
Due to the technical difficulties embodied in the general problem, we
have considered here the tracer limit for the sake of simplicity. In this
limit, to solve the corresponding integral equations, we have retained
in the Sonine polynomial expansion terms up to the second order and,
hence, we have explicitly determined the first and second Sonine
approximations to the diffusion coefficients as functions of the param-
eter space of the system.

It should be noted that the accuracy of the Sonine approximation
may be questionable under the conditions of strong dissipation and/or
quite disparate size or mass ratios. However, our results have shown a
relatively quite rapid convergence between both Sonine approxima-
tions in comparison with the dry (no gas phase) granular limit. In this
context, we can conclude that the presence of the interstitial gas tends
to enhance the convergence of the Sonine polynomial series
expansion.
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To assess the reliability of the Sonine approximations considered
in this paper, theoretical results have been compared against DSMC
simulations. First, a remarkable agreement is found between the theo-
retical predictions for the temperature ratio Ty/T (which has been
obtained by approximating the zeroth-order distributions by their
Maxwellian forms) and the DSMC simulations. Additionally, by
employing the Einstein formula for the mean square displacement of
intruders moving in a granular suspension, the tracer diffusion coeffi-
cient Dy has been computationally determined. In order to extend the
study recently done in Ref. 32 for the evaluation of D, when o = o,
we have performed in this paper simulations when both coefficients of
restitution are different (x # o). It is confirmed first that the
(reduced) coefficient Dy(ctp)/Do(1) [Do(1) being the tracer diffusion
coefficient for elastic collisions] exhibits a non-monotonic dependence
on o, Furthermore, intentional selection of mixture parameters
reveals stronger disparities between the results obtained from the sec-
ond and first Sonine approximations for significantly small mass and
size ratios. Nevertheless, these discrepancies remain smoother than
those have been observed in the dry granular case.”””" As expected
from previous works,”” although the theoretical predictions of the first
Sonine approximation agree relatively well with simulations, we find
that the results of the second Sonine approximation agree perfectly
with the DSMC simulations. Thus, the second Sonine approximation
corrects the small discrepancies observed between the first Sonine
solution and simulations, indicating an improved convergence of the
solution.

The knowledge of the diffusion coefficients allow us to perform a
linear stability analysis of the homogeneous steady state of the suspen-
sion. This analysis is relatively simple since the hydrodynamic equa-
tions for #, U, and T are decoupled from that for n,. Moreover, given
that a previous'” linear stability analysis had shown that the hydrody-
namic equations obeying the fields n, U, and T are linearly stable, the
hydrodynamic equation for #, becomes an autonomous differential
equation. We can at this point obtain the time evolution of the Fourier
transform to the (dimensionless) tracer density. Since both the first
(Dg[1]) and second (Dj[2]) (reduced) Sonine approximations are
always positive, any perturbation in the tracer density tends to vanish
over sufficiently long times. As a consequence, the homogeneous
steady state of the system (tracer plus granular suspension) has been
shown to be linearly stable.

As a second application, segregation induced by a thermal
gradient and/or gravity has been also studied. The main target has
been to assess the impact of the interstitial gas on the phase dia-
grams previously obtained in the absence of the gas phase.”’ In the
absence of gravity, our results (see Figs. 11 and 12) show that the
effect of the gas phase on segregation is in general significant for
large mass and/or diameter ratios. The main effect of the sur-
rounding gas is to increase the size of the RBNE region (intruders
attempt to accumulate near the hot plate) with respect to the one
observed in the absence of the gas phase. On the other hand, in the
situations where segregation is mainly driven by gravity (namely,
when thermal gradient can be neglected) the phase diagrams with
and without gas phase are practically identical (see Figs. 13 and
14). In addition, as for dry granular mixtures, the influence of
inelasticity of collisions on segregation is very tiny since the corre-
sponding marginal segregation curve for elastic collisions collapses
practically with the one obtained for inelastic collisions.

ARTICLE pubs.aip.org/aip/pof

As extensively discussed in this paper, the obtained results are
contingent upon various approximations and assumptions. Initially,
our calculations have been constrained to low Reynolds numbers, con-
sistent with the framework of Stokes’ law. Additionally, we have
accounted for a similar influence on the dynamics of grains coming
from gas-solid forces and collisional effects, as indicated by the Stokes
number. Consequently, our study encompasses neither Brownian par-
ticles (lack of collisions) nor a dry granular gas (without an interstitial
gas). Given these limitations, the key question arises regarding the
existence of natural systems satisfying both conditions, which can be
replicated in laboratory settings. In a previous work’” where the
authors of the present paper are involved, Sec. VII aims to address the
above query within a simplified framework that incorporates several
dimensionless parameters for monodisperse granular suspensions.
These dimensionless parameters comprise the Reynolds number Re,
Stokes number St, dimensionless Stokes friction coefficient
7s/V = 7" /R, and the reduced background temperature T . It is
demonstrated that the resulting values used to describe a suspension
of gold grains immersed in a hydrogen molecular gas fall within the
previously discussed values for the relevant quantities in our model.
Specifically, it becomes evident that the influence of collisions on diffu-
sion coefficients is not negligible for many of the situations where the
present suspension model applies. More details on this issue can be
found in Sec. VII of Ref. 32.

