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1 Departamento de Fı́sica, Universidad de Extremadura, E-06006 Badajoz,
Spain

2 Departamento de Fı́sica and Instituto de Computación Cientı́fica Avanzada
(ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain

E-mail: vicenteg@unex.es

Received 13 October 2023
Accepted for publication 24 January 2024
Published 26 February 2024

Online at stacks.iop.org/JSTAT/2024/023211
https://doi.org/10.1088/1742-5468/ad267b

Abstract. The Enskog kinetic equation is considered to determine the diffu-
sion D and mobility λ transport coefficients of intruders immersed in a granular
gas of inelastic hard spheres (grains). Intruders and grains are in contact with a
thermal bath, which plays the role of a background gas. As usual, the influence of
the latter on the dynamics of intruders and grains is accounted for via a viscous
drag force plus a stochastic Langevin-like term proportional to the background
temperature T b. In this case, the starting kinetic equations are the Enskog and
Enskog–Lorentz equations for grains and intruders, respectively, with the addi-
tion of Fokker–Planck terms to each one of the above equations. The trans-
port coefficients λ and D are determined by solving the Enskog–Lorentz kinetic
equation by means of the Chapman–Enskog method adapted to inelastic colli-
sions. As for elastic collisions, both transport coefficients are given in terms of
the solutions of two integral equations, which are approximately solved up to the
second order in a Sonine polynomial expansion. Theoretical results are compared
against numerical solutions of the inelastic Enskog equation by means of the dir-
ect simulation Monte Carlo method. In general, good agreement between theory
and simulations is found, especially in the case of the second Sonine approxim-
ation. Knowledge of the coefficients λ and D allows us to assess the departure
of the (conventional) Einstein relation ϵ=D/(Tbλ) from 1. As expected from
previous results for driven granular gases, it is shown that when the bath tem-
perature T b is replaced by the intruder temperature T 0 in the Einstein relation,
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the origin of the deviation of ϵ from 1 is only due to the non-Maxwellian behavior
of the reference state of intruders (measured by the cumulant c0). Since the mag-
nitude of c0 is in general very small, deviations of the (modified) Einstein relation
ϵ0 =D/(T0λ) from 1 cannot be detected in computer simulations of dilute granu-
lar gases. This conclusion agrees well with previous computer simulation results.

Keywords: Boltzmann equation, granular material,
kinetic theory of gases and liquids
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1. Introduction

An interesting and challenging problem in statistical mechanics is the generalization
of the fluctuation-response relation to non-equilibrium situations [1]. This problem has
received considerable attention in the past few years by many researchers, who have tried
to continue the research not only by means of theoretical tools but also by employing
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computer simulations. Among the different systems that are inherently out of equilib-
rium, granular matter can be considered as a good candidate to analyze this problem.
It is well known that when granular matter is externally excited (rapid flow condi-
tions), the motion of grains resembles the chaotic motion of atoms or molecules in a
conventional molecular fluid. However, given that the size of the grains is mesoscopic
(of the order of 1 µm, for instance), their interactions are inelastic and hence the total
energy of the system decreases with time. To keep it in rapid conditions, one has to
inject energy into the system to compensate for the energy dissipated by collisions, and
hence a non-equilibrium steady state (NESS) is reached. For this sort of system, the
fluctuation-response theorem has been proposed in terms of an effective temperature,
which is clearly different from the environmental temperature [2–5].

It is quite apparent that an analysis of the validity of the fluctuation-response the-
orem requires knowledge of the complete dependence of the response and correlation
functions on the frequency ω [6]. Since this is in fact quite a difficult problem, in order
to gain some insight into the general problem, one usually considers the limit of small
frequencies (ω→ 0). In this limiting case, the classical relation between the diffusion
coefficient D (autocorrelation function) and the mobility coefficient λ (linear response)
is known as the Einstein relation [6].

In the case of granular gases, fluctuation response relations have been derived [7,
8] with respect to the so-called homogeneous cooling state (i.e. a state whose fate is a
thermal death). In this situation, it has been proven that the response to an external
force on an intruder (or impurity) particle violates the usual Einstein relation between
the diffusion and mobility coefficients. There are three distinct origins for the violation
of the Einstein relation: the deviation of the homogeneous cooling state from the Gibbs
state (non-Gaussian distribution functions for the intruder and particles of the granular
gas), the cooling of the reference state (yielding a different time dependence for D and
λ), and energy non-equipartition (leading to different kinetic temperatures between the
intruder and gas particles). A different approach widely employed in kinetic theory and
computer simulations consists of considering driven granular gases where the system
is heated by an external force (or thermostat) that compensates for the energy lost by
collisions. This was the situation studied in [3] by computer simulations; it demonstrated
the validity of the Einstein relation in NESS when the temperature of the bath was
replaced by the temperature of the intruder T 0 (ϵ0 ≡D/T0λ= 1). This conclusion also
agrees with the results derived from an exactly solvable model for driven dissipative
systems [4].

Needless to say, thermostats are introduced to mimic the effects produced by bulk
driving as in air-fluidized beds, for instance [9, 10]. Unfortunately, in most cases, the rela-
tionship between the results derived in driven (thermostated) granular gases and those
obtained in real experiments is not clear. A more realistic example of thermostated gran-
ular systems consists of a set of solid particles surrounded by a gas of molecular particles.
This provides a suitable starting point to model the behavior of granular suspensions.
When the dynamics of grains are essentially ruled by their collisions, the tools of the
classical kinetic theory (conveniently adapted to inelastic collisions) can be a reliable
way to describe this type of granular flow [11]. However, due to the technical difficulties
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embodied in the study of two or more phases, a coarse-grained approach is generally
adopted. In this description, the influence of the background gas on grains is usually
incorporated in the kinetic equation through a fluid–solid interaction force. Usually, the
gas-phase effects on the solid particles are described by the addition of a Fokker–Planck
term (drag force term plus stochastic Langevin-like term) in the kinetic equation [12]. In
fact, this way of driving the granular gas has been employed in computer simulations [3].
It is important to stress that this suspension model can also be derived in a more rigor-
ous way by explicit consideration of the (elastic) collisions between grains and particles
of the molecular gas. In this discrete description, the above collisions are accounted
for via the Boltzmann–Lorentz collision operator [13]. In the limit where the grains are
much heavier than the molecular gas particles, the Boltzmann–Lorentz operator reduces
to the Fokker–Planck operator, and the results for the transport properties derived from
the collision model [14] agree with those obtained from the coarse-grained approach [15].

The objective of this paper is to determine the diffusion D and mobility λ transport
coefficients in a granular suspension. For moderate densities, our starting point is the
(nonlinear) Enskog and the (linear) Enskog–Lorentz kinetic equations for the granular
gas and the intruders, respectively, with the addition of Fokker–Planck operators to each
one of these kinetic equations. The interaction between the grains and intruders with
the interstitial gas is through two different drift coefficients γ and γ0, respectively. To
first order in both the concentration gradient and the external field, the Enskog–Lorentz
equation is solved by means of the Chapman–Enskog method [16] adapted to dissipative
dynamics. As for elastic collisions, the coefficients D and λ are given in terms of a set
of coupled linear integral equations that are approximately solved by considering the
second Sonine approximation (i.e. the second-order truncation of the Sonine polynomial
expansion of the velocity distribution of intruders). As occurs in driven granular gases
[17, 18], our results show that the deviations of the modified Einstein relation ϵ0 from 1
are only due to the very small departure of the reference state (zeroth-order distribution
of intruders) from the Maxwell–Boltzmann distribution. This departure is measured by
the kurtosis (or fourth-degree cumulant) c0. Since in general the magnitude of c0 in
granular suspensions is much smaller than the one obtained in freely cooling systems [7]
and/or in driven granular gases [17, 18], one may conclude that the verification of the
modified Einstein relation is much more accurate in gas–solid flows than in dry granular
gases. This is likely one of the most relevant conclusions of the present work.

