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The rheology of a dilute binary mixture of inertial suspension under simple shear flow is 
analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding 

viscous gas on the solid particles is accounted for by means of a deterministic viscous drag 

force plus a stochastic Langevin-like term defined in terms of the environmental tempera- 
ture T env . Grad’s moment method is employed to determine the temperature ratio and the 
pr essur e tensor in terms of the coef ficients of restitution, concentra tion, the masses and 

diameters of the components of the mixture, and the environmental temperature. Analyt- 
ical results are compared against e v ent-dri v en Lange vin simulations for mixtures of hard 

spheres with the same mass density m 1 / m 2 = ( σ (1) / σ (2) ) 3 , m i and σ (1) being the mass and 

diameter, respecti v ely, of the species i . It is confirmed that the theoretical predictions agree 
with simulations of various size ratios σ (1) / σ (2) and for elastic and inelastic collisions in a 

wide r ange of par ameter space. It is remar kab le that the temper ature r atio T 1 / T 2 and the 
viscosity ratio η1 / η2 ( ηi being the partial contribution of the species i to the total shear 
viscosity η = η1 + η2 ) discontinuously change at a certain shear rate as the size ratio in- 
cr eases; this featur e (which is expected to occur in the thermodynamic limit) cannot be 
completel y ca ptured by sim ulations due to the small system size. In addition, a Bhatnagar–
Gr oss–Kr ook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is 
e xactly solv ed when T env is much smaller than the kinetic temperature T . A comparison be- 
tween the velocity distribution functions obtained from Grad’s method, the BGK model, 
and simulations is carried out. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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1. Introduction 

Rheology is the study of the flow properties of materials. Although the viscosity of a Newto-
nian fluid is independent of the shear rate, there are many domestic substances (liquids contain-
ing microstructures such as suspensions and polymers) where the viscosity depends on the shear
rate (non-Newtonian fluids). Within the class of non-Newtonian fluids, some of them exhibit
shear thinning (namel y, w hen the viscosity decreases with the shear rate) while others display
shear thickening (namel y, w hen the viscosity increases with the shear rate). The shear thicken-
ing is also categorized into two classes, continuous shear thickening (CST) and discontinuous
shear thickening (DST). The viscosity increases continuously in CST, while it abruptly changes
discontinuously from a small value to a large value at a critical shear rate in DST. DST has at-
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tracted much attention among physicists in the last few years [ 1–7 ] as a typical nonequilibrium
discontinuous phase transition between a liquid-like phase and a solid-like phase. In addition,
the understanding of the origin of DST is also important for potential industrial applications
such as protecti v e v ests and traction controls. 

Although most of the previous studies on shear thickening have focused on dense suspen-
sions, ther e ar e some other studies that analyze a DST-like process for the kinetic temperature
of inertial suspensions. This type of inertial suspension can be regarded as an idealistic aerosol
model [ 8 ]. The DST-like process (or the ignited–quenched transition) of dilute inertial suspen-
sions takes place as a result of a saddle-node bifurcation. On the other hand, the DST-like
process for dilute suspensions becomes CST-like as the density of suspensions increases [ 9–16 ].

To gain some insight into the understanding of the generic features of rheological phase
transitions, we use kinetic theory tools in this paper. This allows us to offer a quantitati v e the-
oretical analysis for the DST-like and CST-like processes in inertial suspensions. Howe v er, it
should be noted that some previous kinetic theories for inertial suspensions have ignored ther-
mal fluctuations in the dynamics of grains [ 9–11 , 14 ]. A refined suspension model including a
Langevin-like term has been more recently considered in Refs. [ 12 , 13 , 15–17 ]. The quantitati v e
validity of these studies has already been verified by an e v ent-dri v en Lange vin simulation for
hard spheres (EDLSHS) [ 15 , 16 , 18 ]. 

Most of the pr evious theor etical studies on the rheology of inertial suspensions have focused
on monodisperse systems, namely, suspensions containing only identical spherical particles. In 

reality, suspended particles are not identical since the size of the particles is distributed and the
shape and mechanical properties of the particles are also different. To quantify the impact of 
polydispersity on the rheological properties of inertial suspensions under simple or uniform 

shear flows (USF), we consider a binary mixture in this pa per, namel y, a suspension that con-
tains two kinds of spherical particles having different sizes. We note that bidisperse systems are
also studied in colloidal and blood suspensions [ 19–22 ]. 

A challenging and interesting problem in sheared granular binary mixtures is that of dif-
fusion. It is well established that in the absence of shear the mass flux is proportional to the
density, pr essur e, and temperatur e gradients wher e the corr esponding transport coefficients ar e
scalar quantities [ 23 ]. Howe v er, when the mixture is strongly sheared, due to the anisotropy in-
duced by the shear flow, tensorial quantities are required to characterize the mass transport in-
stead of the conventional scalar diffusion coefficients. There have been some previous attempts
to describe the self-diffusion problem in sheared granular mixtures [ 24 , 25 ]. As expected, all
previous studies indicate that the diffusion process in USF is highly anisotropic and the com-
ponents of the diffusion can be observed in directions parallel and perpendicular to the velocity
gr adient. To char acterize such anisotropy of the diffusion tensor, there have been several theo-
retical studies based on kinetic theory [ 26 , 27 ], simulations of rapid granular shear flows [ 28 , 29 ],
and experimental studies of dense, granular shear flows in a 2D Couette geometry [ 30 , 31 ]. 

One of the key features of flows of polydisperse particles is segregation [ 32 ]. This is likely
one of the most relevant problems in granular mixtures, from the practical and fundamental
points of vie w. Howe v er, despite the industrial and scientific progress made in the past fe w
years, the mechanisms involved in the segregation phenomenon are still poorly understood. In
particular, in the context of kinetic theory, many different papers have addressed the study of 
segregation [ 33–42 ]. On the other hand, computer simulations of bidisperse granular mixtures
under USF (and without any influence of gravity) [ 43 ] have not found any sign of large-scale
2/36 
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size segregation. Another type of work has studied segregation in flows down inclined slopes
in which approximate simple shear flows have been realized, at least in the bulk regions away
from the bottom boundaries and surfaces. It is remar kab le that the trigger for segregation is the
deviation from the USF of the velocity profile, as has been reported in Ref. [ 42 ]. This suggests
tha t segrega tion can be observ ed e v en for dilute mixtures without the influence of gravity, if 
we dri v e a shear flow through a boundary. In other words, the segregation is localized near the
boundaries. 

Previous studies of granular binary mixtures based on the kinetic theory have mainly focused
on obtaining the Navier–Stokes transport coefficients of the mixture by considering states close
to the homogeneous cooling state [ 23 ] and/or close to dri v en sta tionary homogeneous sta tes
[ 44–46 ]. The r esults ar e scar cer in the study of the rheological properties of granular binary mix-
tures under USF [ 43 , 47–49 ]. As expected, the results show that the mixture is non-Newtonian
and, in some cases, the effect of bidispersity enhances the non-Newtonian character of the fluid.
Since the USF is spatiall y homo geneous in the frame moving with the linear velocity field, no
segregation appears in the system. Howe v er, when the USF state is slightly perturbed by small
density and temperature gradients, a nonvanishing mass flux is present and the corresponding
components of the diffusion tensors have been determined in the tracer limit in Refs. [ 26 , 27 ].
The knowledge of the shear-rate dependence of the above diffusion tensors has allowed the
analysis of thermal diffusion segregation induced by the presence of a temperature gradient
orthogonal to the shear flow plane [ 50 ]. 

Ne v ertheless, so far and to the best of our knowledge, ther e ar e few studies of binary mix-
tures of inertial suspensions including diffusion processes, in which the rheology of inertial
suspensions drastically depends on the shear rate. Thus, as already done in the case of granular
mixtures [ 26 , 27 ], one has to determine the rheological properties of sheared binary mixtures
of inertial suspensions as a first step before considering the segregation problem. Once the rhe-
ology is known, the components of the diffusion tensors can be determined by using a similar
procedure to the one followed in (dry) granular mixtur es. Ther efor e, the study of the rheology
of a dilute binary mixture of inertial suspension is an important issue. 

Beyond dilute granular flows, it is quite apparent that there are many exotic rheological pro-
cesses in dense flows. These processes include glass transitions, shear jamming, jamming, and
DST [ 1–7 , 51–54 ]. Such exotic processes cannot be observed in monodisperse systems but they
can be observed only in mixtures when the volume fraction exceeds the transition point for
crystallization of identical spheres at the volume fraction ϕ = 0.49. 

In this paper, we focus on the rheology of a dilute binary mixture under USF. As in our pre-
vious work [ 15 , 16 ], the influence of the interstitial gas on solid particles is accounted for in an
effecti v e way by means of (i) a deterministic drag force proportional to the particle velocity and
(ii) a stochastic Langevin-like term. While the first contribution attempts to model the friction
of grains on the viscous fluid (a collection of gas molecules), the second term mimics the energy
gained by the solid particles due to their interactions with the particles of the surrounding gas.
The corresponding set of two coupled Boltzmann kinetic equations is solved by two comple-
mentary and independent routes: (i) Grad’s moment method and (ii) e v ent-dri v en simulations
for hard spheres (EDLSHS). The comparison between kinetic theory and EDLSHS allows us
to verify the reliability of the theor etical pr edictions as the first step to tackle the behavior of 
shear ed binary mixtur es of inertial suspensions. Our (a pproximate) anal ytical results of the
rheological properties of the mixture (the ratio T 1 / T 2 between the partial temperatures and the
3/36 
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pr essur e tensor) agr ee well with simulations for conditions of practical interest. In particular,
the temper ature r atio T 1 / T 2 and the viscosity ratio η1 / η2 (where ηi is the partial contribution
of the component i to the total shear viscosity η = η1 + η2 ) exhibit a DST-like transition for
sufficiently high values of the size ratio σ (1) / σ (2) . As a complement, we have also compared the
velocity distribution function obtained by both Grad’s moment method and a kinetic model
with the one obtained by EDLSHS. 

The contents of the paper are as follows. In Sect. 2 , we introduce the Langevin model and
Boltzmann equation for a binary mixture of inertial suspensions under a simple shear. Section 3
deals with the theor etical procedur e to deri v e the rheology of inertial suspensions in USF. Sec-
tion 4 is the main part of this pa per, in w hich we present the theoretical and numerical results
and find a new rheological phase transition similar to DST. The velocity distribution function
is also studied by comparing the results from Grad’s approximation and simulations. In Sect. 5 ,
we discuss and conclude our r esults. Mor eover, ther e ar e se v eral appendices to e xplain the tech-
nical details of the paper. In Appendix A , the difference between P 

(i) 
yy and P 

(i) 
zz is discussed. In

Appendix B , we provide some ma thema tical steps to compute the collisional moment needed to
determine the components of the pr essur e tensor from Grad’s method. The detailed rheological
properties for the temperature ra tio, tempera ture, and viscosity are discussed in Appendix C .
Appendix D discusses how the discontinuous transition a ppears/disa ppears w hen we change
the parameters of the mixture. The tracer limit of the theory is briefly presented in Appendix E
w hile A ppendix F gi v es the e xact solution to a Bhatnagar–Gr oss–Kr ook (BGK)-like kinetic
model for granular mixtures in the high-shear-rate regime. This solution provides a 2D velocity
distribution function. Finally, the 1D velocity distribution function is displayed in Appendix G
with a comparison with the one obtained from computer simulations. 

2. Basic equations for a binary mixture of inertial suspension under uniform shear 
flows 
In this section, we present the basic equations describing a dilute binary mixture of inertial sus-
pensions under USF. In the first subsection, we introduce the Langevin equation characterizing
the motion of each particle activ ated b y the thermal noise caused by collisions with the envi-
ronmental molecules. In the second subsection, we write the corresponding set of two coupled
nonlinear Boltzmann kinetic equations for the bidisperse inertial suspension in the low-density 

regime. 

