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Abstract: The Boltzmann kinetic equation for dilute granular suspensions under simple (or uniform)
shear flow (USF) is considered to determine the non-Newtonian transport properties of the system. In
contrast to previous attempts based on a coarse-grained description, our suspension model accounts
for the real collisions between grains and particles of the surrounding molecular gas. The latter is
modeled as a bath (or thermostat) of elastic hard spheres at a given temperature. Two independent
but complementary approaches are followed to reach exact expressions for the rheological properties.
First, the Boltzmann equation for the so-called inelastic Maxwell models (IMM) is considered. The
fact that the collision rate of IMM is independent of the relative velocity of the colliding spheres allows
us to exactly compute the collisional moments of the Boltzmann operator without the knowledge of
the distribution function. Thanks to this property, the transport properties of the sheared granular
suspension can be exactly determined. As a second approach, a Bhatnagar–Gross–Krook (BGK)-type
kinetic model adapted to granular suspensions is solved to compute the velocity moments and the
velocity distribution function of the system. The theoretical results (which are given in terms of
the coefficient of restitution, the reduced shear rate, the reduced background temperature, and the
diameter and mass ratios) show, in general, a good agreement with the approximate analytical results
derived for inelastic hard spheres (IHS) by means of Grad’s moment method and with computer
simulations performed in the Brownian limiting case (m/mg → ∞, where mg and m are the masses of
the particles of the molecular and granular gases, respectively). In addition, as expected, the IMM and
BGK results show that the temperature and non-Newtonian viscosity exhibit an S shape in a plane of
stress–strain rate (discontinuous shear thickening, DST). The DST effect becomes more pronounced
as the mass ratio m/mg increases.

Keywords: granular suspensions; Boltzmann kinetic equation; inelastic Maxwell models; BGK-type
kinetic model; non-Newtonian transport properties

1. Introduction

A very usual way of assessing the effect of the surrounding fluid on the dynamics
properties of solid particles is through an effective fluid–solid force [1–4]. In some models,
this force is simply proportional to the velocity particle (Stokes linear drag law) [5–12]. This
type of force attempts to mimic the energy dissipated by grains due to their friction on the
interstitial viscous gas. A more sophisticated model [13] also incorporates a Langevin-like
stochastic term that accounts for the energy transferred to grains due to their “collisions”
with particles of the background gas. However, although this coarse-grained approach has
provided reliable results in the past, it would be desirable to consider a suspension model
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that takes into account the real collisions between grains and particles of the surrounding
(molecular) gas. This sort of suspension model (which was inspired by a previous work
of Biben et al. [14]) has been recently proposed [15]. In this model, granular particles are
assumed to be sufficiently rarefied so that they do not disturb the state of the molecular
(background) gas. As a consequence, the interstitial gas may be treated as a thermostat at
the temperature Tg. Moreover, although the concentration (mole fraction) of grains is quite
small, apart from the elastic collisions between solid and molecular gas particles, one has
to consider the inelastic collisions between grains themselves. This model can be useful to
analyze transport properties in particle-laden suspensions [16] where very dilute particles
(like aerosols) are immersed in a fluid (like air).

The rheological properties of a granular suspension under simple (or uniform) shear flow
(USF) have been recently determined [17]. In contrast to previous attempts [5–8,10–12,18], the
results obtained in Ref. [17] were derived from the collisional model proposed in Ref. [15].
On the other hand, a limitation of these results is that they were approximately obtained by
employing Grad’s moment method [19], namely, a method based on the truncation of a
series expansion of the velocity distribution function in (orthogonal) Sonine polynomials.
The use of this approximate method is essentially motivated by the form of the collision
rate for inelastic hard spheres (IHS) appearing inside the Boltzmann collision operator.
The collision rate for IHS is proportional to the magnitude of the normal component of
the relative velocity of the two spheres that are about to collide. This velocity dependence
of the collision rate for IHS prevents the possibility of deriving exact expressions for the
transport properties in the USF problem, even in the case of elastic collisions.