In this work, we have used the Chapman-Enskog method”’ con-
veniently adapted to dissipative dynamics as a reliable procedure to
obtain the diffusion transport properties of intruders immersed in a
granular suspension. Our calculations have been restricted to the
Navier-Stokes domain (ie, low Knudsen numbers). In the
Navier-Stokes hydrodynamics regime, according to the Curie princi-
ple,”” shear stress cannot modify the mass flux due to the constraint
imposed by linear transport coupling, which exclusively occurs
between irreducible tensors sharing the same rank and parity. On the
other hand, it is worth investigating tracer diffusion coefficients in a
binary suspension where the excess component (granular gas) is
strongly sheared. In this particular scenario, the state of uniform shear
flow serves as the reference state for the Chapman-Enskog expansion.
In this situation, due to the anisotropy induced by the shear flow,
second-rank tensors are required to describe the diffusion process
instead of the conventional scalar coefficients. In the case of dry granu-
lar mixtures, at given values of the coefficients of restitution, these ten-
sors have been shown® to exhibit a nonlinear dependence on the
shear rate and, thus, on the inertial number L.** We want to study the
shear-rate dependence of the diffusion coefficients when the dynamics
of solid particles are influenced by the presence of an interstitial gas.
Further investigation in this direction is planned for the near future.

The results reported in this paper have been derived for a suspen-
sion model where the effect of the background gas on the dynamics of
grains has been accounted for via a fluid-solid force (coarse-grained
description). It would be of interest to revisit the tracer diffusion prob-
lem by considering a coarse-grained model in which fluid-solid inter-
actions are governed not only by the drag force (Stokes drag force) but
also by the Archimedes force (gas pressure gradient). Furthermore, as
an alternative perspective, a collisional model that explicitly accounts
for the collisions between grains and particles of the surrounding
molecular gas could be implemented. This sort of suspension model
has been recently proposed'’ and the results derived from this
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collisional model has been shown to reduce to those obtained from the
coarse-grained approach'” when the grains are much heavier than the
particles of the background gas. We expect a similar conclusion in
the tracer diffusion problem analyzed in the present paper. Last but
not least, it would also be desirable to carry on computer simulations
to assess the reliability of the phase diagrams obtained here for thermal
diffusion segregation of intruders. We plan to make some progresses
along these lines in the near future.
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APPENDIX A: THE SECOND SONINE COEFFICIENTS a
AND c OF THE GRANULAR CAS

The first-order velocity distribution function f(!) of the granu-
lar gas has the following form:'’

fU=A.VT+C-Vn+D:VU+EV-U. (A1)

To evaluate the diffusion transport coefficients of the tracer par-
ticles, only the quantities A and C are needed. Both quantities van-
ish in the first Sonine approximation. In the second Sonine
approximation, A and C are given, respectively, by

AV) = —fu(V)aS(V), C(V) = —fu(V)eS(V),  (A2)
where the Maxwellian distribution fiy(V) is defined by Eq. (18)
with the replacement v — V and S(V) is

1 d+2
S(V) = (—sz —LT)V. (A3)
2 2
The coefficients a and ¢ are related to the kinetic contributions to
the thermal conductivity xj and the diffusive heat conductivity y.
They are defined as

pubs.aip.org/aip/pof

2 m
{a7C} :mﬁ{’qﬁﬂk}' (A4)

Up to the second Sonine approximation, the coefficients a and ¢
19
are

d—3
| 143577990 +2) (22— 1)
_ d+2
a= , (A5)
I/T2 3 *
Vﬁ»+7**5€

= o et 3) {“ [€ (”‘f’ 99

1 ¥ (91n R 2d72 5 (0)
2007 = 1)y ¢ 3% +3(d+2)4 d(1+ o)
1 Olny®
><<1+2¢ 96 >oc(ocl)}. (A6)

In Egs. (A5) and (A6), X(O) is the pair correlation at zeroth order,
Y =9/v= 072 a* = yT?a, and

d—1)/2
_ 8 T[( )/ 1+a‘(0)

Vi ﬂ(d+2)l_(d> R

s«

{dgl—F%(d—}—B)(l—oc) .