2.1. Langevin equation 

We consider a 3D binary mixture of inertial suspension modeled as a mixture of inelastic hard
spheres of masses m i and diameters σ ( i ) ( i = 1, 2). For the sake of simplicity, we assume that
the spheres are completely smooth and hence collisions among all pairs are characterized by
(positi v e) constant coefficients of normal restitution e ij ≤ 1, where the subscripts ij denote the
species i and j , respecti v ely. Let us use the notations v (i) 1 and v ( j) 

2 when particle 1 (species i )
collides with particle 2 (species j ). The post-collisional velocities v (i) ′ 1 for particle 1 (species i )
and v ( j) ′ 

2 for particle 2 (species j ) are expressed as 

⎧ ⎪ ⎨ ⎪ ⎩ 

v (i) ′ 1 = v (i) 1 − m i j 

m i 

(
1 + e i j 

) (
v (i j) 

12 ·̂ σ
)̂ σ, 

v ( j) ′ 
2 = v ( j) 

2 + 

m i j 

m j 

(
1 + e i j 

) (
v (i j) 

12 ·̂ σ
)̂ σ, 

(1) 
4/36 
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Fig. 1. Setup of our system. Two species of particles are distributed in a fluidized inertial suspension 

characterized by the temperature T env . The shear is applied with the shear rate ˙ γ in the xy plane, where 
the x and y axes are the shear direction and the velocity gradient dir ection, r especti v ely. Here, we use 
N = 30 000 particles with size and number ratios of σ (1) / σ (2) = 10.0 and N 1 / N 2 = 30/29 970 = 1/999, 
respecti v ely. 
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where we have introduced the pre-collisional velocities of v (i) 1 for particles 1 (species i ) and 2
(species j ), v (i j) 

12 ≡ v (i) 1 − v ( j) 
2 , the unit normal vector at contact ˆ σ, and the reduced mass m ij ≡

m i m j /( m i + m j ). 
The inertial suspension that we consider is subjected to a steady simple shear flow in the x

direction as shown in Fig. 1 . The equation of motion for the k th particle of the species i is
described by the Langevin equation 

d p 

(i) 
k 

dt 
= −ζi p 

(i) 
k + F 

imp 
k + m i ξ

(i) 
k , (2) 

where ζ i is the drag coefficient acting on the particle of species i from the environmental fluid,
and p 

(i) 
k ≡ m i ( v 

(i) 
k − ˙ γ y 

(i) 
k e x ) is the peculiar momentum of the k th particle with velocity v (i) k . Here,

˙ γ and e x are the shear rate and unit vector in the sheared ( x ) dir ection, r especti v ely. If har d-core
grains are subjected to the Stokes’ drag, ζ i is simply proportional to σ ( i ) and 

√ 

T env , where T env 

is the environmental tempera ture. W hen we adopt the mean diameter σ ≡ (σ (1) + σ (2) ) / 2 and
drag coefficient ζ ≡ (ζ1 + ζ2 ) / 2 , the coefficient ζ i satisfies ζi / ζ ∝ σ (i) / σ . For denser flows, the
dependence of ζ i on the parameters of the mixture is more complex [ 55 , 56 ]. In Eq. ( 2 ), F 

imp 
k 

expresses the impulsive force accounting for the collisions while the noise term ξ
(i) 
k (t) = ξ

(i) 
k,α

e α
(the unit vector e α in the α direction) satisfies the fluctuation–dissipation relation [ 57 ]: 

〈 ξ(i) 
k (t) 〉 = 0 , 

〈 
ξ

(i) 
k,α

(t ) ξ ( j) 

,β (t ′ ) 

〉 
= 

2 ζi T env 

m i 
δi j δk
 δαβδ(t − t ′ ) . (3) 

2.2. Boltzmann equation 

If the density of the solid particles is low enough, the Langevin equation ( 2 ) can be converted
into the Boltzmann kinetic equation for the distribution function f i ( r , v , t) for the species i of 
5/36 
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the dilute binary mixture of inertial suspensions. The set of coupled Boltzmann equations reads(
∂ 

∂t 
+ v · ∇ 

)
f i ( r , v , t ) = ζi 

∂ 

∂ v 
·
[(

v + 

T env 

m i 

∂ 

∂ v 

)
f i ( r , v , t ) 

]
+ 

∑ 

j 

J i j 
[
v | f i , f j 

]
, (4) 

with the collision integral [ 23 ] 

J i j 
[
v 1 | f i , f j 

] = σ
(i j)2 
12 

∫ 
d v 2 

∫ 
d ̂

 σ� ( ̂  σ · v 12 ) ( ̂  σ · v 12 ) 

×
[ 

1 

e 2 i j 

f i 
(
r , v ′′ 1 , t 

)
f j 
(
r , v ′′ 2 , t 

)− f i 
(
r , v 1 , t) f j ( r , v 2 , t 

)] 

, (5) 

where we have introduced σ
(i j) 
12 ≡ (σ (i) 

1 + σ
( j) 
2 ) / 2 . 

From the distribution f i , one can define the number density of species i as 

n i ( r , t) = 

∫ 
dv f i ( r , v , t) , (6) 

the flow velocity U i of species i as 

U i ( r , t) = 

∫ 
dv v f i ( r , v , t) , (7) 

and the partial temperature T i of species i as 
3 

2 

n i ( r , t) T i ( r , t) = 

∫ 
dv 

m 

2 

V ( r , t) 2 f i ( r , v , t) . (8) 

Here, V ( r , t) ≡ v − U ( r , t) is the peculiar velocity. The mean flow velocity U ( r , t) and the ki-
netic temperature T ( r , t) are defined, respecti v ely, as 

U = ρ−1 
∑ 

i 

ρi U i , T = 

∑ 

i 

νi T i , (9) 

where n ≡ n 1 + n 2 is the total number density, ρ i ≡ m i n i is the mass density of species i , ρ ≡ ρ1 

+ ρ2 is the total mass density, and ν i ≡ n i / n = N i / N is the fraction of species i . Here, N i is the
number of particles of species i and N = N 1 + N 2 . 

Let us consider the macroscopic velocity satisfying 

U 1 = U 2 = U = ˙ γ y e x , (10) 

where ˙ γ is the constant shear rate. In terms of the peculiar velocity V , Eq. ( 4 ) can be rewritten
as [

∂ 

∂t 
+ ( V + ˙ γ y e x ) · ∇ − ˙ γV y 

∂ 

∂V x 

]
f i ( r , V , t ) 

= ζi 
∂ 

∂ V 

·
[(

V + 

T env 

m i 

∂ 

∂ V 

)
f i ( r , V , t ) 

]
+ 

∑ 

j 

J i j 
[
V | f i , f j 

]
. (11) 

At a macroscopic le v el, the USF is characterized by uniform density and temperature and a
linear velocity field ( 10 ). In addition, at a more fundamental le v el, the USF is defined as that
w hich is spatiall y uniform in the Lagr angian fr ame moving with the velocity field ( 10 ). In this
frame, f i ( r , v , t) = f i ( V , t) and Eq. ( 11 ) is reduced to the equation for the velocity distribution
function: (

∂ 

∂t 
− ˙ γV y 

∂ 

∂V x 

)
f i ( V , t ) = ζi 

∂ 

∂ V 

·
[(

V + 

T env 

m i 

∂ 

∂ V 

)
f i ( V , t ) 

]
+ 

∑ 

j 

J i j 
[
V | f i , f j 

]
. (12) 

One of our theoretical goals is to determine the pressure tensor 

P αβ = P 

(1) 
αβ + P 

(2) 
αβ , (13) 
6/36 
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where the partial pressure tensor for species i is defined as 

P 

(i) 
αβ = 

∫ 
d V m i V αV β f i ( V ) . (14) 

We use Greek and Latin characters for { x , y , z } and the species {1, 2}, respecti v ely. The knowl-
edge of the pr essur e tensor allows one to obtain the rheological properties of the inertial
suspension. Needless to say, the flow under USF is independent of the spatial position by
its definition. Ther efor e, we can start from Eq. ( 12 ) as the basic equation for the theoretical
analysis. 

3. Rheology under uniform shear flows 
In this section, we present the results of rheology for a binary mixture of inertial suspension
under USF obtained from the Boltzmann equation ( 12 ). There are three subsections in this
section. In the first subsection, we summarize a gener al fr ame wor k to determine the rheology
of inertial suspensions by deriving a set of equations for the partial pr essur e tensors by mul-
tiplying both sides of Eq. ( 12 ) by m i V V and integrating over velocity. No approximations are
considered in this subsection, including the moment of the collision integral ( 5 ). In the second
subsection, we focus on the steady rheology within the frame wor k of the kinetic theory un-
der Grad’s moment method [ 58 ]. In the third subsection, we explain the concr ete procedur e to
determine the steady rheology. 

3.1. Moment equation for the pr essur e tensor 
As mentioned before, the set of equations for the pr essur e tensor of the species i is obtained by
m ultipl ying by m i V αV β both sides of the Boltzmann equation ( 12 ) and integrating over V . The
result is 

∂ 

∂t 
P 

(i) 
αβ + ˙ γ

(
δαx P 

(i) 
yβ + δβx P 

(i) 
yα

)
= −2 ζi 

(
P 

(i) 
αβ − n i T env δαβ

)
−

2 ∑ 

j=1 

�
(i j) 
αβ , i = 1 , 2 , (15) 

where �(i j) is the collisional moment 

�
(i j) 
αβ ≡ −

∫ 
d V m i V αV βJ i j 

[
V | f i , f j 

]
. (16) 

Let us introduce the anisotropic temperatures 

�T i ≡
P 

(i) 
xx − P 

(i) 
yy 

n i 
, �T ≡ P xx − P yy 

n 

. (17) 

It should be noted that there are some other anisotropic temperatures such as δT ≡ ( P xx −
P zz )/ n , which differ from �T in general. Ne v ertheless, we ignore the difference between �T and
δT in this paper, because (i) the detection of the difference between �T and δT is difficult [ 13 ]
and (ii) the linear approximation of Grad’s method used later yields P 

(i) 
yy = P 

(i) 
zz and so, �T = δT .

In general, δT differs from �T e v en for dilute systems (see Refs. [ 10 , 11 ]), although the previous
studies confirmed that the effect of δT 	 = �T is small [ 11 , 13 ]. We also want to indicate that
the difference between �T and δT is almost imperceptible in the simulations (see Appendix A )
despite the r equir ement of long and tedious calculations for evaluating this difference [ 13 ].
Ther efor e, for simplicity, we ignore the difference between �T and δT in this paper. 

If we adopt such a simplification, the evolution equations for T i , �T i , and P 

(i) 
xy are gi v en by 

∂ 

∂t 
T i = − 2 

3 n i 
˙ γ P 

(i) 
xy + 2 ζi ( T env − T i ) − 1 

3 n i 

2 ∑ 

j=1 

�(i j) 
αα , (18a) 
7/36 
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∂ 

∂t 
�T i = − 2 

n i 
˙ γ P 

(i) 
xy − 2 ζi �T i − 1 

n i 

2 ∑ 

j=1 

(
�(i j) 

xx − �(i j) 
yy 

)
, (18b) 

∂ 

∂t 
P 

(i) 
xy = − ˙ γ n i 

(
T i − 1 

3 

�T i 

)
− 2 ζi P 

(i) 
xy −

2 ∑ 

j=1 

�(i j) 
xy , (18c) 

where we have introduced the environmental temperature T env of the suspension liquid. Note
that the diagonal elements of the pr essur e tensor in dilute systems can be written as 

P 

(i) 
xx = n i 

(
T i + 

2 

3 

�T i 

)
, (19) 

P 

(i) 
yy = n i 

(
T i − 1 

3 

�T i 

)
. (20) 

In this paper, we adopt Einstein’s rule for the summation, i.e., P 

(i) 
αα = 

∑ 3 
α=1 P 

(i) 
αα. Upon deriving

Eq. ( 19 ), we recall that we have made use of the identity P 

(i) 
yy = P 

(i) 
zz . 

3.2. Kinetic theory of rheology for a dilute binary mixture of inertial suspension via 

Grad’s method 

3.2.1. Grad’s moment method for the velocity distribution function. To determine P 

(i) 
αβ , we

need to know the explicit form of the collisional moments �(i j) 
αβ . This r equir es knowledge

of the velocity distribution functions f i , which is an intricate problem even for the elastic
case. As for monodisperse inertial suspensions, a useful way to estimate �(i j) is to adopt
Grad’s moment method [ 58 ] in which the true f i is approximated by the trial Grad’s distri-
bution [ 11 , 12 , 15 , 16 , 26 , 58–60 ]: 

f i ( V ) ≈ f i, M 

( V ) 
(

1 + 

m i 

2 T i 
�

(i) 
αβV αV β

)
, (21) 

where 

�
(i) 
αβ = 

P 

(i) 
αβ

n i T i 
− δαβ, (22) 

and f i, M 

( V ) is the Maxwellian distribution at the temperature T i of the species i , i.e., 

f i, M 

( V ) = n i 

(
m i 

2 πT i 

)3 / 2 

exp 

(
−m i V 

2 

2 T i 

)
. (23) 

Note that in Eq. ( 21 ) we have taken into account that the mass and heat fluxes of a binary
mixture vanish in the USF state. 

With the use of the distribution ( 21 ), the integrals appearing in the expression of the colli-
sional moments �(i j) can be explicitly computed. After a lengthy calculation (see Appendix B
for the derivation), one gets 

�
(i j) 
αβ = 

2 

√ 

π

3 

n i n j m i j σ
(i j)2 
12 v 3 T 

(
εi + ε j 

εi ε j 

)3 / 2 

(1 + e i j ) 
{[

λi j − 1 

2 

m i j 

m i 
(1 + e i j ) 

]
δαβ

+ 2 

εi ε j 

(εi + ε j ) 2 

[(
1 + 

3 

5 

εi + ε j 

εi 
λi j 

)
�

(i) 
αβ −

(
1 − 3 

5 

εi + ε j 

ε j 
λi j 

)
�

( j) 
αβ

]}
, (24) 

with 

λi j ≡ 2 

m i ε j − m j εi 

( m i + m j )( εi + ε j ) 
+ 

1 

2 

m i j 

m i 
(3 − e i j ) . (25) 
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Here, we have introduced εi ≡ m i T / ( m T i ) , and the thermal velocity v T 

≡ √ 

2 T / m with the mean
mass m defined as m ≡ (m 1 + m 2 ) / 2 . Upon deriving Eq. ( 24 ), nonlinear terms in the traceless
stress tensor �(i) 

αβ have been neglected (linear Grad’s approximation). The expression ( 24 ) agrees

with a previous derivation of the collision integral �(i j) 
αβ [ 47 ]. 