A possible way to overcome the technical difficulty of the hard-sphere kernel is to
consider the so-called inelastic Maxwell models (IMM). As for the conventional Maxwell
molecules [20–22], the collision rate of IMM is independent of the relative velocity of the
two colliding spheres [23]. The use of IMM instead of IHS opens up the possibility of ob-
taining exact analytical results of the Boltzmann equation in some specific nonequilibrium
situations, like the USF. In particular, the knowledge of the collisional moments of the
Boltzmann equation for IMM enables a clear exploration of the impact of inelasticity on
the non-Newtonian transport properties of the granular suspension without introducing
uncontrolled approximations.

Another possible alternative for obtaining exact results is to consider a kinetic model
that retains the relevant physical properties of the Boltzmann collision operator but turns
out to be more tractable than the true kinetic equation. This route has been widely employed
in the past in the case of molecular dilute gases where it has been shown that several exact
solutions in far from equilibrium states agree very well with Monte Carlo simulations of the
Boltzmann equation. Here, we will consider a kinetic model for granular suspensions [24]
to complement the theoretical expressions obtained from the Boltzmann equation for
IMM. Since this kinetic model is based on the well known Bhatnagar–Gross–Krook (BGK)
model [22] for molecular gases, we will refer to it as a BGK-type kinetic model.

The objective of this paper is to determine the rheological properties of granular particles
immersed in a bath of elastic hard spheres under USF. At a macroscopic level, the USF is
characterized by constant number densities for solid and gas particles, a uniform temperature,
and a (common) linear velocity profile Ug,x = Ux = ay, where a is the constant shear
rate. Here, Ug and U denote the mean flow velocities of the molecular and granular gases,
respectively. Since we are interested here in the steady state where the system admits a
non-Newtonian hydrodynamic description, an external thermostat force (proportional to the
peculiar velocity) must be introduced to keep the temperature Tg of the molecular gas constant.

The use of an IMM as well as a BGK-type kinetic model allows us to exactly compute
the rheological properties of the granular suspension. These properties are expressed
as nonlinear functions of the (reduced) shear rate a∗ = a/γ (where γ is a drift coefficient
characterizing the friction of solid particles on the viscous gas), the coefficient of restitution,
the (reduced) background temperature T∗

g , and the diameter σ/σg and mass m/mg ratios.
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Here, σg and mg are the diameter and mass of the particles of the molecular gas, respectively,
while σ and m are the diameter and mass of the solid particles, respectively.

A very interesting phenomenon appearing in gas–solid suspensions is the so-called
discontinuous shear thickening (DST), where the non-Newtonian shear viscosity of the
granular suspension drastically increases with the shear rate. In most of the cases, the DST
phenomena occurs in highly concentrated suspensions of particles such as mixtures of
cornstarch in water [25]. Although several mechanisms have been proposed in the granular
literature [25] to explain this nonequilibrium discontinuous transition, the problem is still
not understood.

As occurs for IHS [17], our results show that the kinetic granular temperature and
the non-Newtonian viscosity exhibit a DST effect for sufficiently large values of the mass
ratio m/mg. In fact, in the Brownian limiting case (m/mg → ∞), the expressions of the
rheological properties derived here reduce to those previously obtained [26] from a coarse-
grained description based on the Fokker–Planck operator. This agreement justifies the
use of this latter approach to analyze the DST effect in dilute granular suspensions [27].
It is important to remark that the DST effect found here occurs in a system with a simple
structure (low-density granular gas immersed in a dilute molecular gas). This means that
the origin of this phenomenon is essentially associated here with the nonlinear response
of the granular suspension to the presence of large shear rates rather than to the complex
structure of the system.