It is important to remark that our results are based on the Enskog equation. This
equation is an extension of the Boltzmann equation (which holds for very dilute gases)
to moderate densities. In this regime of densities, although spatial correlations are
accounted for via the pair correlation function in this kinetic equation, velocity correl-
ations between the particles that are about to collide are neglected (molecular chaos
assumption) as in the Boltzmann description. This is the main limitation of the Enskog
equation. In this particular context, it is worth highlighting the computer simulation
results obtained by Puglisi et al [19]. These results demonstrate that the departure
from the Einstein relation primarily arises from spatial and velocity correlations that
emerge with increasing density, rather than from the non-Gaussian corrections to the
distribution function. This conclusion has also been confirmed by experimental evidence
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[20] involving the Brownian motion of a rotating intruder immersed in a vibro-fluidized
granular medium. It is shown that Einstein’s relation holds in the dilute regime while
it is violated for a high packing fraction; this violation cannot be explained in terms of
effective temperatures. On the other hand, given that the spatial and velocity correla-
tions are present for densities and inelasticities at which the Enskog equation does not
presumably apply, the conclusions reached in [19] and [20] are not in conflict with those
derived here.

The plan of the paper is as follows. In section 2, we describe the problem we are
interested in. The steady homogeneous state of the intruders plus granular gas in contact
with a thermal bath is studied in section 3. As expected, the intruder’s temperature
T 0 differs from that of the granular gas T, and so there is a breakdown of energy
equipartition. In section 4, the Chapman–Enskog method is applied to solve the Enskog–
Lorentz kinetic equation to first order in the concentration gradient and the external
field. Some technical details concerning the calculations of the paper are provided in
the appendices A and B. The theoretical results for D and λ are compared with Monte
Carlo simulation results showing an excellent agreement, especially in the case of the
second Sonine solution. The knowledge of T, T 0, D, and λ allows us to compute the
conventional ϵ (defined in terms of the bath temperature T b) and modified ϵ0 (defined in
terms of the intruder temperature T 0) Einstein relations. While ϵ0 ≃ 1, ϵ clearly differs
from 1, showing that the violation of the conventional Einstein relation in granular
suspensions can be significant. We close the paper with some concluding remarks.

2. Description of the problem

2.1. Granular gas

We consider a granular gas of inelastic hard spheres of mass m and diameter σ. The
solid particles are immersed in a gas of viscosity ηg . Spheres (grains) are assumed
to be completely smooth so that the inelasticity of collisions is only characterized by
the constant (positive) coefficient of normal restitution α⩽ 1. When the suspensions
are dominated by collisions (which are assumed to be nearly instantaneous) [11], a
coarse-grained description can be adopted to account for the influence of the gas on the
dynamics of solid particles. In this approach, the effect of the gas phase on grains is
usually incorporated in the starting kinetic equation by means of a fluid–solid interaction
force [21–23]. Some models for granular suspensions [24–33] only take into account the
Stokes linear drag force law (which attempts to mimic the friction of grains with the
interstitial gas) for gas–solid interactions. On the other hand, some works [34] have
shown that the drag force term does not correctly capture the particle acceleration–
velocity correlation observed in direct numerical simulations [35]. For this reason, an
additional Langevin-like term is included in the effective fluid–solid force. This stochastic
term models the additional effects of neighboring particles via the stochastic increment
of a Wiener process [12]. In addition, this term (which randomly kicks the particles
between collisions) also takes into account the energy gained by the solid particles due
to their interaction with the background gas.
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Thus, according to the above coarse-grained description, for moderate densities and
assuming that the granular gas is in a steady homogeneous state, the one-particle
velocity distribution function f(v, t) of the granular gas verifies the nonlinear Enskog
equation [36]:

−γ
∂

∂v
·vf − γTb

m

∂2f

∂v2
= J [v|f ,f ] , (1)

where the Enskog collision operator is

J [v1|f ,f ] = χσd−1

ˆ
dv2

ˆ
dσ̂Θ(σ̂ ·g12)(σ̂ ·g12)

×
[
α−2f (v ′ ′

1 , t)f (v
′ ′
2 , t)− f (v1, t)f (v2, t)

]
. (2)

Here, χ is the pair correlation function for grain–grain collisions at contact (i.e. when
the distance between their centers is σ), d is the dimensionality of the system, σ̂ is a
unit vector directed along the line of centers of the colliding spheres, Θ is the Heaviside
step function [Θ(x) = 1 for x > 0, Θ(x) = 0 for x⩽ 0], and g12 = v1−v2 is the relative
velocity of the two colliding spheres. The double primes on the velocities denote the
initial values (v ′ ′

1 ,v
′ ′
2 ) that yield (v1,v2) following a binary collision:

v ′ ′
1 = v1−

1+α−1

2
(σ̂ ·g12) σ̂, v ′

2 = v2+
1+α−1

2
(σ̂ ·g12) σ̂. (3)

In equation (1), γ is the drift or friction coefficient (characterizing the interaction
between particles of the granular gas and the background gas) and T b is the bath
temperature. As in previous works [15, 37], we assume here that γ is a scalar quantity
proportional to the gas viscosity [38]. In the dilute limit every particle is only subjected
to its respective Stokes drag and so, for hard spheres (d =3), the drift coefficient γ is
defined as

γ ≡ γSt =
3πσηg
m

. (4)

Beyond the dilute limit, for moderate densities and low Reynolds numbers, one has the
relationship

γ = γStR (ϕ) , (5)

where R(ϕ) is a function of the solid volume fraction

ϕ =
πd/2

2d−1dΓ
(
d
2

)nσd. (6)

The density dependence of the dimensionless function R can be inferred from computer
simulations. Specific forms of R will be chosen later to assess the dependence of the
dynamic properties of the system on the parameter space of the problem. On the other
hand, it is worthwhile remarking that the results reported in this paper apply regardless
of the specific choice of the function R.
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In the homogeneous state, the only nontrivial balance equation is that of the granular
temperature T, defined as

dnT =

ˆ
dvmv2f (v) , (7)

where

n=

ˆ
dv f (v) (8)

is the number density of solid particles. The balance equation for T can be easily derived
by multiplying both sides of equation (1) by mv2 and integrating over velocity. This is
given by

2γ (Tb−T ) = Tζ, (9)

where

ζ =− 1

dnT

ˆ
dvmv2 J [f ,f ] (10)

is the cooling rate. This quantity gives the rate of change of energy dissipated by colli-
sions. When collisions are elastic (α=1), ζ =0. Since ζ is a functional of the distribution
f(v), it is quite obvious that one needs to know f to determine the cooling rate.

In the case of elastic collisions, equation (9) leads to the result T = Tb, and the
Enskog equation (1) admits the simple Maxwell–Boltzmann solution

f (v) = fb,M (v) = n

(
m

2πTb

)d/2

exp

(
−mv2

2Tb

)
. (11)

This result is nothing more than a consequence of the fluctuation-dissipation theorem
[39]. On the other hand, for inelastic collisions (α ̸=1), the exact solution of equation (1)
is not known. However, in the region of thermal velocities, a good approximation can be
obtained from an expansion in Sonine polynomials. In the leading order, the distribution
f can be written as

f (v)→ nπ−d/2v−d
th e−ξ2

{
1+

c

2

[
ξ4− (d+2)ξ2+

d(d+2)

4

]}
, (12)

where ξ = v/vth and vth =
√
2T/m is a thermal speed. The coefficient c (which measures

the deviation of f from its Maxwellian form) is related to the kurtosis of the distribution.
Its value has been estimated from the Enskog equation by considering linear terms in c
[15]. Its explicit expression is

c=
16(1−α)

(
1− 2α2

)
73+56d− 3α(35+8d)+ 30(1−α)α2+ 64d(d+2)

1+α γ*
, (13)
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where

γ* =
γ

ν
=

√
π

2dd

R

ϕχ
√
T *

. (14)

Here, T * = T/T , T =mσ2γ2
St, and we have introduced the effective collision frequency

ν =

√
2π(d−1)/2

Γ
(
d
2

) nσd−1χvth. (15)

The cooling rate ζ can be also determined from the Sonine approximation (12) with the
result

ζ =
1−α2

d

(
1+

3

16
c

)
ν. (16)

Upon obtaining equation (16), nonlinear terms in c have been neglected.
For practical purposes, it is convenient to write equation (9) in dimensionless form.

In this case, one achieves the equation

2δ
(
T *
b −T *

)
= ζ*T *3/2, (17)

where T *
b = Tb/T , ζ* = ζ/ν, and

δ =

√
π

2dd

R

ϕχ
. (18)

If one neglects the kurtosis c (which is in general very small [15]) in the expres-
sion (16) of ζ*, then equation (17) becomes a cubic equation for the (reduced) temper-

ature T *. In terms of the auxiliary parameter ε≡ ζ*
√
T *
b/(2δ), the physical (real) root

of the cubic equation (17) can be written as

T * =

(
Ξ1/3+Ξ−1/3− 1

)2
9ε2

T *
b , (19)

where

Ξ =
3
√
3
√
27ε4− 4ε2+27ε2− 2

2
. (20)

As expected, for elastic collisions (α=1), ε→ 0 and so T * = T *
b for any value of ϕ and

T *
b . When α< 1, T * < T *

b since the granular temperature is smaller than that of the
background gas. In the case that the coefficient c is not neglected, equation (17) is a
quartic equation whose physical solution must be numerically determined.