Now, let us rewrite the set of Eqs. (18) in dimensionless forms. We introduce the partial di-
mensionless temperatures θ i and the anisotropic temperatures �θ i for species i as 

θi ≡ T i 

T env 
, �θi ≡ �T i 

T env 
. (26) 

We also introduce the global quantities θ ≡ ∑ 2 
i=1 νi θi and �θ ≡ ∑ 2 

i=1 νi �θi , where we recall
that ν i = n i / n . 

Then, the dimensionless collisional moment 

�
(i j) ∗
αβ ≡ �

(i j) 
αβ

n i σ
−1 
√ 

T 

3 
env / m 

(27) 

becomes 

�
(i j) ∗
αβ = C i j θ

3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 {[
λi j − 1 

2 

m i j 

m i 
(1 + e i j ) 

]
δαβ

+ 2 

εi ε j 

(εi + ε j ) 2 

[(
1 + 

3 

5 

εi + ε j 

εi 
λi j 

)
�

(i) 
αβ −

(
1 − 3 

5 

εi + ε j 

ε j 
λi j 

)
�

( j) 
αβ

]}
, (28) 

with 

C i j ≡ 8 

√ 

2 

π

ν j 

ν1 σ (1) ∗3 + ν2 σ (2) ∗3 
m 

∗
i j σ

(i j) ∗2 ϕ(1 + e i j ) , (29) 

where we have introduced the packing fraction 

ϕ ≡ π

6 

n (ν1 σ
(1)3 + ν2 σ

(2)3 ) . (30) 

In addition, the dimensionless reduced mass m 

∗
i j ≡ m 

∗
i m 

∗
j / (m 

∗
i + m 

∗
j ) , m 

∗
i ≡ m i / m , σ (i) ∗ ≡ σi / σ ,

σ (i j) ∗ ≡ σ (i j) / σ , and 

ξenv ≡
√ 

T env 

m 

1 

σζ
(31) 

characterizes the magnitude of the noise [ 13 ]. In terms of the temperature ratio 

ϑ ≡ T 1 

T 2 
, (32) 

the partial temperatures T 1 and T 2 can be written as 

T 1 

T 

= 

ϑ 

ν2 + ν1 ϑ 

, 
T 2 

T 

= 

1 

ν2 + ν1 ϑ 

, (33) 

θ1 = 

T 1 

T 

T 

T env 
= 

ϑθ

ν2 + ν1 ϑ 

, θ2 = 

θ

ν2 + ν1 ϑ 

. (34) 

Ther efor e, the parameters εi ( i = 1, 2) can be expressed as 

ε1 = 

m i 

m 

θ

θ1 
= 

m 1 

m 

ν2 + ν1 ϑ 

ϑ 

, ε2 = 

m 2 

m 

(ν2 + ν1 ϑ ) . (35) 

Using these variables, we rewrite the set of Eqs. (18) as 

∂ 

∂τ
θi = −2 

3 

˙ γ ∗θi �
(i) 
xy + 2 ζ ∗

i ( 1 − θi ) − 1 

3 

2 ∑ 

j=1 

�(i j) ∗
αα , (36a) 
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∂ 

∂τ
�θi = −2 ̇  γ ∗θi �

(i) 
xy − 2 ζ ∗

i �θi −
2 ∑ 

j=1 

(
�(i j) ∗

xx − �(i j) ∗
yy 

)
, (36b) 

∂ 

∂τ

(
θi �

(i) 
xy 

)
= − ˙ γ ∗

(
θi − 1 

3 

�θi 

)
− 2 ζ ∗

i θi �
(i) 
xy −

2 ∑ 

j=1 

�(i j) ∗
xy , (36c) 

where we have introduced the scaled time τ ≡ t 
√ 

T env / m / σ , the dimensionless shear rate ˙ γ ∗ ≡
˙ γ σ
√ 

m /T env = ˙ γ / ( ζ ξenv ) , and the dimensionless drag coefficient ζ ∗
i ≡ ζi σ

√ 

m /T env = ζi / ( ζ ξenv ) .
For the sake of convenience, some explicit forms of �(i j) ∗

αβ in Eq. ( 24 ) can be rewritten as 

�(i j) ∗
αα = 3 C i j θ

3 / 2 ˜ �(i j) 
αα , (37a) 

�(i j) ∗
xx − �(i j) ∗

yy = 2 C i j θ
3 / 2 
[ ˜ �(i j) 

xy �θi − ˜ �′ (i j) 
xy �θ j 

] 
, (37b) 

�(i j) ∗
xy = 2 C i j θ

3 / 2 
[ ˜ �(i j) 

xy θi �
(i) 
xy − ˜ �′ (i j) 

xy θ j �
( j) 
xy 

] 
, (37c) 

where 

˜ �(i j) 
αα ≡

(
εi + ε j 

εi ε j 

)3 / 2 
[ 

2 

m 

∗
i ε j − m 

∗
j εi 

( m 

∗
i + m 

∗
j )( εi + ε j ) 

+ 

m 

∗
i j 

m 

∗
i 

(1 − e i j ) 

] 

, (38a) 

˜ �(i j) 
xy ≡ θ−1 

i √ 

εi ε j (εi + ε j ) 

(
1 + 

3 

5 

εi + ε j 

εi 
λi j 

)
, (38b) 

˜ �′ (i j) 
xy ≡ θ−1 

j √ 

εi ε j (εi + ε j ) 

(
1 − 3 

5 

εi + ε j 

ε j 
λi j 

)
. (38c) 

3.3. Theor etical expr essions in the steady rheology 

Although the set of Eqs. (36) applies for time-dependent states, we are mainly interested in the
rheology in the steady state. Hereafter, we focus on the steady rheology. 

3.3.1. Theor etical flo w curves in the steady state. Let us solve the set of Eqs. (36) in the steady
state. In this case ( ∂ τ = 0), the left-hand side of the set (36) vanishes and one gets 

0 = −2 

3 

˙ γ ∗θi �
(i) 
xy + 2 ζ ∗

i ( 1 − θi ) −
2 ∑ 

j=1 

C i j ̃  �(i j) 
αα θ3 / 2 , (39a) 

0 = −2 ̇  γ ∗θi �
(i) 
xy − 2 ζ ∗

i �θi − 2 

2 ∑ 

j=1 

C i j θ
3 / 2 
[ ˜ �(i j) 

xy �θi − ˜ �′ (i j) 
xy �θ j 

] 
, (39b) 

0 = − ˙ γ ∗
(

θi − 1 

3 

�θi 

)
− 2 ζ ∗

i θi �
(i) 
xy − 2 

2 ∑ 

j=1 

C i j θ
3 / 2 
[ ˜ �(i j) 

xy θi �
(i) 
xy − ˜ �′ (i j) 

xy θ j �
( j) 
xy 

] 
. (39c) 

First, from Eq. ( 39a ), one obtains 

�(i) 
xy = 

3 

˙ γ ∗θi 

⎡ ⎣ ζ ∗
i (1 − θi ) − 1 

2 

2 ∑ 

j=1 

C i j ̃  �(i j) 
αα θ3 / 2 

⎤ ⎦ . (40) 

Substituting Eq. ( 40 ) into Eq. ( 39b ), the set of equations that determine �θ1 and �θ2 can be
rewritten as 

F i1 �θ1 + F i2 �θ2 = G i , (41) 
10/36 
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for i = 1, 2. Here, we have introduced the quantities 

F 11 (θ, ϑ ) ≡ ζ ∗
1 + 

[ 
C 11 

(˜ �(11) 
xy − ˜ �′ (11) 

xy 

)
+ C 12 ̃  �(12) 

xy 

] 
θ3 / 2 , F 12 (θ, ϑ ) ≡ −C 12 ̃  �′ (12) 

xy θ3 / 2 , 

(42a) 

F 22 (θ, ϑ ) ≡ ζ ∗
2 + 

[ 
C 22 

(˜ �(22) 
xy − ˜ �′ (22) 

xy 

)
+ C 21 ̃  �(21) 

xy 

] 
θ3 / 2 , F 21 (θ, ϑ ) ≡ −C 21 ̃  �′ (21) 

xy θ3 / 2 , 

(42b) 

and 

G 1 (θ, ϑ ) ≡ −3 ζ ∗
1 (1 − θ1 ) + 

3 

2 

[ 
C 11 ̃  �(11) 

αα + C 12 ̃  �(12) 
αα

] 
θ3 / 2 , (43a) 

G 2 (θ, ϑ ) ≡ −3 ζ ∗
2 (1 − θ2 ) + 

3 

2 

[ 
C 21 ̃  �(21) 

αα + C 22 ̃  �(22) 
αα

] 
θ3 / 2 . (43b) 

Then, �θ1 and �θ2 can be expressed as 

�θ1 (θ, ϑ ) = 

G 1 F 22 − G 2 F 12 

F 11 F 22 − F 12 F 21 
, �θ2 (θ, ϑ ) = 

G 2 F 11 − G 1 F 21 

F 11 F 22 − F 12 F 21 
. (44) 

Substituting Eqs. ( 40 ) and ( 44 ) into Eq. ( 39c ) leads to the relationship 

H 1 (θ, ϑ ) K 2 (θ, ϑ ) = H 2 (θ, ϑ ) K 1 (θ, ϑ ) , (45) 

where 

H 1 (θ, ϑ ) ≡ −2 

(
F 11 ̇  γ ∗θ1 �

(1) 
xy + F 12 ̇  γ ∗θ2 �

(2) 
xy 

)
, (46a) 

H 2 (θ, ϑ ) ≡ −2 

(
F 21 ̇  γ ∗θ1 �

(1) 
xy + F 22 ̇  γ ∗θ2 �

(2) 
xy 

)
, (46b) 

and 

K 1 (θ, ϑ ) ≡ θ1 − 1 

3 

�θ1 , K 2 (θ, ϑ ) ≡ θ2 − 1 

3 

�θ2 . (47) 

Equation ( 45 ) determines the relationship between the (reduced) global kinetic temperature θ
and the temperature ratio ϑ . For gi v en values of the mixture and at a gi v en value of θ , we
determine the temperature ratio ϑ [defined in Eq. ( 32 )] by numerically solving Eq. ( 45 ). As
will be shown in the next section, we find a solution of θ by fixing ϑ in the intermediate-shear
r egime wher e the size ratio becomes large by fixing the volume ratio. Once we determine this
relationship, we can draw the flow curve with the aid of Eq. ( 45 ), where the shear rate is gi v en
by 

˙ γ ∗ = 

√ 

H 1 (θ, ϑ ) 
K 1 (θ, ϑ ) 

. (48) 

4. Comparison between theory and simulation 

In this section, we compare the theoretical results obtained in Sect. 3 with those of EDL-
SHS [ 18 ]. We will consider binary mixtures constituted by species of the same mass density
[ m 1 / m 2 = ( σ (1) / σ (2) ) 3 ] and a (common) coefficient of restitution [ e 11 = e 12 = e 21 = e 22 ≡ e ]. In
the first subsection, we examine the case of an equimolar mixture ( ν1 = ν2 = 1/2 or N 1 = N 2 )
while the general case of N 1 	 = N 2 will be analyzed in the second subsection. In particular, we
find a new DST-like rheological phase transition for N 1 � N 2 when we fix the volume ratio,
i.e., a binary mixture in which the concentration of one of the species (the large tracer particles
1) is much smaller than that of the other species (the small particles 2). 
11/36 
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Fig. 2. Temperature ratio ϑ = T 1 / T 2 against the dimensionless shear rate ˙ γ ∗ for σ (1) / σ (2) = 1.4 (solid line 
and open circles), 2.0 (dashed line and open squares), and 5.0 (dotted line and open triangles) when we 
fix ϕ = 0.01, ξ env = 1.0, and ν1 = ν2 = 1/2 for (a) e = 0.5, (b) 0.7, (c) 0.9, and (d) 1. The lines and symbols 
correspond to the steady theoretical solutions ( 48 ) and the simulation results ( N = 1000), respecti v ely. 
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4.1. The rheology for N 1 = N 2 

In this subsection, we present the results of EDLSHS to verify the validity of the predictions
of the kinetic theory for N 1 = N 2 . In this case, we should note that the occupied volume is
dominated by large grains for a large size ratio σ (1) / σ (2) . For example, the ratio of occupied
volumes V ≡ N 1 σ

(1)3 / (N 2 σ
(2)3 ) becomes 125 if we adopt σ (1) / σ (2) = 5.0. The results of EDL-

SHS under the control of N 1 / N 2 with fixed V will be discussed in the next subsection. For the
comparison of the theoretical results with those of EDLSHS, we have used the steady solutions
of Eqs. (39) for both the elastic ( e = 1) and inelastic ( e = 0.5, 0.7, and 0.9) cases when we fix
N = 1000, ϕ = 0.01, ξ env = 1.0, and ν1 = ν2 = 1/2. 