2
(A7)

It must be recalled again that Eqs. (A5)-(A7) have been displayed
neglecting the non-Gaussian corrections to the zeroth-order distri-
bution function f(©). As said along the paper, the effect of these con-
tributions on the Sonine coefficients a and c are significant only for
quite extreme values of inelasticity.'’

APPENDIX B: SONINE APPROXIMATIONS
TO THE DIFFUSION TRANSPORT COEFFICIENTS

In this appendix, we determine the first and second Sonine
approximations to the diffusion transport coefficients Dy, D, DT,
and DY. These coefficients are given in terms of the solutions of the
set of integral equations (48)-(51) where the inhomogeneous terms
Ay, By, Cy, and E; are defined by Egs. (53)-(56), respectively. Up
to the second Sonine approximation, the functions Ay, By, Co, and
&, are approximated by Egs. (60)-(63), respectively, while A and C
are defined by Eq. (A2). Let us evaluate each transport coefficient
separately.

1. Thermal diffusion coefficient DT

We consider first the thermal diffusion coefficient D’. To get
it, we substitute A and A, by their Sonine approximations and
then, multiply the integral equation (48) by m,V and integrate over
velocity. After some algebra, one gets

1 I’loT(O)z
(Vl -0 - EC@ + "/o)DT + TOVzao =27, (B1)

where
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(0)2

(0)
T, T, T
Zl:_no 0 V3a+n°_0+n°_9A9,0_PL;0
p p p p
my [ aﬂ‘n}
2lavv.x {T . B2
dpJ °L" or (B2)

Here, Agg = 019/00, 19 = T((,O) /T, and we have introduced the col-
lision frequencies,

1
v = —Jdv mV O v fO) @)
d?’l()
==y | vV P o] @9
d}’lo T(g
1
V3 = 7J.dv mOV ]0 |:f0(0),fMSi| . (B5)
di’lo

In Egs. (B1) and (B2), C<°> and Téo) are the zeroth-order con-
tributions to the cooling rate { and the partial temperature Ty,
respectively. In the Maxwellian approximation, the cooling rate
{9 is defined by Eq. (19) and Téo) is given by the physical solu-
tion to Eq. (42). Upon obtaining (B2), use has been made of the
result,

JdeoV - Ap = —dny TS — dngTOAgo + % 0o

The collision integral of Eq. (B6) involving the operator ICy
can be computed when one replaces the distribution function f(®)
by its Maxwellian form (39) In this approximation, one has the
identity,

oY 10

= - .yfO
oT 20V Vi (B7)

and hence, one obtains the result”

JdvmoV KZO[ 8fT} 2% 1 dny, ( ) /{o ¢Mo(1+fxo) (B8)

If only the first Sonine correction is retained in Eq. (Bl)
(which means ay =a =0), then the (reduced) first Sonine
approximation D*T[1] = (mv/xoT)D"[1] to the thermal diffusion
coefficient is

-1
K * * N)— 1* *
DT[1]=7<V172“/ 0 ‘—Eq +y0>

_\d
my 1[0
X [W?P — 79— 0Ag — 27 1(5) XE)O)M0¢(1+O<0) ;

(B9)

where v = v;/vand p* = p/(nT) is given by Eq. (57).

To close the evaluation of D™ up to the second Sonine approxi-
mation, we multiply now Eq. (48) by S¢(V) and integrates over v.
After a tedious algebra, one achieves the result

_ 1
<V4 + 3y — 2707 — EC(O)>110

p 1 T -
Rl LCR ) D'=27,,  (B10)
OTéo)z 5 o( d+2T )> 2
where
1 2 my af(O)}
2= M0 avs, - K
2 = l/6a+TO d(d+2) Té J 0" o{ o |’
(B11)
2
= s (0)
Vy = — d(d+2) T( Jdvso ]0 [fo,MSmf }7 (B12)
2 mo
= ——_|dvs V0 B13
Vs d(d+2)nT J VS - ]0 [fO,M S }, (B13)
= 2 (0)
T T dd T ), T< Jd"so Ty’ [fo 7fMS] (B14)

As before, if one replaces fo(o) by fom, the collision
integral involving the operator /C, in Eq. (B11) is given by
Garz6 et al.”