The theoretical results for the (reduced) temperature T * are compared against direct
simulation Monte Carlo (DSMC) simulations [40]. The DSMC simulations are performed
following the same steps as described in [41] and [42]. Notably, modifications have
been introduced to the collision stage of the simulation algorithm originally employed

https://doi.org/10.1088/1742-5468/ad267b 8

https://doi.org/10.1088/1742-5468/ad267b


Mobility and diffusion of intruders in granular suspensions: Einstein relation

J.S
tat.

M
ech.(2024)

023211

Figure 1. Plot of the reduced granular temperature T * as a function of the coef-
ficient of restitution α for a three-dimensional (d =3) system with T *

b = 1 and
ϕ=0.1. The symbols refer to DSMC results.

by Montanero and Garzó [43], with the primary objective of incorporating two key
considerations: (i) the tracer concentration of intruder particles and (ii) the impact of the
interstitial gas on the dynamic behavior of solid particles. The former adjustment entails
the exclusion of intruder–intruder collisions and the preservation of grain velocities after
grain–intruder collisions. In contrast, the latter modification exhibits a higher degree
of complexity. For a three-dimensional system (d =3), the influence of the interstitial
fluid on grains is incorporated by iteratively updating the velocity vector vk of each
individual grain belonging to species i after every time increment δt, in accordance
with the rule [44]:

vk → e−γiδtvk +

(
6γiTbδt

mi

)1/2

ϖk. (21)

Here, ϖk is a random vector of zero mean and unit variance. Equation (21) converges
to the Fokker–Plank operator when the time step δt is much shorter than the mean free
time between collisions [44].

Figure 1 shows the dependence of the (reduced) granular temperature T * on the
coefficient of restitution α for a three-dimensional (d =3) granular gas with T *

b = 1 and
ϕ=0.1. For d =3, a good approximation to the pair correlation function χ is [45]

χ =
1− 1

2ϕ

(1−ϕ)3
. (22)

Moreover, for the sake of illustration, simulations for hard sphere systems [46–48] suggest
the following form for the function R(ϕ):

R (ϕ) =
10ϕ

(1−ϕ)
+ (1−ϕ)3

(
1+1.5

√
ϕ
)
. (23)

The line in figure 1 corresponds to the numerical solution to equation (17) while the
symbols refer to the numerical results obtained from DSMC simulations [40]. As expec-
ted, the energy dissipated by collisions increases with increasing inelasticity, and so
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Figure 2. Plot of the fourth cumulant c as a function of the coefficient of restitution
α for a three-dimensional (d =3) system with T *

b = 1 and ϕ=0.1. The symbols refer
to DSMC results.

the kinetic energy of grains (or equivalently, their reduced temperature T *) decreases.
We also observe an excellent agreement between theory and simulations in figure 1 in
the complete range of values α. Although not plotted, the curve given by the exact
solution (19) (i.e. when one neglects c) is indistinguishable from the one represented
in figure 1 taking into account the value of c. This feature can be easily explained by
figure 2 where the α dependence of the fourth cumulant c is plotted for the same sys-
tem as that of figure 1. We find that the magnitude of c is very small — much smaller
than in the case of (dry) granular gases [49]. Moreover, the cumulant c exhibits a non-
monotonic dependence on α since it decreases first as increasing inelasticity, reaches
a minimum, and then increases with decreasing α. As in the case of T *, an excellent
agreement between theory and simulations is found.

2.2. Intruders immersed in a granular gas

We now assume that a few intruders (of mass m0 and diameter σ0) are added to the
system. Since the concentration of intruders is negligibly small, one can assume that the
state of the granular gas is not disturbed by the presence of the intruders, and hence
its distribution function f(v) obeys the Enskog equation (1). Moreover, one can also
neglect collisions among intruders themselves in the kinetic equation of the one-particle
velocity distribution function f0(r,v; t) of intruders. Thus, in this limiting tracer case,
only the intruder–granular gas collisions (which are characterized by the coefficient
of restitution α0 ̸= α) will be considered in the above kinetic equation. Intruders also
interact with the interstitial fluid through the friction coefficient γ0, which is in general
different from γ. Since we are also interested in obtaining the mobility of intruders, we
will assume that intruder particles are also subjected to the action of a weak external
field E (e.g. gravity or an electric field). This field only acts on intruders.

Note that, formally, the system (intruder plus granular gas) can be regarded as a
binary granular suspension where one of the species is present in tracer concentration.
For conciseness, in the remainder of the paper we will refer to intruders immersed in a
granular suspension instead of a binary granular suspension with one tracer species.
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Under the above conditions, the one-particle velocity distribution function f0(r,v; t)
of intruders verifies the Enskog–Lorentz kinetic equation

∂f0
∂t

+v ·∇f0+
E

m0
· ∂

∂v
· f0− γ0

∂

∂v
·vf0−

γ0Tb

m0

∂2f0
∂v2

= J0 [r,v|f0,f ] , (24)

where the Enskog–Lorentz collision operator J0[f0,f ] is [36]

J0 [r1,v1|f0,f ] = σd−1

ˆ
dv2

ˆ
dσ̂Θ(σ̂ ·g12)(σ̂ ·g12)

×
[
α−2
0 χ0 (r1,r1−σ)f0 (r1,v

′ ′
1 , t)f (v

′ ′
2 )

−χ0 (r1,r1+σ)f0 (r1,v1, t)f (v2)] . (25)

Here, χ0 is the pair correlation function for intruder–granular gas collisions, σ = σσ̂,
σ = (σ+σ0)/2, and σ̂ is the unit vector directed along the line of centers from the
sphere of the intruder to the sphere of the granular gas at contact. The relationship
between the velocities (v ′ ′

1 ,v
′ ′
2 ) and (v1,v2) is

v ′ ′
1 = v1−µ

(
1+α−1

0

)
(σ̂ ·g12) σ̂, v ′ ′

2 = v2+µ0

(
1+α−1

0

)
(σ̂ ·g12) σ̂, (26)

where

µ=
m

m+m0
, µ0 =

m0

m+m0
. (27)

Equation (26) gives the so-called inverse or restituting collisions. The so-called direct col-
lisions are defined as collisions where the pre-collisional velocities (v1,v2) yield (v ′

1,v
′
2)

as post-collisional velocities. Inversion of the collision rules (26) gives the forms

v ′
1 = v1−µ(1+α0)(σ̂ ·g12) σ̂, v ′

2 = v2+µ0 (1+α0)(σ̂ ·g12) σ̂. (28)

Moreover, note that upon writing equation (25) we have accounted for the granular gas
being in a steady homogeneous state.

In accordance with equation (5), the friction coefficient γ0 for the intruder can be
written as

γ0 = γ0,StR0, (29)

where for d =3,

γ0,St =
3πσ0ηg
m0

=
σ0m

σm0
γSt. (30)

As in the case of R(ϕ), the dependence of the function R0 on the density ϕ and the
remaining parameters of the system will be taken from the results obtained by computer
simulations.

Apart from the granular temperature T, it is convenient at a kinetic level to introduce
the partial temperature of intruders T 0. This quantity measures the mean kinetic energy
of intruders. It is defined as

dn0(r; t)T0(r; t) =

ˆ
dvm0v

2f0(r,v; t), (31)
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where

n0 (r; t) =

ˆ
dv f0 (r,v; t) (32)

is the number density of intruders. Upon writing equation (31) we have taken into
account that the mean flow velocity of the granular gas vanishes in our problem. It
must be recalled that n0 is much smaller than its counterpart n for the particles of the
granular gas.

3. Homogeneous steady state for intruders

Before considering the diffusion of intruders due to the presence of a weak concentration
gradient ∇n0 and/or a weak external field E, it is convenient to first characterize the
homogeneous steady state of intruders. This is a crucial point since the latter state plays
the role of the reference state in the Chapman–Enskog solution to equation (24).