Figures 2 (for ϑ = T 1 / T 2 ) and 3 (for η1 / η2 ) show some characteristic rheological flow curves
for binary mixtures for both elastic and inelastic cases. Here, we have introduced the viscosity
ηi for species i as 

ηi ≡ −P 

(i) 
xy / ̇  γ . (49) 

Now, let us focus on the plot of the temperature ratio ϑ ≡ T 1 / T 2 against the reduced shear rate
˙ γ ∗ in Fig. 2 . In the low-shear r egime, the temperatur e ratio converges to unity as shown in Fig. 2 .
This is because the temperatures of both the larger and smaller particles are determined by the
thermal noise of the background fluid. On the other hand, the temperature ratio converges to a
constant in the high-shear regime, which is determined by the interparticle inelastic collisions.
Note that this converged value agrees with the one previously obtained for granular gases [ 47 ].
12/36 
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Fig. 3. Viscosity ratio η1 / η2 against the dimensionless shear rate ˙ γ ∗ for σ (1) / σ (2) = 1.4 (solid line and 

open circles), 2.0 (dashed line and open squares), and 5.0 (dotted line and open triangles) when we fix 

ϕ = 0.01, ξ env = 1.0, and ν1 = ν2 = 1/2 for (a) e = 0.5, (b) 0.7, (c) 0.9, and (d) 1. The lines and symbols 
correspond to the steady theoretical solutions ( 49 ) and the simulation results ( N = 1000), respecti v ely. 
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Interestingly, our theory predicts the existence of a negative peak for ϑ in the intermediate-
shear regime. In particular, there exists a cusp for smaller values of σ (1) / σ (2) at a certain shear
rate ˙ γ ∗

c (at which | ∂ ϑ/∂ ̇  γ ∗| → ∞ ; see Fig. 2 ). Correspondingly, the ratios of the other quantities
such as η1 / η2 exhibit cusps around ˙ γ ∗

c (see Fig. 3 ). It is worth remarking that these observables
exhibit common features since (i) they do not have sharp minima e v en near the DST-like tran-
sition point of one of two species, (ii) the deviations from unity become larger with increasing
size ratio σ (1) / σ (2) , and (iii) the ratios converge to values different from unity e v en in the low-
shear limit. These singularities ar e inher ently connected with the DST-like transition observed
(see Appendix C ) for the global kinetic temperature θ and the shear viscosity η∗ = η∗

1 + η∗
2 

[ η∗
i ≡ ηi / (nT env / ζ ) with Eq. ( 49 )] because the cusps vanish as the size ratio increases. Indeed,

the flow curves for ϑ and η1 / η2 become smooth for σ (1) / σ (2) = 5.0 (see Figs. 2 and 3 ). 
Let us also discuss the existence of cusps in the flow curves observed in Figs. 2 and 3 when the

size ratio is small. As shown in Fig. 4 , the partial viscosities η∗
i also have discontinuous jumps

when the mean viscosity η∗ = η∗
1 + η∗

2 also has this jump. At points ( ̇  γc ) where ∂ η∗
i /∂ ̇  γ ∗ → ±∞

( i = 1, 2) are satisfied, the viscosity ratio also di v erges as 

∂ 

∂ ̇  γ ∗

(
η∗

1 

η∗
2 

)
= 

1 

η∗2 
2 

(
∂η∗

1 

∂ ̇  γ ∗ η∗
2 − η∗

1 
∂η∗

2 

∂ ̇  γ ∗

)
→ ±∞ . (50) 

This is the reason for the existence of the cusps. 
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Fig. 4. Plots of the dimensionless partial viscosities η∗
1 and η∗

2 against the dimensionless shear rate ˙ γ ∗ for 
(a) σ (1) / σ (2) = 1.4 and (b) 5.0 when we fix ϕ = 0.01, ξ env = 1.0, and ν1 = ν2 = 1/2. 

Fig. 5. (a) Temper ature r atio ϑ against the dimensionless shear rate ˙ γ ∗ for ν1 = 1.0 × 10 

−3 (solid line 
and open circles), 3.0 × 10 

−3 (dashed line and open squares), 1.0 × 10 

−2 (dotted line and open upper 
triangles), and 2.0 × 10 

−2 (dot–dashed line and open lower triangles) when we fix ϕ = 0.01, ξ env = 1.0, 
e = 0.9, and V = 1 . (b) Viscosity ratio η1 / η2 against the dimensionless shear rate ˙ γ for the same set of 
parameters. All results of simulations are obtained for N = 1000. 
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It is remar kab le that the predictions of kinetic theory agree well with the simulation results of 
EDLSHS without any fitting parameter. Ther efor e, we conclude that our kinetic theory based
on the Boltzmann equation with Grad’s method is reliable to describe the rheology, at least for
N 1 = N 2 . 

To close this subsection, we also note that the flow curves become discontinuous and con-
tinuous depending on the other parameters of the mixture. These behaviors are discussed in
Appendix D . 

4.2. The rheology for N 1 	 = N 2 

In this subsection, we compare the simulation results for the rheology for N 1 	 = N 2 with those
deri v ed from the theoretical predictions by fixing the volume ratio V ≡ N 1 σ

(1)3 / (N 2 σ
(2)3 ) =

1 . This means that the volume occupied by the large particles is the same as that by the
small ones. From the definition of the volume ratio, the size ratio correspondingly becomes
σ (1) / σ (2) = ( N 2 / N 1 ) 1/3 = [(1 − ν1 )/ ν1 ] 1/3 . Thus, as the size ratio increases, the number of colli-
sions between large particles decreases. On the other hand, the impulse from the larger particle
at each collision increases as compared with that from the smaller particle. 

Figures 5 (a) and (b) plot the results of ϑ and η1 / η2 , respecti v ely, against ˙ γ ∗ for ν1 = 1.0 × 10 

−3 
14/36 
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Fig. 6. (a) Temperature ratio ϑ and (b) viscosity ratio η1 / η2 against the dimensionless shear rate ˙ γ ∗

for N = 1000 (open circles), 10 000 (open squares), and 30 000 (open triangles) when we fix ϕ = 0.01, 
ξ env = 1.0, e = 0.9, V = 1 , and ν1 = 1.0 × 10 

−3 . The solid and dashed lines indicate the theoretical curves 
for Eqs. ( 48 ) and ( 49 ) and the tracer limit explained in Appendix E , respecti v ely. The dotted and dot–
dashed lines r epr esent the granular gas limits for Eqs. ( 48 ) and ( 49 ) and that under the tracer limit in 

Appendix E , respecti v ely. 
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(solid line and open circles), 3.0 × 10 

−3 (dashed line and open squares), 1.0 × 10 

−2 (dotted line
and open upper triangles), and 2.0 × 10 

−2 (dot–dashed line and open lower triangles) by fixing
ϕ = 0.01, e = 0.9, and ξ env = 1.0. Here, the corresponding size ratios become (a) σ (1) / σ (2) = 10.0,
(b) 6.93, (c) 4.63, and (d) 3.66, respecti v ely. It should be noted that the number of particles of 
EDLSHS is fixed as N = 1000 in Fig. 5 . It is quite apparent that the theory compares well with
the simulation results in a wide range of shear rates and without any fitting parameters when
the size ratio is not large (or equivalently, ν1 � 3.0 × 10 

−3 in Fig. 5 ). On the other hand, some
discrepancies between the theoretical prediction and the EDLSHS simulations are observed in
the high-shear regime when the size ratio becomes sufficiently large (see the data for ν1 = 1.0
× 10 

−3 in Fig. 5 ). In particular, at ˙ γ ∗ ≈ 30 , the theory predicts a new DST-like transition in
which the flow curve becomes S-shaped; in this region the temperature ratio versus the shear
rate becomes a multivalued function [see Fig. 5 (a)]. Here, the upper branch becomes almost
100 times larger compared to the lower branch. This behavior is analogous to the ignited–
quenched transitions for the shear-rate dependence of both the temperature and the viscosity
for the monodisperse case [ 13 , 15 ]. (See Appendix D for the minimum value of the size ratio at
which this transition occurs.) The origin of the discrepancy between theory and simulations is
essentially associated with the suppression of the collisions between the large (tracer) particles
because the number of them becomes N 1 ∼ O(1) for σ (1) / σ (2) � 1, as discussed in the following.

To verify our conjecture, we examine the simulation results obtained for different large sys-
tem sizes: N = 10 000 and 30 000. We find that the disagreement between theory and simula-
tion tends to decrease as the number of particles in the EDLSHS increases. As an illustration,
Fig. 6 shows the dependence of both the temperature ratio ϑ and the viscosity ratio η1 / η2 on the
number of particles N when we fix ν1 = 1.0 × 10 

−3 . Here, the relationships between the total
number of particles and that of large particles correspond to ( N , N 1 ) = (1000, 1), (10 000, 10),
and (30 000, 30). As N 1 increases, the effect of collisions between large particles on rheology be-
comes non-negligible. The collisions between large particles affect the flow curve in particular
in the high-shear r egime. Corr espondingly, the quantities discontinuously change at a certain
shear rate; this shear rate depends on the number of particles. The above results suggest that
(i) the discontinuous change predicted by the kinetic theory can be uni v ersally observ ed in the
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Fig. 7. Time evolution of the temperature ratio ϑ when we fix ϕ = 0.01, ξ env = 1.0, e = 0.9, N = 30 000, 
V = 1 , ˙ γ ∗ = 5 . 6 × 10 

2 , and ν1 = 1.0 × 10 

−3 , where we have introduced the dimensionless time τ ≡
t 
√ 

T env / m / σ . The solid line refers to the solution obtained for a binary mixture assisted by Eqs. ( 45 ) 
and ( 48 ) with ν1 = 1.0 × 10 

−3 while the dashed line corresponds to the analytical result obtained in 

Appendix E in the tracer limit. 
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thermodynamic limit and (ii) the picture of an impurity enslaved to the host fluid (namely,
when the tr acer–tr acer collisions are neglected) is insufficient to capture the above discontin-
uous transition. The fact that the seemingly natural “enslaved impurity” pictur e br eaks down
for large shear rates has been shown to also be responsible for the extreme violation of energy
equipartition in a sheared granular mixture in the tracer limit [ 61 , 62 ]. 

We can also understand this finite-size effect of EDLSHS when we observe the time evolution
of the temper ature r atio ϑ for a very large system. Figure 7 exhibits the typical evolution of 
ϑ for N = 30 000. The solid line refers to the solution obtained for a binary mixture assisted
by Eq. ( 45 ) with ν1 = 1.0 × 10 

−3 while the dashed line corresponds to the analytical result
obtained in Appendix E in the tracer limit (i.e., by neglecting collisions between tracer particles
and by assuming that the excess species 2 is not affected by the presence of tracer particles).
We observe transient behavior in the result of EDLSHS from the tracer limit line (dashed line)
to that of the (complete) solution including collisions between large particles (solid line). It is
apparent that collisions between large tracer particles do not play any role in the early stage
since the temperature ratio measured in the simulation agrees well with the tracer limit line (see
the data for τ � 2 in Fig. 7 ). As time goes on, howe v er, those contributions become important
for the rheology of the system. As a result, the temper ature r atio measured in EDLSHS starts
to increase abruptly (see the data for τ � 3 in Fig. 7 ), and tends to converge to the asymptotic
theoretical value ( τ � 5). 

Let us check how the discontinuous changes of the temper ature r atio and the viscosity ratio
appear in the thermodynamic limit. According to Fig. 5 , there must exist a critical value ν1, c of 
the fraction in the range 1.0 × 10 

−3 < ν1, c < 3.0 × 10 

−3 . The discontinuity is characterized by a
point (i) at which ∂ ϑ/∂ ̇  γ ∗ → ∞ in the higher temperature regime and where (ii) the curve of ϑ
versus ˙ γ ∗ discontinuously changes in the lower r egime. Her e, we introduce a critical temperature
ratio ϑ c , which satisfies the identities (

∂ ̇  γ ∗

∂ϑ 

)
e,ϕ,ν1 

= 0 , 

(
∂ 2 ˙ γ ∗

∂ϑ 

2 

)
e,ϕ,ν1 

= 0 . (51) 

The relations ( 51 ) are analogous to the critical point at the first-order transition [ 15 ]. Figure 8
shows the dependence of both the phase coexistence line ( ∂ ̇  γ ∗/∂ϑ = 0 ) and the spinodal line
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Fig. 8. (a) Plot of the phase coexistence line ∂ ̇  γ ∗/∂ϑ = 0 (solid lines) and the spinodal line ∂ 2 ˙ γ ∗/∂ϑ 

2 = 0 

(dashed line) for ϕ = 0.01, ξ env = 1.0, e = 0.9, and V = 1 . (b) Plot of the projection of the phase 
coexistence line and the spinodal line onto the ( ν1 , ϑ) plane. The point indicates the critical point 
(ν1 , ˙ γ ∗, ϑ ) � (2 . 28 × 10 

−2 , 45 . 9 , 28 . 9) . 
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( ∂ 2 ˙ γ ∗/∂ϑ 

2 = 0 ) on the fraction fraction ν1 for ϕ = 0.01, ξ env = 1.0, e = 0.9, and V = 1 . As
e xpected, these lines conv erge to the critical values ν1 � 2.28 × 10 

−2 , ˙ γ ∗ � 45 . 9 , and ϑ � 28.9.
The finding of a DST-like rheological phase transition in the large shear-rate region if the size
ratio is large on fixing the volume ratio is one of the most inter esting r esults achie v ed in this
paper. 