1+ o) 7P o1 + o)

0

af© )} _

d MT?
or | —a"

Jdv So(V) - ICo [T

M‘L'() 2
—(d+2)(M; —1
(A @+ 206 - 1)
+(2d —5— 90(0)MOM
+(d — 1+ 30 + 602) M?]
+ 6M?(1 +a0)2}. (B15)
The (reduced) thermal diffusion coefficient DT* is defined in

Eq. (69). Thus, in reduced units and by using matrix notation, Egs.
(B1) and (B10) can be rewritten as

* * ()~ 1 * * *
vy —2y"0 I_EC + % T%’/z (DT*>
Vi 4+ 295 (1 — (0tp) _ 1., *
5 o ( . (070) ) Vi + 395 — 2970 1_Z¢ ay
75 2
= Xuféyza* . (B16)
X5 —vga”

Here, aj = T?vay, a* = T*va, and

1

X =19+ 00y J% +5 1+ ) Moy (1 + 0),  (B17)
x*fi+#ﬂjdvs KL[ aﬂm} (B18)
P d(d+2) g7 O o

The second Sonine approximation D™*[2] to D™ can be
obtained from Eq. (B16), and the result is
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1 * * N)— * * * ko % *
(3@/3 +v; fEC — 290 1)(a v3ti — X)) — vt (a* v — X5)

D™[2] = (B19)

- L., % N— .
403+ 2550~ (o)) = (3540 =58 =207 ) (3 +vi -3 =207

To obtain the dependence of D™*[1] and D*[2] on the parameter space of the system, it still remains to deterrrune the (reduced) collision frequen-
cies v}. Explicit expressions of them have been achieved in previous works™""*" when the distributions f*) and f0 are replaced by their
Maxwellian approximations f, and fq 1, respectively. These expressions will be provided in the Appendix C for the sake of completeness.

The determination of the first and second Sonine approximations of the diffusion coefficients Dy and D follows similar steps as those
made for D”. Below, only the final expressions will be provided.

2. Tracer diffusion coefficient Do
The (reduced) tracer diffusion coefficient Dj is defined by Eq. (69). It obeys the matrix equation,

vitn o wh \ e
P 2981 — (O79)~ 0 = B20
vzt () () (B20)
To

where b}, = Tvb. Thus, the first Dj[1] and second Dj;[2] Sonine approximations to D}, read, respectively, as
To
(375 + v
(7% + 1) (335 + vi) — v (5 + 295 (1 = (w0) 7))

D] = (B21)

Dyl2] = (B22)

3. Mutual diffusion coefficient D

The (reduced) diffusion coefficient D* is defined in Eq. (70). After some calculations, the first D*[1] and second D*[2] Sonine approxi-
mations to D* can be written, respectively, as

0
C*(l + ¢aln;¢°) a0t — 1)y 2B R

D[] = (v} +v3)1{

D[]+ pApo — — <p +¢ 8¢)

d¢ ¢
() 55 (%), } -
D* [2] — (3’))3 + VZ)(‘:*V;I% Yl) _ VZT%( Y*) (B24)

v3(vs +295(1 = (w6) ™) — (75 + Vl)(3V0 +v)
In Eq. (B24), the dimensionless quantities Y} and Y; are given by

©
= [C* <1+¢algqy§0> =207 — 1y ¢O;;R D"™*[2)
+pAgo —— (p +¢ 8¢) +5Mo(1 + )(1 ;ﬁ) 2 (uo)”o (B25)
) 2
Y, = [g*<1+¢6lgd;§ >_2(61_1)y*4)ag; a5 + 17 dAg0 + (diz)%owﬂo)%(ﬂ_jg)
T,ngy

x { [(d + 8)MZ + (7 + 2d — 9at) MM + (2 + d + 302 — 300)M?] B
F3MP(1 + 09)* B + [(d +2)M2 + (2d — 5 — 90 )MoM + (d — 1+ 300 + 602)M?| 2

~(d+2)B(1+B)}, (B26)
where
. ; - -
02[V5+270(1_(700) 1)}( 1_“’/370) (/0+V1_?_27}0 (X5 —a'vg)
a = 1 / . (B27)
v [Vt +295(1 — (100) )] — ("/6 +vp =0 2”/*9‘1) (3v5 =30 - 2“/*9‘1)
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4. Velocity diffusion coefficient DY
The (reduced) velocity diffusion coefficient Dj; is defined by Eq. (70). It obeys the matrix equation,

Mo T D N
P 2y0(1 — (Otg) Ul = 0 B28
%

where e = (T?/my)eo. The first Dj;[1] and second Dj; [2] Sonine approximations to Dj; are given, respectively, by

. Yo —
Di1] = . -, (B29)
v v+
3y ) (ay% gk
D»&m _ ( Yo T+ V4)(/ /0) (B30)

sk + 295(1 — (100) ™)) — (v + v3) 396 + v5)