In the absence of diffusion (homogeneous steady state), equation (24) becomes

−γ0
∂

∂v
·vf0−

γ0Tb

m0

∂2f0
∂v2

= χ0J
B
0 [f0,f ] , (33)

where the Boltzmann–Lorentz operator JB
0 [f0,f ] is

JB
0 [f0,f ] = σd−1

ˆ
dv2

ˆ
dσ̂Θ(σ̂ ·g12)(σ̂ ·g12)

×
[
α−2
0 f0 (v

′ ′
1 , t)f (v

′ ′
2 , t)− f0 (v1, t)f (,v2, t)

]
. (34)

The equation for the (steady) partial temperature T 0 can be easily derived from
equation (33) as

2γ0 (Tb−T0) = T0ζ0, (35)

where

ζ0 =− χ0

dn0T0

ˆ
dvm0v

2 JB
0 [f0,f ] (36)

is the partial cooling rate characterizing the rate of energy dissipated by intruder–grain
collisions. As in the case of the granular gas, for elastic collisions (α0 = α= 1), ζ0=0,
Tb = T0, and equation (33) has the exact solution

f0 (v) = n0

(
m0

2πTb

)d/2

exp

(
−m0v

2

2Tb

)
. (37)

As occurs for the granular gas, for inelastic collisions (α0 ̸= 1) the solution to
equation (33) is not known to date.
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A good estimate for the partial temperature T 0 can be obtained by considering the
leading Sonine approximation to f0(v) [36]:

f0 (v)→ n0π
−d/2βd/2v−d

th e−βξ2
{
1+

c0
2

[
β2ξ4− (d+2)βξ2+

d(d+2)

4

]}
. (38)

Here,

β =
m0T

mT0
(39)

is the ratio between the mean square velocities of intruders and grains and

c0 =
1

d(d+2)

m2
0

n0T 2
0

ˆ
dv v4f0 (v)− 1 (40)

is the fourth-degree cumulant c0. The use of the Sonine approximation (38) to f 0 allows
us to compute the partial cooling rate ζ0 by substituting (38) into equation (36) and
retaining only linear terms in c and c0. The expression of the (reduced) cooling rate
ζ*0 = ζ0/ν can be written as

ζ*0 = ζ00+ ζ01c0+ ζ02c, (41)

where the explicit forms of ζ00, ζ01, and ζ02 can be found in appendix A.
The cumulant c0 can be determined by multiplying both sides of the Enskog

equation (33) by v 4 and integrating over v. In dimensionless form, the result is

γ*
0

(
1+ c0−

T *
b

T *
0

)
=Σ0, (42)

where T *
0 = T0/T ,

γ*
0 =

γ0
ν

=
γ0,St
γSt

R0

R
γ*, (43)

and

Σ0 =
χ0

4d(d+2)

m2
0

n0T 2
0 ν

ˆ
dv v4JB

0 [f0,f ] . (44)

Retaining only linear terms in c and c0, one has the result

Σ0 =Σ00+Σ01c0+Σ02c, (45)

where the explicit forms of Σ00, Σ01, and Σ02 are provided in appendix A. The expression
of c0 can be easily obtained when one takes into account equation (45) in equation (42).
It is given by

c0 =
γ*
0

(
1− T *

b

T *
0

)
−Σ00−Σ02c

Σ01− γ*
0

. (46)
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Figure 3. Plot of the temperature ratio T0/T versus the (common) coefficient of
restitution α for a three-dimensional (d =3) system with T *

b , ϕ=0.1, and two
different mixtures: (a) m0/m= 0.5 and σ0/σ = 1 (red line and triangles) and (b)
m0/m= 2 and σ0/σ = 1 (blue line and circles). The symbols refer to the DSMC
results.

Finally, in dimensionless form, equation (35) for T *
0 can be written as

2γ*
0

(
T *
b −T *

0

)
= T *

0 (ζ00+ ζ01c0+ ζ02c) . (47)

Substitution of equations (13) and (46) into equation (47) allows us to determine T *
0 in

terms of the parameter space of the system. When intruder and granular gas particles
are mechanically equivalent (m=m0, σ = σ0, and α= α0), then γ* = γ*

0 , ζ
* = ζ*0 , and

equation (47) yields T * = T *
0 . This means that energy equipartition applies in the self-

diffusion problem. However, in the general case (namely, when collisions are inelastic
and the intruder and grains are mechanically different), one has to numerically solve
equation (47). As in the free cooling case [43, 50, 51], T *

0 ̸= T * and so there is a break-
down of the energy equipartition, as expected.

The dependence of the temperature ratio T0/T on the (common) coefficient of resti-
tution α= α0 is plotted in figure 3 for d =3, T *

b = 1, and ϕ=0.1. Two different mixtures
have been considered. For d =3, a good approximation for χ0 is [52]

χ0 =
1

1−ϕ
+3

σ0

σ+σ0

ϕ

(1−ϕ)2
+2

(
σ0

σ+σ0

)2
ϕ2

(1−ϕ)3
. (48)

In addition, in the case of an interstitial fluid with low Reynolds number and moderate
densities, computer simulations for polydisperse gas–solid flows [46–48] estimate R0 as

R0 = 1+ (R− 1)

[
a
σ0

σ
+(1− a)

σ2
0

σ2

]
, (49)

where

a(ϕ) = 1− 2.660ϕ+9.096ϕ2− 11.338ϕ3. (50)
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Figure 4. Plot of the fourth cumulant of the intruder c0 versus the (common)
coefficient of restitution α for a three-dimensional (d =3) system with T *

b , ϕ=0.1,
and two different mixtures: (a) m0/m= 0.5 and σ0/σ = 1 (red line and triangles)
and (b) m0/m= 2 and σ0/σ = 1 (blue line and circles). The symbols refer to the
DSMC results.

Note that for mechanically equivalent particles, one has R0 =R, as should be the
case.

In agreement with previous results [42] obtained by neglecting c and c0, figure 3
shows a very tiny impact of the mass and diameter ratios on the temperature ratio T0/T .
In fact, this influence is amplified by the scale of the vertical axis. This means that the
breakdown of energy equipartititon in granular suspensions is much more modest than
in dry granular mixtures [43, 50] where the ratio T0/T clearly differs from 1 for both dis-
parate mass and diameter ratios and/or strong inelasticity. At a more qualitative level,
we see that T0 > T (T0 < T ) when the intruder is heavier (lighter) than the particles of
the granular gas. This behavior is also present in dry granular mixtures. Again, we find
an excellent agreement between theory and simulations. As a complement of figure 3,
figure 4 shows c0 versus α for the same systems as in figure 3. As in the case of c, the
magnitude of the cumulant c0 is very small, showing that the deviation of the homo-
geneous distribution f 0 from the Maxwell–Boltzmann distribution is imperceptible in
granular suspensions. Good agreement between theory and DSMC results is observed,
except when m0/m= 0.5 for very small values of α (α≲ 0.3). However, these discrep-
ancies are in the order of 2%, which is still lower than in the dry case.

4. Diffusion and mobility transport coefficients

The objective of this section is to determine the diffusion and mobility transport coef-
ficients of intruders immersed in a granular suspension. As stated before, the diffusion
process is induced here by the presence of both a weak concentration gradient∇n0 and a
weak external field E. The corresponding transport coefficients are obtained by solving
the Enskog–Lorentz kinetic equation (24) by means of the Chapman–Enskog method
[16]. Since the granular gas is in a homogeneous state, χ0 is constant in the tracer limit
and the Enskog–Lorentz operator adopts the simple form J0[f0,f ] = χ0J

B
0 [f0,f ].

https://doi.org/10.1088/1742-5468/ad267b 15

https://doi.org/10.1088/1742-5468/ad267b


Mobility and diffusion of intruders in granular suspensions: Einstein relation

J.S
tat.