4.3. Velocity distribution function 

In this subsection, let us compare the velocity distribution function (VDF) ( 21 ) of Grad’s mo-
ment method with the one obtained by means of simulations. As a complement, we also include
the exact VDF of a BGK-like kinetic model in the large shear limit (see Appendix F ). 

For later analysis, let us introduce the dimensionless velocity c and the distribution function
g i, G 

( c ) as 

c ≡
√ 

m i 

2 T i 
V , g i, G 

( c ) ≡
(

2 T i 

m i 

)3 / 2 f i, G 

( V ) 
n i 

, (52) 

where f i , G 

stands for Grad’s VDF ( 21 ) for species i . Now, we focus on the VDF of the larger
particles 1. It is convenient to consider the marginal distribution g 

(xy ) 
1 , G 

instead of using the full

3D VDF. The distribution g 

(xy ) 
1 , G 

is defined as 

g 

(xy ) 
1 , G 

(c x , c y ) = 

∫ ∞ 

−∞ 

dc z g 1 , G 

( c ) 

= g 

(xy ) 
1 , M 

(c x , c y ) 

[ 

1 + 

( 

1 

2 

+ c 2 y − 2 c 2 x 

) 

�(1) 
yy + 2 c x c y �(1) 

xy 

] 

, (53) 

where 

g 

(xy ) 
1 , M 

(c x , c y ) = 

1 

π
e −( c 2 x + c 2 y ) . (54) 

The VDF g 

(x,y ) 
1 , G 

(c x , c y ) in Eq. ( 53 ) can characterize the anisotropy of the VDF induced by the
shear flow. 

Figures 9 and 10 present g 

(xy ) 
1 , G 

(c x , c y ) − g 

(xy ) 
1 , M 

(c x , c y ) for ˙ γ ∗ = 0 . 32 , 1.0, 3.2, 10, and 32. These
values of the shear rate belong to the lower (0.32 and 1.0), intermediate (3.2 and 10), and higher
17/36 
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Fig. 9. Velocity distribution functions of the larger particles g 

(xy ) 
1 , G 

(c x , c y ) − g 

(xy ) 
1 , M 

(c x , c y ) in the ( c x , c y ) plane 
for (a) ˙ γ ∗ = 0 . 32 , (b) 1.0, (c) 3.2, (d) 10, and (e) 32 when we fix ϕ = 0.01, e = 0.9, ξ env = 1.0, σ (1) / σ (2) = 2.0, 
and ν1 = ν2 = 1/2. The color plot corresponds to the simulation results. The solid, dashed, dotted, and 

dot–dashed lines r epr esent the contours 0.2 c max , 0.1 c max , −0.1 c max , and −0.2 c max obtained from Grad’s 
method ( 53 ) with (a) c max = 0.02, (b) 0.03, (c) 0.2, and (d, e) 0.1, respecti v ely. 

Fig. 10. Velocity distribution functions of the larger particles g 

(xy ) 
1 , G 

(c x , c y ) − g 

(xy ) 
1 , M 

(c x , c y ) in the ( c x , c y ) 
plane for (a) ˙ γ ∗ = 0 . 32 , (b) 1.0, (c) 3.2, (d) 10, and (e) 32 when we fix ϕ = 0.01, e = 1.0, ξ env = 1.0, 
σ (1) / σ (2) = 2.0, and ν1 = ν2 = 1/2. The color plot corresponds to the simulation results. The solid, dashed, 
dotted, and dot–dashed lines r epr esent the contours 0.2 c max , 0.1 c max , −0.1 c max , and −0.2 c max obtained 

from Grad’s method ( 53 ) with (a) c max = 0.02, (b) 0.03, (c) 0.2, (d) 0.05, and (e) 0.02, respecti v ely. 
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Fig. 11. Velocity distribution functions of the larger particles g 

(xy ) 
1 , G 

(c x , c y ) − g 

(xy ) 
1 , M 

(c x , c y ) in the ( c x , c y ) 
plane for (a) ˙ γ ∗ = 0 . 32 , (b) 1.0, (c) 3.2, (d) 10, and (e) 32 when we fix ϕ = 0.01, e = 0.9, ξ env = 1.0, 
σ (1) / σ (2) = 2.0, and ν1 = ν2 = 1/2. The color plot corresponds to the simulation results. The solid, dashed, 
dotted, and dot–dashed lines r epr esent the contours 0.2 c max , 0.1 c max , −0.1 c max , and −0.2 c max obtained 

from the BGK model ( F16 ) with (a) c max = 0.02, (b) 0.03, (c) 0.2, and (d, e) 0.1, respecti v ely. 
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(32) branches of the flow curve for e = 0.9 in Fig. 9 and e = 1 in Fig. 10 , respectively. It is
remar kab le that Grad’s distribution works well in the wide range of the shear rate as shown in
Figs. 9 and 10 . The corr esponding tr ends ar e clearl y observed w hen we consider the 1D VDF
in the x direction (see Appendix G ). Ne v ertheless, it seems that the enhancement of the VDF
in the shear direction is underestimated in the theoretical prediction. It should be noted that
this enhancement is suppressed for the 1D VDF, as shown in Appendix G . 

We also check whether the VDF obtained from the BGK-like model can be used (see Ap-
pendix F for details). As expected, the deviation of the distribution of the BGK-like model
from that of the simulation is large for the low-shear regime. On the other hand, the agreement
between BGK and simulations is reasonable in the high-shear regime (see Fig. 11 ). In partic-
ular, the BGK distribution is more accurate than Grad’s in the small-velocity region. In any
case, it is important to recall that the BGK distribution obtained in A ppendix F onl y holds
when T env = 0. This means that the possible discrepancies between the BGK distribution and
simulations can be in part due to the fact that T env 	 = 0 in the simulations. 

5. Discussion and conclusion 

In this paper, we have theoretically deri v ed the rheology of a dilute binary mixture of inertial
suspensions under USF. As in previous papers [ 15 , 16 ], two different but complementary ap-
proaches have been employed to solve the set of coupled Boltzmann kinetic equations. On the
analytical side, Grad’s moment method [ 58 ] has been used to a pproximatel y solve the Boltz-
mann equation. Since the mass and heat fluxes vanish in the USF, only the partial traceless
stress tensors �(i) 

αβ are retained in the trial distribution functions f i ( V ) . Then, the theoretical
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predictions for the temper ature r atio T 1 / T 2 and the viscosity ratio η1 / η2 wer e compar ed against
computer simulations based on the e v ent-dri v en Lange vin simulation method. We hav e con-
firmed that the theor etical pr edictions agr ee with the results of simulation for hard spheres for
various size ratios in most parameter regions. We have found that the temper ature r atio and
viscosity ratio discontinuously change at a certain shear rate as the size ratio increases. This
feature cannot be captured by simulations when the size of the system is small. The above tran-
sition is similar to DST in dense suspensions or the first-order phase transition at equilibrium.
Although the tracer limit of the theory is validated when the system size is small, the collisions
between large tracer particles play dominant roles in the high-shear regime. We have also com-
pared the velocity distribution functions obtained by Grad’s method and the BGK-like model
with those obtained from the simulations. 

Ther e ar e se v eral future perspecti v es. First, we plan to analyze the mass transport of impu-
rities in a sheared inertial suspension. As already done in Ref. [ 27 ], a Cha pman–Ensko g-like
expansion around the local shear flow distribution obtained here will be considered to identify
the shear-ra te-dependent dif fusion D αβ , pr essur e diffusion D p , αβ , and thermal diffusion D T , αβ

tensors. The determination of D αβ , D p , αβ , and D T , αβ will be discussed in a forthcoming paper.
More importantly, knowledge of the above diffusion tensors will allow us to analyze segregation
by thermal diffusion [ 50 ]. In the present paper, we have restricted ourselves to homogeneous
systems, which makes the analysis easier than that for inhomogeneous systems. Howe v er, de-
pending on the size or density of particles, the segregation is ine vitab le when one considers
binary mixtures. In a sheared system, segregation has been observed if there exists an inho-
mogeneous velocity profile [ 42 ]. However, the velocity profile remains linear in our simulations
as far as we have checked. This linearity is violated if we consider systems under gravity or
wall-dri v en sheared systems. We belie v e that this scenario of segregation can be described by a
dilute system described by the Boltzmann equation. We will analyze such systems in the near
future. 

Needless to say, we also plan to extend our analysis to moderately dense systems with the
aid of the Enskog equation. The extension is tough but straightforward using a similar proce-
dure to that f ollowed f or monodisperse systems [ 16 ]. This study will also be carried out in the
future. 
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Fig. A1. Plots of the ratio of the second to the first difference of each species i , | N 

(i) 
2 /N 

(i) 
1 | for σ (1) / σ (2) = 2.0 

and 5.0 when we fix ϕ = 0.01, ξ env = 1.0, e = 0.9, and ν1 = ν2 = 1/2. 
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Appendix A. Difference between P 

(i) 
yy and P 

(i) 
zz 

In this appendix, we show the difference between P 

(i) 
yy and P 

(i) 
zz . As mentioned in the main

text, the second normal str ess differ ence of species i , N 

(i) 
2 ≡ P 

(i) 
yy − P 

(i) 
zz is, in general, nonzero.

Howe v er, the second difference N 

(i) 
2 is treated as zero in the dilute limit of the kinetic theory.

Figure A1 shows the plot of the ratio of the second to the first normal str ess differ ences against
the shear rate for σ (1) / σ (2) = 2.0 and 5.0 obtained from the simulations when we fix ϕ = 0.01,
ξ env = 1.0, e = 0.9, and ν1 = ν2 = 1/2. Here, we have introduced the first normal stress dif-
ference of species i as N 

(i) 
1 ≡ P 

(i) 
xx − P 

(i) 
yy . Howe v er, the second difference N 

(i) 
2 has values much

smaller than the values of N 

(i) 
1 in the wide range of shear rates consider ed. Ther efor e, we do

not consider the difference between them in this paper. It is noted that the second normal stress
difference cannot be neglected when the volume fraction is finite. 

A ppendix B . Deriv ation of �(i j) 
αβ under the linear appro ximation of Gr ad’ s e xpansion 

In this appendix, we obtain the expression ( 24 ) for the collisional moment �(i j) 
αβ . For this pur-

pose, we introduce the dimensionless velocities 

⎧ ⎪ ⎨ ⎪ ⎩ 

G = 

m i V 1 + m j V 2 

(m i + m j ) v T 

, 

g = 

V 1 − V 2 

v T 

, 

(B1) 

and equivalently 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

V 1 = 

(
G + 

m i j 

m i 
g 

)
v T 

, 

V 2 = 

(
G − m i j 

m j 
g 

)
v T 

. 

(B2) 
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Let us rewrite f i ( V 1 ) f j ( V 2 ) in terms of G and g . Using Grad’s trial distribution ( 21 ), we can
rewrite f i ( V 1 ) f j ( V 2 ) as 

f i ( V 1 ) f j ( V 2 ) 

= n i n j 

(
m 

2 πT 

)3 (
εi ε j 

)3 / 2 

× exp 

[ 

−(εi + ε j ) G 

2 − 2 

(
m i j 

m i 
εi − m i j 

m j 
ε j 

)
( G · g ) −

( 

m 

2 
i j 

m 

2 
i 

εi + 

m 

2 
i j 

m 

2 
j 

ε j 

) 

g 

2 

] 

×
[

1 + εi �
(i) 
αβ

(
G α + 

m i j 

m i 
g α

)(
G β + 

m i j 

m i 
g β

)
+ ε j �

( j) 
αβ

(
G α − m i j 

m j 
g α

)(
G β − m i j 

m j 
g β

)]
(B3) 

We note that nonlinear contributions of the stress tensor �(i) 
αβ are ignored in this appendix. Let

us rewrite the argument of the exponential part in Eq. ( B3 ) as 

(εi + ε j ) G 

2 + 2 

(
m i j 

m i 
εi − m i j 

m j 
ε j 

)
( G · g ) + 

( 

m 

2 
i j 

m 

2 
i 

εi + 

m 

2 
i j 

m 

2 
j 

ε j 

) 

g 

2 

= (εi + ε j ) 
[

G + 

m j εi − m i ε j 

(m i + m j )(εi + ε j ) 
g 

]2 

+ 

εi ε j 

εi + ε j 
g 

2 . (B4) 

Introducing G 

′ as 

G 

′ ≡ G + 

m j εi − m i ε j 

( m i + m j )( εi + ε j ) 
g , (B5) 

one gets the identities ⎧ ⎪ ⎨ ⎪ ⎩ 

G + 

m i j 

m i 
g = G 

′ + 

ε j 

εi + ε j 
g , 

G − m i j 

m j 
g = G 

′ − εi 

εi + ε j 
g . 