APPENDIX C: COLLISION FREQUENCIES

In this appendix, we display the expressions of the collision frequencies /i -v%. They are given by Garzé et al.”* and Garzé and Vega

Reyes,”’
(d-1)/2 7=\ 4-1 1/2
. (g) X(()O)M(IJFO(O)(ﬂ) : (1)
5 ’*
ar(=
2
(@-1/2 7\ 4!
vy=" d (g> 7 M(1+20) [B(1+ )2, €2
dl"(—) ’
2
@172 /5\41 2
==t (%) 1 3 1+ B+ )7, ©)
ar(?)
(d-1)/2 _\ d-1 3/2
vy=—— (%) X(()O)M(1+“o)<%> {Af(dﬂ)#l%}, (C4)
o ()
(d-1)/2 _\ d—1 1/2
V;:Ld(g X(()wM(HaO)(%) B, (C5)
d(d+2)r(§)
(d-1)/2 _\ d-1 M2 3/2
= () A () e a0+ gl (o)
d(d+z)r(5) 0

In Egs. (C1)-(C6), we have introduced the quantities,

A—zMZ(iﬁﬁ)z(zug—dj3ao+d+1>[d+5+(d+z)m MO+ B +5) + (@ +2)p)

x [(11 + d)atg — 5d — 7] — B~ [20 + d(15 — 7o) + d2(1 — o) — 28] — (d +2)*(1 — oco)}

+3(d+3)EF2d+5+ (d+2)p] + 28724 + 11d + d* + (d +2)* ]

Hd+2)B T d+3+(d+8) — (d+2) A+ BB 2d+3+(d+2)p), (C7)
B=(d+2)(1+2&) +MQA+ B){(d+2)(1 —ap) — [(11 4+ d)otg — 5d — 7)EF"} + 3(d +3)Ep !

3a0+d+1)/3_1(1+ﬁ)27(d+2)ﬁ_1(1+/3), (C8)

d
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d+3

C=2M(1+p) (2a3 -

a0+d+1>[d+2+(d+5)m
— M +ﬁ){5[d+2 +(d+ 5)B[(11 + d)ao—5d — 7) + B[20 + d(15 — 7tg)
+d*(1 — o) — 280) + (d +2)*(1 — oco)} +3(d+3)&[d+2+ (d+5)p]

—26[(d+2) + 24+ 11d+d)B] + (d+2)B[d+8+ (d+3)B] — (d+2)(1 + B)[d + 2 + (d + 3)f], (C9)
D= (d+2)(2¢ = B) + M1+ B){(d +2)(1 — o) + [(11 + d)otg — 5d — 7)A} — 3(d + 3)¢&

_zMz(Zocé—d;'?’oco+d+1)(1+ﬂ)2+(d+2)(1+/3). (C10)

In Egs. (C7)-(C10), & = Mo(1 — 1, h).

APPENDIX D: DERIVATIVES OF 7o WITH RESPECT TO 0 AND ¢

It is quite apparent that to determine the transport coefficients D'*[2] and D*[2] one needs to evaluate the derivatives Agy = 9to/90
and Ay o = J19/0¢ in the steady state. To evaluate them, we start from Eq. (69) of Ref. 18 in the tracer limit (x, — 0),

* 8T * *
Q 06—(; = Q" + Q) (D1)

where
Q =2p(0"—1) -, Q= 23/3(9_1 —179) — 70(;, (D2)

and {; = {y/v is given by Eq. (40). Since in the steady state, Q" = Q; = 0, then according to Eq. (D1) the derivative 0t/d0 becomes inde-
terminate. As in previous works,'“** the above problem can be solved by employing I'Hopital’s rule. Thus, we take first the derivative with
respect to 0 in both sides of Eq. (D1) and then take the steady-state condition (Q" = Qg = 0). After some algebra, we achieve the following
expression for Ag:

07307 — 1) — 9 o0 (307 — 1)

A(-),O ac* (D3)
7G0T —1) =295 - G+ ﬁa—g
Once the derivative is known, the derivative Ay o = 079/0¢ can be computed in a similar way. The expression is
In 7©) A Y In 4
OIMET 5 0% 129 1) (0o + 7o) + 2222071207 — ) — gy 0t
¢ ¢ ’ ¢ ¢
Apo = e (D4)
2985+ — 8_ﬁ0

Note that in the limit of mechanically equivalent particles, y* = y;, 7o = 1, and hence, according to Eq. (D3) Ago = 0. As a result, since
70 = Xéo) and {* = (;, Eq. (D3) yields Ay o = 0.
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