M
ech.(2024)

023211

The intruders may freely exchange momentum and energy in their interaction with
the particles of the granular gas; this means that these quantities are not invariants of
the Enskog–Lorentz collision operator J0[f0,f ]. Only the number density of intruders
n0 is conserved. Its continuity equation can be easily derived from equation (24) as

∂n0

∂t
=−∇ · j0, (51)

where

j0 (r; t) =

ˆ
dv v f0 (r,v; t) (52)

is the intruder particle flux.
As usual in the Chapman–Enskog method, one assumes the existence of a normal

solution where all the space and time dependence of f 0 only occurs through a functional
dependence on the hydrodynamic fields. In this problem, the normal solution to f 0 is
explicitly generated by expanding this distribution in powers of ∇n0 and E:

f0 = f
(0)
0 +ϑf

(1)
0 +ϑ2f

(2)
0 + · · · . (53)

In equation (53), each factor ϑ corresponds to the implicit factors ∇n0 and E. Here,
only terms to first-order in ϑ will be considered. The time derivative ∂t is also expanded

as ∂t = ∂
(0)
t +ϑ∂

(1)
t + · · · , where

∂
(0)
t n0 = 0, ∂

(0)
t T = 2γ (Tb−T )− ζT , (54)

∂
(1)
t n0 =−∇ · j(0)0 , ∂

(1)
t T = 0, (55)

and

j
(0)
0 =

ˆ
dv v f

(0)
0 (v). (56)

As noted in previous works [15, 37, 53], although we are interested in computing
the diffusion coefficient under steady-state conditions, the presence of the interstitial
fluid introduces the possibility of a local energy unbalance, and hence, the zeroth-order

distribution f
(0)
0 is not in general a stationary distribution. This is because, for arbitrary

small deviations from the homogeneous steady state, the energy gained by grains due to
collisions with the background fluid cannot be locally compensated by the other cooling
terms arising from the viscous friction and the collisional dissipation. Thus, in order to
get the diffusion and mobility coefficients in the steady state, one has to first determine
the unsteady integral equation obeying both coefficients and then solve it under the
steady-state condition (9).

The zeroth-order approximation f
(0)
0 obeys the kinetic equation

∆T
∂f

(0)
0

∂T
− γ0

∂

∂v
·vf (0)

0 − γ0Tb

m0

∂2f
(0)
0

∂v2
= χ0J

B
0

[
f
(0)
0 ,f

]
, (57)
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where ∆≡ 2γ
(
Tb

T − 1
)
− ζ. Upon deriving equation (57), we have accounted for the fact

that f
(0)
0 depends on time through its dependence on temperature T. In the steady state

(∆ = 0), equation (57) has the same form as equation (33). This means that f
(0)
0 is the

solution of equation (33) but taking into account the local dependence of the density

n0. An approximate form to f
(0)
0 is given by the Sonine approximation (38). Since f 0 is

isotropic in velocity, then j
(0)
0 = 0 and hence ∂

(1)
t n0 = 0.

To first order in ϑ, one achieves the kinetic equation

−γ0
∂

∂v
·vf (1)

0 − γ0Tb

m0

∂2f
(1)
0

∂v2
−χ0J

B
0

[
f
(1)
0 ,f

]
=−f

(0)
0 v ·∇ lnn0−

E

m0
· ∂

∂v
f
(0)
0 . (58)

Upon obtaining equation (58), we have considered steady conditions (∆ = 0) and have

taken into account that ∇f
(0)
0 = f

(0)
0 ∇ lnn0. The solution to equation (58) can be

written as

f
(1)
0 (v) =A(v) ·∇ lnn0+B (v) ·E, (59)

where the coefficients A and B are functions of the velocity and the hydrodynamic
fields. Substitution of equation (59) into equation (58) yields the following set of linear
integral equations for the unknowns A and B:

−γ0
∂

∂v
·vA− γ0Tb

m0

∂2A
∂v2

−χ0J
B
0 [A,f ] =−vf

(0)
0 , (60)

−γ0
∂

∂v
·vB− γ0Tb

m0

∂2B
∂v2

−χ0J
B
0 [B,f ] =− 1

m0

∂

∂v
f
(0)
0 . (61)

In the first order of ∇n0 and E, the intruder particle flux has the form

j
(1)
0 =−D∇ lnn0+λE, (62)

where D is the diffusion coefficient and λ is the mobility coefficient. Since

j
(1)
0 =

ˆ
dv v f

(1)
0 (v) , (63)

then, according to equation (59), D and λ are defined as

D =−1

d

ˆ
dv v ·A(v) , λ=

1

d

ˆ
dv v ·B (v) . (64)

For elastic collisions (α= α0 = 1), T = T0 = Tb and f
(0)
0 (v) is the local equilibrium

distribution (37). In this case, ∂f
(0)
0 /∂v =−(m0v/Tb)f

(0)
0 and the integral equations (60)

and (61) lead to the identity A=−TbB. As a consequence, the conventional Einstein
relation is verified; namely,

ϵ=
D

Tbλ
= 1. (65)
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On the other hand, for inelastic collisions, T ̸= T0 ̸= Tb, and hence the relationship
between D and λ is no longer simple. There are in principle three different reasons for
which the Einstein relation (65) is not verified for granular suspensions. First, when
α< 1, the granular temperature T is different from the bath temperature T b (T < Tb).
Second, there is a breakdown of the energy equipartition (T ̸= T0) when intruders are
mechanically different to the particles of the granular gas. Finally, as a third reason,

since f
(0)
0 is not a Gaussian distribution, then ∂f

(0)
0 /∂v ̸=−(m0v/Tb)f

(0)
0 and hence D is

not proportional to λ. The first two reasons of discrepancy can be avoided if one replaces
the bath temperature T b by the intruder particle T 0 in the Einstein relation (65). This
change leads to the modified Einstein relation

ϵ0 =
D

T0λ
. (66)

The relation (66) was proposed by Barrat et al [3] to extend the Einstein relation (65)
to granular gases.

Note that, in particular, if one takes the Maxwellian approximation (37) for f
(0)
0 with

T 0 instead of T b, then ∂f
(0)
0 /∂v =−(m0v/T0)f

(0)
0 and hence ϵ0=1. Thus, it seems that

the only reason for which ϵ0 ̸= 1 is due to the absence of the Gibbs state (non-Gaussian

behavior of the distribution f
(0)
0 ). Since we have seen that the magnitude of the kurtosis

c0 is in general very small for granular suspensions (see for instance figure 4), one
expects that the deviations of ϵ0 from 1 can be quite difficult to detect in computer
simulation experiments. In fact, molecular dynamics simulations [3] (for a similar sort
of thermostat as the one employed in this paper) did not observe any deviation from
the modified Einstein relation (ϵ0=1) for a wide range of values of the coefficients of
restitution and parameters of the mixture. Our objective here is to assess the departure
of ϵ0 from 1 in a granular suspension modeled by a stochastic bath with viscous friction.

4.1. Second Sonine approximation to D and λ

It is quite apparent that the transport coefficients D and λ are given in terms of the
solution of the integral equations (60) and (61), respectively. These equations can be
approximately solved by using a Sonine polynomial expansion. Here, as mentioned in
section 1, we determine D and λ up to the second Sonine approximation. In this case,
A(v) and B(v) are approximated by

A(v)→−f0,M (v) [a1v+ a2S0 (v)] , B (v)→−f0,M (v) [b1v+ b2S0 (v)] , (67)

where

f0,M (v) = n0

(
m0

2πT0

)d/2

exp

(
−m0v

2

2T0

)
, (68)

and S0(v) is the polynomial

S0 (v) =

(
1

2
m0v

2− d+2

2
T0

)
v. (69)
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The Sonine coefficients a1, b1, a1, and a2 are defined as(
a1
b1

)
=− m0

dn0T0

ˆ
dvv ·

(
A
B

)
,

(
a2
b2

)
=− 2

d(d+2)

m0

n0T 3
0

ˆ
dvS0 ·

(
A
B

)
.

(70)

According to equation (64), a1 =m0D/(n0T0) and b1 =−m0λ/(n0T0). The evaluation
of the coefficients a1, b1, a1, and a2 is carried out in appendix B.

Knowledge of the Sonine coefficients allows us to determine the first and second
Sonine approximations to the diffusion coefficient D and the mobility coefficient λ. To
write these expressions, it is convenient to introduce the dimensionless coefficients

D* =
m0ν

Tn0
D, λ* =

m0ν

n0
λ. (71)

The second Sonine approximation D*[2] to D* can be written as

D* [2] =

(
ν*4 +3γ*

0 − c0ν
*
2

)
τ0(

ν*1 + γ*
0

)(
ν*4 +3γ*

0

)
− ν*2

[
ν*3 +2γ*

0

(
1− T *

b

T *
0

)] , (72)

where τ0 = T0/T is the temperature ratio. The expressions of the (reduced) collision
frequencies ν*1–ν

*
4 can be found in appendix B. Equation (72) agrees with previous

results derived in [42] when one takes c= c0 = 0. The second Sonine approximation
λ*[2] to λ* is given by

λ* [2] =
ν*4 +3γ*

0(
ν*1 + γ*

0

)(
ν*4 +3γ*

0

)
− ν*2

[
ν*3 +2γ*

0

(
1− T *

b

T *
0

)] . (73)

4.2. DSMC simulations of D and λ

As in the case of the temperatures and the cumulants, to check the accuracy of the
Sonine approximations we have solved the Enskog–Lorentz equation by means of the
DSMC method described in section 2.1. The diffusion D and mobility λ transport
coefficients have been computed separately.