(B6) 

Thus, we can rewrite Eq. ( B3 ) as 

f i ( V 1 ) f j ( V 2 ) = n i n j v −3 
T 

(
εi ε j 

)3 / 2 
π−3 exp 

[
−(εi + ε j ) G 

′ 2 − εi ε j 

εi + ε j 
g 

2 
]

×
[

1 + εi �
(i) 
αβ

(
G 

′ 
α + 

ε j 

εi + ε j 
g α

)(
G 

′ 
β + 

ε j 

εi + ε j 
g β

)
+ ε j �

( j) 
αβ

(
G 

′ 
α − εi 

εi + ε j 
g α

)(
G 

′ 
β − εi 

εi + ε j 
g β

)]
. (B7) 

Let us rewrite Eq. ( 16 ). From Eqs. ( 1 ) and ( B5 ), one gets 

m i v ′ 1 ,αv ′ 1 ,β − m i v 1 ,αv 1 ,β = −m i j (1 + e i j ) v 2 T 

( g ·̂ σ ) 

×
[(

G α + 

m i j 

m i 
g α

)̂ σβ + 

(
G β + 

m i j 

m i 
g β

)̂ σα − m i j 

m i 
(1 + e i j )( g ·̂ σ ) ̂  σα̂ σβ

]
= −m i j (1 + e i j ) v 2 T 

( g ·̂ σ ) 

×
[
G 

′ 
α̂ σβ + G 

′ 
β̂ σα + 

ε j 

εi + ε j 
(g α̂ σβ + g β̂ σα ) − m i j 

m i 
( 1 + e i j )( g ·̂ σ ) ̂  σα̂ σβ

]
.

(B8) 
22/36 



PTEP 2023 , 113J01 S. Takada et al. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/11/113J01/7291962 by U

niversidad de Extrem
adura user on 13 N

ovem
ber 2023
Using Eqs. ( B3 ) and ( B8 ), we can rewrite the collisional moment �(i j) 
αβ as 

�
(i j) 
αβ = m i j (1 + e i j ) n i n j σ

(i j)2 (εi ε j ) 3 / 2 v 3 T ̃

 �
(i j) 
αβ , (B9) 

with the linear collisional moment 

˜ �
(i j) 
αβ ≡ π−3 

∫ 
d G 

′ 
∫ 

d g 

∫ 
d ̂

 σ�( ̂  σ · g )( ̂  σ · g ) 2 exp 

[
−(εi + ε j ) G 

′ 2 − εi ε j 

εi + ε j 
g 

2 
]

×
[

G 

′ 
α̂ σβ + G 

′ 
β̂ σα + 

ε j 

εi + ε j 
(g α̂ σβ + g β̂ σα ) − m i j 

m i 
( 1 + e i j )( g ·̂ σ ) ̂  σα̂ σβ

]
×
[

1 + εi �
(i) 
γ δ

(
G 

′ 
γ + 

ε j 

εi + ε j 
g γ

)(
G 

′ 
δ + 

ε j 

εi + ε j 
g δ

)
+ ε j �

( j) 
γ δ

(
G 

′ 
γ − εi 

εi + ε j 
g γ

)(
G 

′ 
δ − εi 

εi + ε j 
g δ

)]
. (B10) 

For further calculation, let us first introduce ̃  I (
 ) i j ( ̂  σ ) and ̃

 I (
 ) i j,α( ̂  σ ) as { ˜ I (
 ) i j ( ̂  σ ) ˜ I (
 ) i j,α( ̂  σ ) 

} 

≡ 1 

π3 

∫ 
d G 

′ 
∫ 

d g �( ̂  σ · g )( ̂  σ · g ) 
 
{ 

1 

g α

} 

exp 

[
−(εi + ε j ) G 

′ 2 − εi ε j 

εi + ε j 
g 

2 
]

×
[

1 + εi �
(i) 
γ δ

(
G 

′ 
γ + 

ε j 

εi + ε j 
g γ

)(
G 

′ 
δ + 

ε j 

εi + ε j 
g δ

)
+ ε j �

( j) 
γ δ

(
G 

′ 
γ − εi 

εi + ε j 
g γ

)(
G 

′ 
δ − εi 

εi + ε j 
g δ

)]

= 

1 

π3 / 2 (εi + ε j ) 3 / 2 

∫ 
d g �( ̂  σ · g )( ̂  σ · g ) 
 

{ 

1 

g α

} 

exp 

(
− εi ε j 

εi + ε j 
g 

2 
)
P 1 ({ g} ) , 

(B11) 

with 

P 1 ({ g} ) ≡ 1 + 

εi ε
2 
j 

(εi + ε j ) 2 
g γ g δ�

(i) 
γ δ + 

ε2 
i ε j 

(εi + ε j ) 2 
g γ g δ�

( j) 
γ δ . (B12) 

We also introduce ̂  I (
 ) i j,α( ̂  σ ) as 

̂ I (
 ) i j,α( ̂  σ ) ≡ 1 

π3 

∫ 
d G 

′ 
∫ 

d g �( ̂  σ · g )( ̂  σ · g ) 
 G 

′ 
α exp 

[
−(εi + ε j ) G 

′ 2 − εi ε j 

εi + ε j 
g 

2 
]

×
[

1 + εi �
(i) 
γ δ

(
G 

′ 
γ + 

ε j 

εi + ε j 
g γ

)(
G 

′ 
δ + 

ε j 

εi + ε j 
g δ

)
+ ε j �

( j) 
γ δ

(
G 

′ 
γ − εi 

εi + ε j 
g γ

)(
G 

′ 
δ − εi 

εi + ε j 
g δ

)]
= 

1 

π3 / 2 (εi + ε j ) 3 / 2 

∫ 
d g �( ̂  σ · g )( ̂  σ · g ) 
 exp 

(
− εi ε j 

εi + ε j 
g 

2 
)
Q 1 ,α({ g} ) , (B13) 

with 

Q 1 ,α({ g} ) = 

εi ε j 

(εi + ε j ) 2 
g γ

(
�(i) 

αγ − �( j) 
αγ

)
. (B14) 
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Using Eqs. ( B11 ) and ( B13 ), Eq. ( B10 ) is rewritten as ˜ �
(i j) 
αβ ≡

∫ 
d ̂

 σ
{ ̂ I (2) 

i j,α( ̂  σ ) ̂  σβ + ̂

 I (2) 
i j,β ( ̂  σ ) ̂  σα

+ 

ε j 

εi + ε j 

[ ˜ I (2) 
i j,α( ̂  σ ) ̂  σβ + ̃

 I (2) 
i j,β ( ̂  σ ) ̂  σα

] 
− m i j 

m i 
(1 + e i j ) ̃  I (3) 

i j ( ̂  σ ) ̂  σα̂ σβ

}
. (B15) 

Let us go further by integrating over ̂  σ. Here, the following results are needed: ∫ 
d ̂

 σ�( ̂  σ · g )( ̂  σ · g ) n ̂ σ = βn +1 g 

n −1 g , (B16) ∫ 
d ̂

 σ�( ̂  σ · g )( ̂  σ · g ) n ̂ σα̂ σβ = 

βn 

n + 3 

g 

n −2 (ng αg β + g 

2 δαβ ) , (B17) 

with 

βn = π

�

(
n + 1 

2 

)
�

(
n + 3 

2 

) = 

2 π

n + 1 

. (B18) 

With the aid of Eqs. ( B16 )–( B17 ), one gets ∫ 
d ̂

 σ̂ I (2) 
i j,α( ̂  σ ) ̂  σβ = 

β3 

π3 / 2 (εi + ε j ) 3 / 2 

∫ 
d g gg β exp 

(
− εi ε j 

εi + ε j 
g 

2 
)
Q 1 ,α({ g} ) 

= 

2 

√ 

π

3 

(εi ε j ) −3 / 2 1 √ 

εi ε j (εi + ε j ) 

(
�

(i) 
αβ − �

( j) 
αβ

)
, (B19) 

and thence ∫ 
d ̂

 σ̂ I (2) 
i j,α( ̂  σ ) ̂  σβ + 

∫ 
d ̂

 σ̂ I (2) 
i j,β ( ̂  σ ) ̂  σα = 

2 

√ 

π

3 

(εi ε j ) −3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 2 εi ε j 

(εi + ε j ) 2 

(
�

(i) 
αβ − �

( j) 
αβ

)
. 

(B20) 

Similarly, one achie v es the result ∫ 
d ̂

 σ˜ I (2) 
i j,α( ̂  σ ) ̂  σβ = 

β3 

π3 / 2 (εi + ε j ) 3 / 2 

∫ 
d g gg αg β exp 

(
− εi ε j 

εi + ε j 
g 

2 
)
P 1 ({ g} ) 

= 

2 

√ 

π

3 

(εi ε j ) −3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 [
δαβ + 

6 

5 

(
ε j 

εi + ε j 
�

(i) 
αβ + 

εi 

εi + ε j 
�

( j) 
αβ

)]
, 

(B21) 

and then ∫ 
d ̂

 σ
ε j 

εi + ε j 

[ ˜ I (2) 
i j,α( ̂  σ ) ̂  σβ + ̃

 I (2) 
i j,β ( ̂  σ ) ̂  σα

] 
= 

2 

√ 

π

3 

(εi ε j ) −3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 2 ε j 

εi + ε j 

[
δαβ + 

6 

5 

(
ε j 

εi + ε j 
�

(i) 
αβ + 

εi 

εi + ε j 
�

( j) 
αβ

)]
. 

(B22) 

In addition, one gets ∫ 
d ̂

 σ˜ I (3) 
i j ( ̂  σ ) ̂  σα̂ σβ = 

β3 

6 π3 / 2 (εi + ε j ) 3 / 2 

∫ 
d g (g 

3 δαβ + 3 gg αg β ) exp 

(
− εi ε j 

εi + ε j 
g 

2 
)
P 1 ({ g} ) 

= 

2 

√ 

π

3 

(εi ε j ) −3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 [
δαβ + 

3 

5 

(
ε j 

εi + ε j 
�

(i) 
αβ + 

εi 

εi + ε j 
�

( j) 
αβ

)]
, 

(B23) 
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Fig. C1. (a) Dimensionless temperature θ against the dimensionless shear rate ˙ γ ∗ for σ (1) / σ (2) = 1.4 (solid 

line and open circles), 2.0 (dashed line and open squares), and 5.0 (dotted line and open triangles), when 

we fix ϕ = 0.01, ξ env = 1.0, and ν1 = ν2 = 1/2 for e = 0.9. (b) θ against ˙ γ ∗ for σ (1) / σ (2) = 1.4, 2.0, and 5.0 

by fixing ϕ = 0.01, ξ env = 1.0, and ν1 = ν2 = 1/2 for e = 1.0. The lines and symbols correspond to the 
steady solutions of the theoretical predictions ( 48 ) and the simulation results, respecti v ely. 
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and then ∫ 
d ̂

 σ
m i j 

m i 
(1 + e i j ) ̃  I (3) 

i j ( ̂  σ ) ̂  σα̂ σβ

= 

2 

√ 

π

3 

(εi ε j ) −3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 m i j 

m i 
(1 + e i j ) 

[
δαβ + 

3 

5 

(
ε j 

εi + ε j 
�

(i) 
αβ + 

εi 

εi + ε j 
�

( j) 
αβ

)]
. 

(B24) 

Substituting Eqs. ( B20 ), ( B22 ), and ( B24 ) into Eq. ( B15 ), one obtains 

˜ �
(i j) 
αβ = 

2 

√ 

π

3 

(εi ε j ) −3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 

×
([

2 ε j 

εi + ε j 
− m i j 

m i 
(1 + e i j ) 

]
δαβ

+ 

2 εi ε j 

(εi + ε j ) 2 

{
1 + 

3 

5 

εi + ε j 

εi 

[
2 ε j 

εi + ε j 
− 1 

2 

m i j 

m i 
(1 + e i j ) 

]
�

(i) 
αβ

}
− 2 εi ε j 

(εi + ε j ) 2 

{
1 − 3 

5 

εi + ε j 

ε j 

[
2 ε j 

εi + ε j 
− 1 

2 

m i j 

m i 
(1 + e i j ) 

]
�

( j) 
αβ

})

= 

2 

√ 

π

3 

(εi ε j ) −3 / 2 
(

εi + ε j 

εi ε j 

)3 / 2 {[
λi j − 1 

2 

m i j 

m i 
(1 + e i j ) 

]
δαβ

+ 2 

εi ε j 

(εi + ε j ) 2 

[(
1 + 

3 

5 

εi + ε j 

εi 
λi j 

)
�

(i) 
αβ −

(
1 − 3 

5 

εi + ε j 

ε j 
λi j 

)
�

( j) 
αβ

]}
. (B25) 

Finally, the combination of Eqs. ( B9 ) and ( B25 ) yields Eq. ( 24 ). 

Appendix C. Detailed flow curves 
In this appendix, we present supplemental results of the rheology explained in Sect. 4 of the
main text. We display the results for θ versus ˙ γ ∗ and η∗ ≡ −(ν1 �

(1) ∗
xy + ν2 �

(2) ∗
xy ) / ̇  γ ∗ versus ˙ γ ∗. 

When we focus on the reduced temperature θ (see Fig. C1 ), the effect of the bidispersity
onl y a ppears around the intermediate-shear regime ( ̇  γ ∗ � 5 . 0 ), where the discontinuous change
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Fig. C2. The dimensionless viscosity η∗ against the dimensionless shear rate ˙ γ ∗ for σ (1) / σ (2) = 1.4 (solid 

line and open circles), 2.0 (dashed line and open squares), and 5.0 (dotted line and open triangles) when 

we fix ϕ = 0.01, ξ env = 1.0, and ν1 = ν2 = 1/2 for (a) e = 0.9 and (b) 1. The lines and symbols correspond 

to the steady solutions of the theoretical predictions ( 49 ) and the simulation results, respecti v ely. 

Fig. C3. Phase diagrams of the number of solutions against ( e , ν1 , ˙ γ ∗) for (a) σ (1) / σ (2) = 1.1 and (b) 
1.4 by fixing ϕ = 0.01 and ξ env = 1.0. Here, the filled (empty) region represents that the number of the 
solutions is three (unity). 
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corresponding to the DST is observed. Although this discontinuous change itself is reported
e v en in monodisperse systems [ 13 ], the point at which the discontinuous change occurs depends
on the size ratio. It is noteworthy that the change of the reduced temperature is drastic but
continuous when the size ratio becomes large (see the data for σ (1) / σ (2) = 2.0 and 5.0 in Fig. C1 ).

As well as in Fig. C1 , the viscosity η∗ is also plotted against the shear rate ˙ γ ∗ in Fig. C2 . If 
the size ratio σ (1) / σ (2) is close to unity, such as 1.4, the flow curves of θ and η∗ are similar to
the corresponding ones for monodisperse gases, in which ther e ar e discontinuous changes of θ
and η∗ around γ ∗ ≈ 5. Howe v er, as the size ratio increases, the discontinuous changes of θ and
η∗ become continuous. Moreover, these flow curves for inelastic inertial suspensions for large 
σ (1) / σ (2) are characteristic. Indeed, the slopes of θ and η∗ are oscillated with ˙ γ ∗ before reaching
their asymptotic values in the large shear-rate limit. 

We also draw 3D phase diagrams of the number of solutions obtained by the kinetic theory
in the ( ν1 , ˙ γ ∗, e ) plane for ϕ = 0.01 in Fig. C3 . The filled r egions r epr esent those whose number
of solutions is three, while the empty regions represent only one solution. These plots show that
the regions for the multiple solutions are localized in narrow regimes in the ( ν1 , ˙ γ ∗, e ) plane. 
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Fig. D1. Plots of the global viscosity η∗ against the dimensionless shear rate ˙ γ ∗ for ξ env = 10 

−1 (solid line), 
10 

0 (dashed line), and 10 

1 (dotted line) when we fix ϕ = 0.01, e = 0.9, σ (1) / σ (2) = 1.4, and ν1 = ν2 = 1/2. 
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Appendix D. Appear ance/disappear ance of the discontinuous transition 

In this appendix, let us show how the discontinuous transition a ppears/disa ppears w hen we
change the parameters of the mixture. This appendix consists of three subsections. In the first
part, we discuss how the results depend on the environmental temperature ξ env . In the second
part, we distinguish the region of DST-like behavior from the CST-like behavior when we fix
ν1 = ν2 = 1/2. In the last part, we also distinguish the region of DST-like behavior from the
CST-like behavior if we fix the volume ratio V = 1 . 

D.1. Effect of the environmental temperature ξ env 

First, since ξenv ∝ 

√ 

T env , we analyze the dependence of the flow curves on the environmental
temperature for ν1 = ν2 = 1/2. This temperature determines the state in the low-shear regime,
but is independent in the high-shear regime. The latter fact is understood because interparticle
collisions are dominant in the latter regime. Figure D1 illustrates the above fact: The high-shear
regime is independent of the choice of environmental temperature, but the low-shear regime
is determined by the value of the environmental temperature. It is interesting to note that the
Newtonian regime becomes narrower as ξ env incr eases. Mor e importantly, DST-like behavior
f or η∗ f or low ξ env becomes CST-like as ξ env increases. 

D.2. Effect of the size ratio for N 1 = N 2 

Next, let us consider the size ratio dependence in the case of ν1 = ν2 = 1/2 based on the theo-
retical calculation. In this case, the discontinuous jumps are observed when the size ratio is not
large such as σ (1) / σ (2) = 1.4 in Figs. 2 and 3 as shown in Fig. D2 . On the other hand, the flow
curves become continuous for larger size ratios. We can understand this behavior by consider-
ing first the discontinuous jump for the monodisperse system ( ν1 = 1, ν2 = 0). Depending on
the value of the (reduced) shear rate ˙ γ ∗ ≡ ˙ γ /ζ1 , there are two different regimes, high-shear and
low-shear regimes. The former regime is known as Bagnold’s expression, η∗ ∝ ˙ γ ∗/ (ξ 2 

env ϕ 

2 ) for e
< 1 [ 13 ]. We note that, for the elastic case, a different expression is obtained as η∗ ∝ ˙ γ ∗2 . How-
e v er, the latter regime (low-shear regime) is determined by the interaction between the particles
27/36 
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Fig. D2. Plot of the critical size ratio against the restitution coefficient when we fix ϕ = 0.01, ξ env = 1.0, 
and ν1 = ν2 = 1/2. 

Fig. D3. Plot of the phase coexistence line ∂ ̇  γ ∗/∂θ = 0 (solid lines) and the spinodal line ∂ 2 ˙ γ ∗/∂θ2 = 0 

(dashed line) for ϕ = 0.01, e = 0.9 ξ env = 1.0, and ν1 = ν2 = 1/2. 
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and the solvent [ 13 ], and so η∗ ∼ 1. These two regimes switch to each other at ˙ γ ∗ � 1 . Gi v en
tha t the dif fer ence between two r egimes is proportional to the inverse of the volume fraction,
the flow curve forms an S-shape connecting the two regimes. 

Now, we consider binary systems. If the size ratio is not sufficiently large, such as
σ (1) / σ (2) = 1.4 as shown in Figs. C1 and C2 , the picture for the monodisperse system can also be
used for a binary system. This means that the discontinuous jumps appear in this case. On the
other hand, as the size ratio increases, collisions between smaller and larger particles compete
with those between particles with the same size. This means that we need to discuss the mixing
energy between smaller and larger particles in this case. Relating to this, we may use a discussion
analogous to the phase coexistence and spinodal lines at equilibrium phase transitions, respec-
ti v ely, in the phase space of ( θ , ˙ γ ∗, σ (1) / σ (2) ). Figure D3 shows both lines for ϕ = 0.01, e = 0.9,
ξ env = 1.0, and ν1 = ν2 = 1/2, where the critical point is gi v en by θ c � 34.8, ˙ γ ∗

c � 4 . 81 , and
( σ (1) / σ (2) ) c � 1.46. This means that two (ignited and quenched) states can coexist for σ (1) / σ (2) 

� 1.46. This result is quite analogous to the transition from DST-like to CST-like behaviors for
monodisperse cases [ 15 ]. 

D.3. Effect of the size ratio for N 1 	 = N 2 

Let us consider the case of constant volume ratio V = 1 . As shown in Fig. 6 , the discontinu-
ous transition occurs as the fraction ν decreases; i.e., the size ratio increases. This transition
1 
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Fig. D4. Plot of the critical size ratio against the restitution coefficient e when we fix ϕ = 0.01, ξ env = 1.0, 
and V = 1 . 
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is different from the one found in Appendix D.2 . Figure D4 plots the critical line between the
discontinuous transition and continuous transition for ϕ = 0.01, ξ env = 1.0, and V = 1 based
on the theoretical calculation. As the restitution coefficient e increases, the minimum size ratio
also increases, which means that the fraction ν1 decreases as ν1 = 1/[1 + ( σ (1) / σ (2) ) 3 ] from the
definition of the volume ratio V . Unfortunately, it is a tough job to check this behavior in simu-
la tions. W hen the DST-like transition occurs, one needs to simulate a situation where multiple
collisions between large particles occur. Howe v er, as the size ratio increases, the fraction of the
larger particles, ν1 , becomes small, and the collision frequency between them also decreases.
This means that the time for multiple collisions exceeds the limit of realistic simulation time. 

Appendix E. Detailed analysis in the tracer limit and the finite-size effect of the 

simulation results 
In this appendix, we display e xplicit e xpressions for the partial pr essur e tensors of a binary
mixture in the tracer limit. These expressions are then compared with the simulation results
when the number of particles is small. 

In the tracer limit ( ν1 → 0), the kinetic equation for the velocity distribution function f 2 of 
the excess granular gas 2 is the (closed) nonlinear Boltzmann equation since its state is not
perturbed by the presence of the tracer particles 1. This means that collisions between tracer
and gas particles in the kinetic equation for P 

(2) 
αβ can be neglected, i.e., �(21) 

αβ + �
(22) 
αβ → �

(22) 
αβ

in Eq. ( 15 ) for i = 2. In addition, since the concentration of tracer particles is negligible, one
can also neglect the tr acer–tr acer collisions in the kinetic equation for P 

(1) 
αβ . This implies that

�
(11) 
αβ + �

(12) 
αβ → �

(12) 
αβ in Eq. ( 15 ) for i = 1. 

The expressions of the (reduced) elements of the pressure tensor �(2) 
αβ coincide with those

obtained for a monodisperse granular suspension. The nontrivial components of �(2) 
αβ are gi v en

by [ 13 ] 

�(2) 
yy = −λ

(2) ∗
η

√ 

θ2 + 2 

(
1 − θ−1 

2 

)
ν

(2) ∗
η

√ 

θ2 + 2 

, (E1) 
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�(2) 
xy = −

2 θ−1 
2 −

(
λ

(2) ∗
η − ν

(2) ∗
η

)√ 

θ2 (
ν

(2) ∗
η

√ 

θ2 + 2 

)2 
˜ ˙ γ , (E2) 

where ̃  ˙ γ = ˙ γ /ζ2 and we have introduced 

λ(2) ∗
η ≡ 8 √ 

π

(
1 − e 2 22 

)
ϕ 2 

√ 

T env 

m 2 σ (2)2 ζ2 
, (E3) 

ν (2) ∗
η ≡ 24 

5 

√ 

π
(1 + e 22 )(3 − e 22 ) ϕ 2 

√ 

T env 

m 2 σ (2)2 ζ2 
, (E4) 

with the partial volume fraction 

ϕ 2 ≡ π

6 

nν2 σ
(2)3 . (E5) 

Here, it should be noted that the global temperature is a pproximatel y gi v en by θ � θ2 in the
tracer limit [ 26 ]. Using the same procedure as in Ref. [ 13 ], the reduced shear rate ˙ γ ∗ is written
in terms of the reduced temperature θ2 as 

˙ γ ∗ = 

(
ν (2) ∗

η

√ 

θ2 + 2 

)√ √ √ √ √ 

3 

2 

λ
(2) ∗
η

√ 

θ2 + 2(1 − θ−1 
2 ) (

ν
(2) ∗
η − λ

(2) ∗
η

)√ 

θ2 + 2 θ−1 
2 

. (E6) 

Now, let us calculate the quantities for the tracer species 1. First, the quantities ̃  �
(12) 
αα , ̃  �

(12) 
xy , and˜ �

′ (12) 
xy are written as 

˜ �(12) 
αα ≡ 1 

m 

∗3 / 2 
2 

(ϑ 

′ + 1) 1 / 2 
{[

m 

∗
1 + 

1 

2 

m 

∗
2 ( 1 − e 12 ) 

]
ϑ 

′ − 1 

2 

m 

∗
2 (1 + e 12 ) 

}
, (E7a) 

˜ �(12) 
xy ≡ 1 

10 m 

∗
1 m 

∗1 / 2 
2 

1 

θ2 (ϑ 

′ + 1) 1 / 2 
[
2(5 + 6 ϑ 

′ ) − 3 μ21 (ϑ 

′ + 1)(1 + e 12 ) 
]
, (E7b) 

˜ �′ (12) 
xy ≡ 1 

10 m 

∗3 / 2 
2 

θ−1 
2 

(ϑ 

′ + 1) 1 / 2 
[
3 μ21 ( ϑ 

′ + 1)( 1 + e 12 ) − 2 ϑ 

′ ] , (E7c) 

where we have introduced ϑ′ ≡ m 2 θ1 /( m 1 θ2 ). Then, the nonzero elements of �(1) 
αβ read 

�(1) 
xy = 

3 

˙ γ ∗θ1 

[
ζ ∗

1 (1 − θ1 ) − 1 

2 

C 12 ̃  �(12) 
αα θ

3 / 2 
2 

]
, (E8) 

�(1) 
xx = −2�(1) 

yy , (E9) 

�(1) 
yy = �(1) 

zz = −
(

1 + 

2 

˙ γ ∗ ζ ∗
1 �

(1) 
xy 

)
− 2 

C 12 

˙ γ ∗ θ
3 / 2 
2 

[ ˜ �(12) 
xy θ1 �

(1) 
xy − ˜ �′ (12) 

xy θ2 �
(2) 
xy 

] 
. (E10) 

Substituting Eqs. ( E8 )–( E10 ) into Eq. ( 39a ) with C 11 = 0, we can obtain the equation that
determines θ1 as 

2 

3 

˙ γ ∗θ1 �
(1) 
xy = 2 ζ ∗

1 (1 − θ1 ) − C 12 ̃  �(12) 
αα θ

3 / 2 
2 . (E11) 

Figur e E1 pr esents the shear-rate dependence of both the temper ature r atio ϑ and the vis-
cosity ratio η1 / η2 in the tracer limit. It should be noted that the flow curves become smooth in
the whole range of the shear rate e v en for a larger size ratio. 