Firstly, the calculation of the diffusion coefficient proceeds in the absence of any
external field acting upon the intruder particles. In this scenario, equation (51) reads

∂n0

∂t
=−D

n0
∇2n0, (74)

where use has been made of the intruder particle flux equation (62) when E= 0. In par-
ticular, the coefficient D can be ascertained by evaluating the mean square displacement
of the intruders [6], as derived from the standard diffusion equation (74). Specifically,
we have

∂

∂t
⟨|r(t)− r(0) |2⟩= 2d

D0

n0
. (75)
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Figure 5. Plot of the (reduced) diffusion coefficient D(α)/D(1) versus the (com-
mon) coefficient of restitution α for a three-dimensional (d =3) system with T *

b ,
ϕ=0.1, and two different mixtures: (a) m0/m= 0.5 and σ0/σ = 1 (red line and tri-
angles) and (b) m0/m= 2 and σ0/σ = 1 (blue line and circles). The symbols refer
to the DSMC results.

In this context, ⟨|r(t)− r(0)|⟩ is the ensemble-average distance traveled by the intruder
up to the time t.

On the other hand, the mobility of a tracer particle can be measured by applying a
persistent yet small drag force E= Eex to the intruder particles. Over extended time
intervals, the perturbed particles will reach a constant velocity λ, which is directly
linked to the average distance traveled by the intruders by [54]

⟨(r(t)− r(0)) · ex⟩ ≈ λEt. (76)

The linearity of equation (76) has been checked in [54] by changing the amplitude of
the perturbation E.

Figures 5 and 6 show the dependence of the (reduced) transport coefficients
D(α)/D(1) and λ(α)/λ(1) for a three-dimensional (d =3) system with T *

b , ϕ=0.1,
and two different mixtures. Here, the diffusion D and mobility λ coefficients have been
reduced with respect to their elastic limits D(1) and λ(1), respectively. Theoretical
predictions given by the first and second Sonine approximations are compared with
DSMC simulations. Although we observe that the first Sonine approximation compares
quite well with simulations, some small differences appear in the case of the diffu-
sion coefficient for small mass ratios. These differences are mitigated by the second
Sonine approximation since it yields an excellent agreement with the DSMC results.
Moreover, while the (reduced) mobility coefficient always increases with decreasing α,
a non-monotonic dependence of the (reduced) diffusion coefficient is present regardless
of the mass ratio considered. Figures 5 and 6 also highlight that the effect of the mass
ratio on λ(α)/λ(1) is much more significant than for D(α)/D(1).

4.3. Einstein relation

Once the transport coefficients are known, the conventional and modified relations can
be explicitly obtained in terms of the parameters of the system up to the second Sonine
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Figure 6. Plot of the (reduced) mobility coefficient λ(α)/λ(1) versus the (common)
coefficient of restitution α for a three-dimensional (d =3) system with T *

b , ϕ=0.1,
and two different mixtures: (a) m0/m= 0.5 and σ0/σ = 1 (red line and triangles)
and (b) m0/m= 2 and σ0/σ = 1 (blue line and circles). The symbols refer to the
DSMC results.

approximation. In the case of the conventional Einstein relation (65), one gets the
result

ϵ [2] =
D [2]

Tbλ [2]
= T *D

* [2]

λ* [2]
= T *

0

(
1− ν*2

ν*4 +3γ*
0

c0

)
, (77)

while in the case of the modified Einstein relation (66), one achieves the expression

ϵ0 [2] =
D [2]

T0λ [2]
= 1− ν*2

ν*4 +3γ*
0

c0. (78)

It is quite apparent that while the conventional Einstein relation (77) fails due to

both energy non-equipartition and non-Gaussian corrections to the distribution f
(0)
0 ,

the departure of the modified Einstein relation (78) is only due to the latter feature
(c0 ̸= 0).

To illustrate the dependence of both Einstein relations on the (common) coefficient
of restitution α= α0, figure 7 shows ϵ and ϵ0 for several mixtures. While ϵ0 ≃ 1 for all the
mixtures (in fact, the three curves practically collapse in a common curve on the scale of
the vertical axis of figure 7), there are significant deviations from 1 in the conventional
Einstein relation. In fact, the deviations of ϵ0 from 1 are much smaller than 1%. This
result contrasts with the ones previously derived for freely cooling [7] and driven (with
a Gaussian thermostat) [17] granular gases.

In summary, the results derived here show no new surprises relative to the earlier
work for dry granular gases [17, 18]: the origin of the breakdown of the modified Einstein
relation is only due to the departure of the reference state from the Maxwell–Boltzmann
distribution. However, in contrast to the previous works [17, 18], the deviation of ϵ0 from
1 in granular suspensions is much smaller than the one found in driven granular gases,
even for moderate densities and/or strong inelasticity.
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Figure 7. Plot of the conventional ϵ (dashed lines) and modified ϵ0 (solid lines)
Einstein relation versus the (common) coefficient of restitution α for a three-
dimensional (d =3) system with T *

b , ϕ=0.1, and three different mixtures: (a)
m0/m= 0.5 and σ0/σ = 1, (b) m0/m= 1 and σ0/σ = 1, and (c) m0/m= 2 and
σ0/σ = 1. The three lines corresponding to the modified Einstein relation are
indistinguishable.

5. Conclusions

The main objective of this paper was to analyze the validity of the conventional
ϵ=D/Tλ= 1 and modified ϵ0 =D/T0λ= 1 Einstein relations in a moderately dense
granular suspension. The results were derived in the framework of the (inelastic) Enskog
kinetic equation, which applies to moderate densities. As usual in granular suspensions
and due to the difficulties embodied in the description of systems constituted by two or
more phases, a coarse-grained approach was adopted. In this approach, the influence of
the interstitial fluid on grains and intruders was modeled through two different forces.
Each of the forces is composed of two terms: (i) a viscous drag term plus (ii) a stochastic
Langevin-like term defined in terms of the background temperature T b. Two different
friction coefficients were introduced in the model; each of them accounts for the interac-
tion between the grains and intruders with the external bath. Thus, the starting kinetic
equations for grains and intruders are the Enskog and the Enskog–Lorentz equations,
respectively, with the addition of Fokker–Planck terms to each one of the above master
equations. The present work extends previous studies performed by one of the authors
of this paper in the case of driven dry granular gases [17, 18].

To determine the explicit dependence of ϵ and ϵ0 on the parameter space of the
system, the corresponding Enskog–Lorentz kinetic equation for intruders was solved by
means of the Chapman–Enskog method [16] up to the first order in both the density
gradient and the external field. As for molecular mixtures, the diffusion D and mobility
λ transport coefficients are given in terms of a set of coupled linear integral equations,
which are approximately solved by expanding the unknowns in a series of Sonine poly-
nomials. Here, the series was truncated by considering the two first relevant Sonine
polynomials; this leads to the so-called first and second Sonine approximations to the
coefficients D and λ. The reliability of these theoretical results was assessed via a com-
parison with computer simulations obtained by numerically solving the Enskog–Lorentz
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equation by means of the DSMC method [40]. The comparison shows in general a good
agreement between theory and simulations, especially in the case of the second Sonine
solution. This agreement shows again the reliability of kinetic theory to obtain the
transport properties of granular gases.

As expected from previous works [17, 18], our results show that while the con-
ventional Einstein relation is clearly violated, the deviations of the modified Einstein
relation ϵ0 from 1 are very tiny. In particular, the deviations of ϵ0 from 1 are in general
smaller than 1% in the range of inelasticities and densities studied. This means that
these deviations are much smaller than the ones reported in [18] for moderate densities,
especially when the gas is driven by the Gaussian thermostat (see figure 6 of [18]). The
fact that ϵ0 ≃ 1 for granular suspensions is essentially due to the small magnitude of
the cumulant c0, which is much smaller than in the driven case (compare, for instance,
figure 2 of [18] with figure 4 of the present work).