The limitation of the tracer limit is also understood in Fig. E2 , where the absolute values
of the ratio 

∣∣∣�(i j) 
αα / �

(22) 
αα

∣∣∣ are plotted as a function of the dimensionless shear rate. Here, the
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Fig. E1. (a) Temperature ratio ϑ and (b) viscosity ratio η1 / η2 against the dimensionless shear rate ˙ γ ∗ in the 
tracer limit for the same set of parameters as in Fig. 5 . The simulation data are obtained for N = 1000. 

Fig. E2. Plot of 
∣∣∣�(i j) 

αα / �
(22) 
αα

∣∣∣ for ( i , j ) = (1, 1) (solid line), (1, 2) (dashed line), and (2, 2) (dotted line) 

against the dimensionless shear rate ˙ γ ∗ for ϕ = 0.01, ξ env = 1.0, e = 0.9, V = 1 , and ν1 = 1.0 × 10 

−3 . 
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expression of �(i j) 
αα is given by Eq. ( 24 ). In the low-shear regime, the values for ( i , j ) = (1, 1) and

(2, 1) are smaller than unity, which means that the contributions coming from the collisions
between the large tracer particles are negligible. This indicates that the tracer limit description
is a reasonable approximation in this regime. In the high-shear regime, on the other hand, the
contributions from the collisions between tracer particles play an important role in the flow
curve, though the number of collisions is small. Moreover, it is interesting that �(2 , 1) 

αα and �
(1 , 2) 
αα

become negati v e in the high- and intermediate-shear r egimes, r especti v ely, though their origins
are not clear. As the number of particles used in the simulation increases, the simulation results
recover the values of ϑ and η1 / η2 in the high-shear regime. Then, we expect that the results of 
simulation for N → ∞ agree with the theoretical results. In other words, the results of EDLSHS
containing a small number of particles are not reliable in this regime. 

Appendix F. 2D velocity distribution function of the BGK model 
A possible way of overcoming the ma thema tical dif ficulties associa ted with the Boltzmann col-
lision operators J ij [ f i , f j ] is to use a kinetic model. As usual, the idea behind a kinetic model
is to replace the true operator J ij by a simpler term that retains the main physical properties
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of the above operator. In the case of dilute granular mixtures, a BGK-like kinetic model was
proposed in Ref. [ 63 ]. In the case of the USF state (where U 1 = U 2 = U ), the BGK-like model
is obtained by the replacement of the Boltzmann collision operator J ij [ f i , f j ] by the diffusi v e
term 

J i j [ V | f i , f j ] → −1 + e i j 

2 τi j 
( f i − f i j ) + 

ε i j 

2 

∂ 

∂ V 

· ( V f i ) , (F1) 

where we have introduced the quantities 

1 

τi j 
= 

8 

√ 

π

3 

n j σ
(i j)2 
(

2 T i 

m i 
+ 

2 T j 

m j 

)1 / 2 

, (F2) 

ε i j = 

1 

2 τi j 

m 

2 
i j 

m 

2 
i 

(
1 + 

m i T j 

m j T i 

)
(1 − e 2 i j ) , (F3) 

f i j ( V ) = n i 

(
m i 

2 πT i j 

)3 / 2 

exp 

(
−m i V 

2 

2 T i j 

)
, (F4) 

T i j = T i + 

2 m i m j 

(m i + m j ) 2 
(T j − T i ) . (F5) 

The corresponding BGK-like equation for the distribution f 1 in the steady USF is 

− ˙ γV y 
∂ f 1 
∂V x 

− ζ1 
∂ 

∂ V 

· ( V f 1 ) − ζ1 T env 

m 1 

∂ 2 f 1 
∂V 

2 
= −1 

2 

2 ∑ 

j=1 

[
1 + e 1 j 

τ1 j 
( f 1 − f 1 j ) − ε 1 j 

∂ 

∂ V 

· ( V f 1 ) 
]

. 

(F6) 

The kinetic equation for f 2 is obtained from Eq. ( F6 ) by setting 1 ↔ 2. So far, we have not been
able to obtain the explicit exact form of f i ( V ) in Eq. ( F6 ). An exception corresponds to the
simple limit case T env = 0 with keeping ζ i = const. This corresponds to a situation where the
background temperature T env is much smaller than the kinetic temperature T under the high-
shear-rate limit. Hence, the suspension model ignores the effects of thermal fluctuations on
solid particles and the impact of the gas phase on grains is only accounted for by the drag force
term. Although ζ i should be proportional to 

√ 

T env for hard-core molecules, such a simplified 

model has been employed in some previous works [ 9 , 10 , 14 ]. 
If we take the limit T env / T � 1, Eq. ( F6 ) becomes 

− ˙ γV y 
∂ f 1 
∂V x 

− 3 α1 f 1 − α1 V · ∂ f 1 
∂ V 

+ ξ1 f 1 = �1 , (F7) 

where we have introduced the parameters: 

α1 = ζ1 + 

ε 11 + ε 22 

2 

, (F8) 

ξ1 = 

1 

2 

( 

1 + e 11 

τ11 
+ 

1 + e 12 

τ12 

) 

, (F9) 

�1 = 

1 

2 

( 

1 + e 11 

τ11 
f 11 + 

1 + e 12 

τ12 
f 12 

) 

. (F10) 

The formal solution of Eq. ( F7 ) can be written as 

f 1 ( V ) = 

(
ξ1 − 3 α1 − ˙ γV y 

∂ 

∂V x 
− α1 V 1 · ∂ 

∂ V 1 

)−1 

�1 ( V ) 

= 

∫ ∞ 

ds e −(ξ1 −3 α1 ) s e ˙ γ sV y 
∂ 

∂V x e α1 s V · ∂ 
∂ V �1 ( V ) . (F11) 
0 

32/36 



PTEP 2023 , 113J01 S. Takada et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/11/113J01/7291962 by U

niversidad de Extrem
adura user on 13 N

ovem
ber 2023
Note that the velocity operators appearing in Eq. ( F11 ) commute. Their action on an arbitrary
function g( V ) ≡ g(V x , V y , V z ) is 

e ˙ γ sV y 
∂ 

∂V x g( V ) = g(V x + ˙ γ sV y , V y , V z ) , (F12a) 

e α1 s V · ∂ 
∂ V g( V ) = g ( e α1 s V ) . (F12b) 

Taking into account the action of these operators in Eq. ( F11 ), the velocity distribution f 1 ( V )
can be written as 

f 1 ( V ) = n 1 

(
m 1 

2 T 1 

)3 / 2 

g 1 , B 

( c ) , c ≡
(

m 1 

2 T 1 

)−1 / 2 

V , (F13) 

where 

g 1 , B 

( c ) = π−3 / 2 
∫ ∞ 

0 
ds e −(ξ1 −3 α1 ) s 

{
1 + e 11 

2 τ11 
χ

−3 / 2 
1 exp 

[ 
−χ−1 

1 e 2 α1 s 
(

(c x + ˙ γ sc y ) 2 + c 2 y + c 2 z 

)] 
+ 

1 + e 12 

2 τ12 
χ

−3 / 2 
12 exp 

[ 
−χ−1 

12 e 
2 α1 s 

(
(c x + ˙ γ sc y ) 2 + c 2 y + c 2 z 

)] }
= π−3 / 2 

∫ ∞ 

0 
ds e −(ξ∗

1 −3 α∗
1 ) s 
{

1 + e 11 

2 τ ∗
11 

χ
−3 / 2 
1 exp 

[ 
−χ−1 

1 e 2 α
∗
1 s 
(

(c x + ˙ γ ∗sc y ) 2 + c 2 y + c 2 z 

)] 
+ 

1 + e 12 

2 τ ∗
12 

χ
−3 / 2 
12 exp 

[ 
−χ−1 

12 e 
2 α∗

1 s 
(

(c x + ˙ γ ∗sc y ) 2 + c 2 y + c 2 z 

)] }
. (F14) 

Here, ξ ∗
1 ≡ ξ1 σ/ 

√ 

m /T env , α∗
1 ≡ α1 σ/ 

√ 

m /T env , τ ∗
i j ≡ τi j 

√ 

T env / m / σ , χ1 ≡ T 1 / T , and χ12 ≡
T 12 / T . 

To illustrate the shear-rate dependence of the BGK distribution g 1 , B 

( c ) , let us define the
marginal (2D) distribution function: 

g 

(xy ) 
1 , B 

(c x , c y ) = 

∫ ∞ 

−∞ 

dc z g 1 , B 

( c ) . (F15) 

From Eq. ( F14 ), one gets 

g 

(xy ) 
1 , B 

(c x , c y ) = 

1 

π

∫ ∞ 

0 
ds e −(ξ∗

1 −2 α∗
1 ) s 
{

1 + e 11 

2 τ ∗
11 

χ−1 
1 exp 

[ 
−χ−1 

1 e 2 α
∗
1 s 
(

(c x + ˙ γ sc y ) 2 + c 2 y 

)] 
+ 

1 + e 12 

2 τ ∗
12 

χ−1 
12 exp 

[ 
−χ−1 

12 e 
2 α∗

1 s 
(

(c x + ˙ γ sc y ) 2 + c 2 y 

)] }
. (F16) 

Figure 11 sho ws ho w this model works when we compare it with the simulation results. Inter-
estingly, the BGK-like model gi v es the correct VDF in the wider range of the ( c x , c y ) plane in
the high-shear regime. In particular, some features of the true VDF (such as the enhancement
in the shear direction and the form of g 

(xy ) 
1 near the positi v e and negati v e peaks) are captured

in a more precise way by the BGK distribution compared to Grad’s distribution (see Figs. 9
and 11 ). Ne v ertheless, we recall that the applicability of the solution ( F16 ) to the BGK-like
model is limited to the high-shear regime. As the environmental temperature plays a role in the
rheology, the BGK solution ( F16 ) cannot capture the properties of the VDF in the complete
range of shear rates [see Figs. 11 (a), (b), and (c)]. 

Appendix G. 1D velocity distribution function 

In the main text and Appendix F , we have compared the marginal 2D velocity distribution
function obtained from the simulations with those obtained from Grad’s method and the BGK-
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Fig. G1. 1D velocity distribution functions of the larger particles for (a) ˙ γ ∗ = 0 . 32 , (b) 1.0, (c) 3.2, (d) 
10, and (e) 32 when we fix ϕ = 0.01, e = 0.9, ξ env = 1.0, and σ (1) / σ (2) = 2.0. The solid and dashed lines 
r epr esent Grad’s approximation ( G1 ) and the BGK model ( G2 ), respecti v ely. 
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like model. In this appendix, on the other hand, we investigate whether both approximations
work when we consider the 1D velocity distribution. 

Let us define the marginal (1D) distribution obtained from Grad’s method: 

g 

(x ) 
1 , G 

(c x ) ≡
∫ ∞ 

−∞ 

dc y g 

(xy ) 
1 , G 

(c x , c y ) = 

1 √ 

π
e −c 2 x 

( 

1 − �
(1) 
xx 

2 

+ �(1) 
xx c 

2 
x 

) 

, (G1) 

and from the BGK model: 

g 

(x ) 
1 , B 

(c x ) ≡
∫ ∞ 

−∞ 

dc y g 

(xy ) 
1 , B 

(c x , c y ) 

= 

1 √ 

π

∫ ∞ 

0 
ds 

e −(ξ∗
1 −α∗

1 ) s √ 

1 + ˙ γ ∗2 s 2 

[
1 + e 11 

2 τ ∗
11 

χ
−1 / 2 
1 exp 

(
−χ−1 

1 e 2 α
∗
1 s 

c 2 x 

1 + ˙ γ ∗2 s 2 

)

+ 

1 + e 12 

2 τ ∗
12 

χ
−1 / 2 
12 exp 

(
−χ−1 

12 e 
2 α∗

1 s 
c 2 x 

1 + ˙ γ ∗2 s 2 

)]
. (G2) 

Figure G1 shows a comparison of the VDF obtained from the simulations with Eqs. ( G1 )
and ( G2 ) when we control the shear rate from ˙ γ ∗ = 0 . 32 to 32. Here, we have fixed ϕ = 0.01,
e = 0.9, ξ env = 1.0, and σ (1) / σ (2) = 2.0. The 1D VDF estimated from Grad’s method works well
in the wide range of the shear rate, although this approximation cannot reproduce the fat tail
of the VDF in the intermediate regime. The consistency in the high-shear regime is different
when we compare it with the 2D VDF in Figs. 9 (c), (d), and (e). On the other hand, the BGK
1D VDF is worse than that of Grad’s distribution. Although it captures the behavior of the
VDF near c x ∼ 0, the solution to the BGK-like model overestimates the high-energy tail of the
VDF in the high-shear regime [see Figs. G1 (d) and (e)]. 
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