On the other hand, the above conclusion disagrees with the computer simulation
results obtained years ago by Puglisi et al [19], which were subsequently confirmed in
an experiment [20]. In this experiment, the granular gas is driven by a shaker, and
the tracer is a rotating wheel immersed in the gas. The main claim in both papers is
that the violation of the modified Einstein relation mainly originates from the presence
of spatial and velocity correlations, which are relevant as the density increases. Given
that the Enskog equation takes into account the spatial correlations (through the pair
correlation functions) but neglects the velocity correlation between the velocities of the
particles that are about to collide (molecular chaos hypothesis), one could argue that
the deviation of ϵ0 from 1 in the Enskog theory could be more important as both the
density and inelasticity increase. However, our results indicate that the violation of
the modified Einstein relation is still very small (and, hence, undetectable in computer
simulations) even when one considers high densities and/or strong inelasticity. In this
context, and based on the Enskog results for granular suspensions at moderate densities,
one can conclude that the origin of the deviation of ϵ0 from 1 is mainly due to velocity
correlations, which are absent in the Enskog theory. These velocity correlations are
expected to have a significant impact on ϵ0 for relatively high densities and/or high
inelasticities.

In connection with the above point, one could include this sort of velocity correlation
in the collision operator [55]. However, as mentioned in [18], the inclusion of this new
ingredient in the Enskog collision operator makes analytical calculations intractable
since higher-order correlations should be accounted for in the evaluation of the collision
integrals. This type of calculation contrasts with the ones offered in this paper, where the
diffusion and mobility transport coefficients have been explicitly determined in terms
of masses, diameters, coefficients of restitution, density, and background temperature.

Although some simulation computer works [56–58] have clearly shown the failure of
the molecular chaos assumption for inelastic collisions as the density increases, there is
also some evidence in the granular literature on the usefulness of the Enskog theory for
densities outside the dilute limit and inelasticities beyond the quasielastic limit. This
evidence is supported by the agreement found at the level of the macroscopic properties
between the Enskog results [59–62] and those obtained from computer simulations [60,
63–66] and real experiments [67–69].
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One of the limitations of the theoretical results presented in this paper is that
they are approximated since they have been obtained by considering the second Sonine
approximation in the Chapman–Enskog solution. Exact results can be derived if one
determines the coefficients D and λ by starting from the inelastic Maxwell model (IMM)
for a dilute gas. As for molecular Maxwell gases [16], the collision rate of colliding
particles in the IMM is assumed to be independent of the relative velocity. This sim-
plification allows any moment of degree k of the Boltzmann collisional operator to be
expressed in terms of velocity moments of degree k or less than k [36]. This feature
of the Boltzmann collision operator of the IMM opens up the possibility of exactly
determining the coefficients D and λ. These results are presented in the appendix C.
According to these results, one concludes that the modified Einstein relation applies for
IMM in any number of dimensions.
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Appendix A. Expressions for the partial cooling and the fourth-degree collisional
moment

In this appendix we display the explicit expressions of the (reduced) partial cooling
rate ζ*0 and the fourth-degree collisional moment Σ0. Their forms are provided by
equations (41) and (44), respectively, when nonlinear terms in c0 and c are neglected.
The expressions of ζ00, ζ01, and ζ02 are given by [70]

ζ00 =
2
√
2

d

(
σ

σ

)d−1
χ0

χ
µ

(
1+β

β

)1/2

(1+α0)

[
1− 1

2
µ(1+α0)(1+β)

]
, (A1)

ζ01 =
1

2
√
2d

(
σ

σ

)d−1
χ0

χ
µ
(1+β)−3/2

β1/2
(1+α0)

[
3+4β− 3

2
µ(1+α0)(1+β)

]
, (A2)

ζ02 =− 1

2
√
2d

(
σ

σ

)d−1
χ0

χ
µ

(
1+β

β

)−3/2

(1+α0)

[
1+

3

2
µ(1+α0)(1+β)

]
. (A3)

In the case of the fourth-degree collisional moment Σ0, the expressions of Σ00, Σ01, and
Σ02 are [70]

Σ00 =
1√

2d(d+2)

(
σ

σ

)d−1
χ0

χ
µ [β (1+β)]−1/2 (1+α0)

{
− 2[d+3+ (d+2)β]

+µ(1+α0)(1+β)

(
11+ d+

d2+5d+6

d+3
β

)
− 8µ2 (1+α0)

2 (1+β)2

+2µ3 (1+α0)
3 (1+β)3

}
, (A4)

https://doi.org/10.1088/1742-5468/ad267b 24

https://doi.org/10.1088/1742-5468/ad267b


Mobility and diffusion of intruders in granular suspensions: Einstein relation

J.S
tat.

M
ech.(2024)

023211

Σ01 =
1

8
√
2d(d+2)

(
σ

σ

)d−1 χ0

χ
µβ−1/2 (1+β)−5/2 (1+α0)

×

{
− 2
[
45+15d+(114+39d)β+(88+32d)β2+(16+8d)β3

]
+3µ(1+α0)(1+β)

[
55+5d+9(10+ d)β+4(8+ d)β2

]
− 24µ2 (1+α0)

2 (1+β)2 (5+4β)+ 30µ3 (1+α0)
3 (1+β)3

}
, (A5)

Σ02 =
1

8
√
2d(d+2)

(
σ

σ

)d−1 χ0

χ
µβ3/2 (1+β)−5/2 (1+α0)

{
2[d− 1+ (d+2)β]

+ 3µ(1+α0)(1+β) [d− 1+ (d+2)β]− 24µ2 (1+α0)
2 (1+β)2

+30µ3 (1+α0)
3 (1+β)3

}
. (A6)

Appendix B. Second Sonine approximation to the diffusion and mobility
coefficients

Some details are provided in this appendix in the calculation of the diffusion D and
mobility λ coefficients up to the second Sonine approximation. The substitution of
equation (67) into the integral equations (60) and (61), respectively, gives

γ0
∂

∂v
·v(a1f0Mv+ a2f0MS0)+

γ0Tb

m0

∂2

∂v2
(a1f0Mv+ a2f0MS0)+ a1χ0J

B
0 [f0Mv,f ]

+ a2χ0J
B
0 [f0MS0,f ] =−vf

(0)
0 , (B1)

γ0
∂

∂v
·v(b1f0Mv+ b2f0MS0)+

γ0Tb

m0

∂2

∂v2
(b1f0Mv+ b2f0MS0)+ b1χ0J

B
0 [f0Mv,f ]

+ b2χ0J
B
0 [f0MS0,f ] =− 1

m0

∂

∂v
f
(0)
0 . (B2)

Next, equations (B1) and (B2) are multiplied by v and integrated over the velocity. The
result is

(γ0+ ν1)D+
n0T

2
0

m0
ν2a2 =

n0T0

m0
, (B3)

(γ0+ ν1)λ− n0T
2
0

m0
ν2b2 =

n0

m0
, (B4)

where use has been made of the identities a1 = (m0D/n0T0), b1 =−(m0λ/n0T0), and we
have introduced the quantities

ν1 =−m0χ0

dn0T0

ˆ
dv v · JB

0 [f0Mv,f ] , ν2 =− m0χ0

dn0T 2
0

ˆ
dv v · JB

0 [f0MS0,f ] . (B5)
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If only the first Sonine correction is retained (i.e. a2 = b2 = 0), then D[1] = T0λ[1] and
the modified Einstein relation (66) is verified.

To get the second Sonine coefficients a2 and b2, one multiplies equations (B1)
and (B2) by S0(v) and integrates over the velocity. The result is

m0

n0T 2
0

[
2γ0

(
1− Tb

T0

)
+ ν3

]
D+(3γ0+ ν4)a2 =

c0
T0

, (B6)

− m0

n0T 2
0

[
2γ0

(
1− Tb

T0

)
+ ν3

]
λ+(3γ0+ ν4)b2 = 0, (B7)

where

ν3 =− 2

d(d+2)

m0χ0

n0T 2
0

ˆ
dv S0 · JB

0 [f0Mv,f ] ,

ν4 =− 2

d(d+2)

m0χ0

n0T 3
0

ˆ
dv S0 · JB

0 [f0MS0,f ] . (B8)

In reduced units and by using matrix notation, equations (B3) and (B6) along with
equations (B4) and (B7) can be rewritten as γ*

0 + ν*1 τ 20 ν
*
2

ν*3+2γ*
0

(
1− T*b

T*0

)
τ 20

3γ*
0 + ν*4

( D*

a*2

)
=

(
τ0
c0
τ0

)
, (B9)

(
γ*
0 + ν*1 −τ 20 ν

*
2

ν*3 +2γ*
0

(
1− T *

b

T *
0

)
−τ 20

(
3γ*

0 + ν*4
) )( λ*

b*2

)
=

(
1
0

)
. (B10)

Here, ν*i = νi/ν (i = 1, . . . ,4), a*2 = Tνa2, and b*2 = T 2νb2. From equations (B9) and (B10)
one obtains the expressions (72) and (73) for the second Sonine approximations to D*

and λ*, respectively.
The integrals involving the (reduced) collision frequencies ν*i have been computed

in previous works [62, 71, 72] for a d -dimensional system when f is replaced by the
Maxwellian distribution

fM (v) = n
( m

2πT

)d/2
exp

(
−mv2

2T

)
. (B11)

In this case, the collision frequencies are given by

ν*1 =

√
2

d

(
σ

σ

)d−1
χ0

χ
µ(1+α0)

(
1+β

β

)1/2

,

ν*2 =
1√
2d

(
σ

σ

)d−1
χ0

χ
µ(1+α0) [β (1+β)]−1/2 , (B12)

ν*3 =

√
2

d(d+2)

(
σ

σ

)d−1
χ0

χ
µ(1+α0)

(
β

1+β

)1/2

Ac, (B13)

https://doi.org/10.1088/1742-5468/ad267b 26

https://doi.org/10.1088/1742-5468/ad267b


Mobility and diffusion of intruders in granular suspensions: Einstein relation

J.S
tat.

M
ech.(2024)

023211

ν*4 =
1√

2d(d+2)

(
σ

σ

)d−1
χ0

χ
µ(1+α0)

(
β

1+β

)3/2[
Ad− (d+2)

1+β

β
Ac

]
, (B14)

where

Ac = (d+2)(1+2ϖ)+µ(1+β)
{
(d+2)(1−α0)− [(11+ d)α0− 5d− 7]ϖβ−1

}
+3(d+3)ϖ2β−1+2µ2

(
2α2

0−
d+3

2
α0+ d+1

)
β−1 (1+β)2− (d+2)β−1 (1+β) ,

(B15)

Ad = 2µ2

(
1+β

β

)2(
2α2

0−
d+3

2
α0+ d+1

)
[d+5+ (d+2)β]−µ(1+β)

×

{
ϖβ−2 [(d+5)+ (d+2)β] [(11+ d)α0− 5d− 7]−β−1[20+ d(15− 7α0)

+ d2 (1−α0)− 28α0]− (d+2)2 (1−α0)

}
+3(d+3)ϖ2β−2 [d+5+ (d+2)β]

+ 2ϖβ−1
[
24+11d+ d2+(d+2)2β

]
+(d+2)β−1 [d+3+ (d+8)β]

− (d+2)(1+β)β−2 [d+3+ (d+2)β] . (B16)

Here, ϖ = (µ0/T0)(T0−T ).

Appendix C. Inelastic Maxwell model

In this appendix we provide the exact results derived by considering the IMM for a dilute
granular gas. The IMM is a further simplification of the inelastic hard sphere (IHS)
model since it assumes that the collision rate of the colliding particles is independent
of their relative velocity. In this model, the Boltzmann collision operator J IMM[f ,f ] of
the granular gas reads [36]

J [v1|f ,f ] =
νM
nSd

ˆ
dv2

ˆ
dσ̂
[
α−1f (v ′ ′

1 )f (v
′ ′
2 )− f (v1)f (v2)

]
, (C1)

where Sd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions and the velocities v ′ ′
1,2

are related to v1,2 by equation (3). Moreover, νM is an effective collision frequency that
is independent of velocity. This quantity can be seen as a free parameter of the model
to be chosen to optimize the agreement with some proper quantity of interest obtained
from the Boltzmann equation for IHS. In particular, if we chose νM to get the same
expression of the cooling rate ζ as the one obtained in the Maxwellian approximation
in the IHS model of diameter σ (equation (16) with c=0), then one obtains the simple
relationship νM = 2ν, where ν is defined by equation (15) with χ=1.

In the context of IMM, the Boltzmann–Lorentz collision operator J IMM
0 [f0,f ]

reads [36]

J IMM
0 [f0,f ] =

νM,0

nSd

ˆ
dv2

ˆ
dσ̂
[
α−1
0 f0 (v

′ ′
1 )f (v

′ ′
2 )f0 (v1)f (v2)

]
, (C2)
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where νM,0 is an effective collision frequency for intruder–gas collisions and the relation
between the velocities v ′ ′

1,2 and v1,2 is given by equation (26). When the form (C2) of

the operator J IMM
0 [f0,f ] is substituted into the definition (36), the partial cooling rate

ζ0 can be exactly determined for IMM. The result is [36]

ζ0 =
2νM,0

d
µ(1+α0)

[
1− 1

2
µ(1+α0)(1+β)

]
. (C3)

Comparison of equation (C3) with equation (A1) (it gives ζ0 for IHS in the Maxwellian
approximation, i.e. when c= c0 = 0) yields the relation

νM,0 =
√
2

(
σ

σ

)d−1(
1+β

β

)1/2

ν. (C4)

The determination of the transport coefficients D and λ follows similar mathematical
steps to those made in the case of IHS, except that the corresponding collision integrals
appearing in the evaluation of these coefficients can be exactly computed. They are
given byˆ

dv v · J IMM
0 [A,f ] = νM,0µ(1+α0)D,

ˆ
dv v · J IMM

0 [B,f ] = νM,0µ(1+α0)λ. (C5)

The final expressions of D and λ can be easily derived when one takes into account
equation (C5). The results are

D =
n0T0

m0
(γ0+ ν1)

−1 , λ=
n0

m0
(γ0+ ν1)

−1 , (C6)

where

ν1 = µ(1+α0)
νM,0

d
=

√
2

d

(
σ

σ

)d−1(
1+β

β

)1/2

µ(1+α0) . (C7)

Equation (C6) shows that the expressions of D and λ derived for IMM coincide with the
ones obtained from the Boltzmann equation for IHS in the first Sonine approximation
when one neglects non-Gaussian corrections to the zeroth-order distributions (c= c0 =
0). Thus, according to equation (C6), ϵ0 =D/(T0λ) = 1 for IMM.
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[7] Dufty J W and Garzó V 2001 Mobility and diffusion in granular fluids J. Stat. Phys. 105 723–44

https://doi.org/10.1088/1742-5468/ad267b 28

https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1103/PhysRevE.66.061305
https://doi.org/10.1103/PhysRevE.66.061305
https://doi.org/10.1016/j.physa.2003.11.008
https://doi.org/10.1016/j.physa.2003.11.008
https://doi.org/10.1103/PhysRevLett.93.240601
https://doi.org/10.1103/PhysRevLett.93.240601
https://doi.org/10.1103/PhysRevE.73.046132
https://doi.org/10.1103/PhysRevE.73.046132
https://doi.org/10.1023/A:1013545908301
https://doi.org/10.1023/A:1013545908301
https://doi.org/10.1088/1742-5468/ad267b


Mobility and diffusion of intruders in granular suspensions: Einstein relation

J.S
tat.

M
ech.(2024)

023211

[8] Dufty J W and Brey J J 2002 Green–Kubo expressions for a granular gas J. Stat. Phys. 109 433–48
[9] Schröter M, Goldman D I and Swinney H L 2005 Stationary state volume fluctuations in a granular medium

Phys. Rev. E 71 030301(R)
[10] Abate A R and Durian D J 2006 Approach to jamming in an air-fluidized granular bed Phys. Rev. E 74 031308
[11] Subramaniam S 2020 Multiphase flows: rich physics, challenging theory and big simulations Phys. Rev. Fluids

5 110520
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[17] Garzó V 2004 On the Einstein relation in a heated granular gas Physica A 343 105–26
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[50] Garzó V and Dufty J W 1999 Homogeneous cooling state for a granular mixture Phys. Rev. E 60 5706–13
[51] Brey J J, Ruiz-Montero M J and Moreno F 2005 Energy partition and segregation for an intruder in a vibrated

granular system under gravity Phys. Rev. Lett. 95 098001
[52] Grundke E W and Henderson D 1972 Distribution functions of multi-component fluid mixtures of hard spheres

Mol. Phys. 24 269–81
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