Apart from the transport properties (which are related to the second-degree velocity
moments), the explicit forms of the higher-degree velocity moments as well as the velocity
distribution function of the granular gas were also obtained from the BGK model. This is
one of the main advantages of using a kinetic model instead of the true Boltzmann equation.
Our results show, in particular, that the fourth-degree moments of the distribution function
also exhibit a DST effect. With respect to the velocity distribution function, as expected, we
find that its distortion from equilibrium is more significant as both the mass m/mg and
diameter σ/σg ratios depart from 1. In addition, a comparison between the BGK results and
numerical solutions of the Boltzmann equation from the direct simulation Monte Carlo (DSMC)
method [28] for IHS shows a generally good qualitative agreement between both approaches.

The plan of the paper is as follows. The Boltzmann kinetic equation for a granular gas
immersed in a bath of elastic hard spheres under USF is presented in Section 2. The balance
equations for the temperatures of the molecular and granular gases are also displayed.
Section 3 deals with the calculations carried out for IMM of the rheological properties of
the granular suspension. While a shear thinning effect is always found for the nonlinear
shear viscosity of the molecular gas, the corresponding shear viscosity of the granular
gas exhibits a DST effect for sufficiently large values of the mass ratio m/mg. The results
derived from the BGK-type kinetic model are provided in Section 4, while a comparison
between the theoretical results obtained for IHS, IMM, and BGK model is displayed in
Section 5 for several systems. Our results highlight a good agreement for the rheology
between the three different approaches. Moreover, theoretical results obtained from the
IMM and BGK model are also compared against computer simulations in the Brownian
limit (m/mg → ∞), showing a good agreement. The paper is closed in Section 6 with some
concluding remarks.

2. Boltzmann Kinetic Equation for Sheared Granular Suspensions

We consider a set of solid particles (granular gas) of mass m and diameter σ which are
immersed in a solvent (molecular gas) constituted by particles of mass mg and diameter
σg. As usual, the granular gas is modeled as a gas of hard disks (d = 2) or spheres (d = 3)
with inelastic collisions. In the simplest model, the inelasticity of collisions is characterized
by a constant (positive) coefficient of normal restitution α ≤ 1, where α = 1 refers to
elastic collisions. On the other hand, collisions between solid particles and particles of
the molecular gas are elastic. We also assume that the number density of grains is much
smaller than that of solvent so that the state of the latter is not perturbed by the presence of
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the former. In these conditions, we can treat the molecular gas as a bath or thermostat at the
temperature Tg (once the parameters of the system, specifically the shear rate, have been
set). Moreover, although the granular gas is sufficiently rarefied, we take into account the
collisions among grains in its corresponding Boltzmann kinetic equation.

We assume that the system (granular particles plus solvent) is subjected to USF. As
said in the Introduction section, this state is characterized by constant densities ng and n,
uniform temperatures Tg and T, and by a (common) linear profile of the x component of
the flow velocities along the y axis:

ng ≡ const, n ≡ const, (1)

∇Tg = ∇T = 0, (2)

Ug,i = Ui = aijrj, aij = aδixδjy, (3)

with a being the constant shear rate. Here, ng, Ug, and Tg are the number density, the mean flow
velocity, and the temperature, respectively, of the molecular gas. In terms of its one-particle
velocity distribution function fg(r, v; t), these hydrodynamic fields are defined as

{
ng, ngUg, dngTg

}
=
∫

dv
{

1, v, mgV2
}

fg(v), (4)

where V = v − U is the peculiar velocity. Note that in Equation (4), the Boltzmann constant
kB = 1. We will take this value throughout the paper for the sake of simplicity. In addition,
in Equations (1)–(3), n, U, and T denote the number density, the mean flow velocity, and
the (granular) temperature, respectively, of the granular gas. They are defined as

{n, nU, dnT} =
∫

dv
{

1, v, mV2
}

f (v). (5)

Since the only spatial gradient present in the USF problem is the shear rate, the
pressure tensor

Pg = mg

∫
dv VV fg(v) (6)

of the molecular gas, and the pressure tensor

P = m
∫

dv VV f (v) (7)

of the granular gas are the relevant fluxes in the problem. They provide information on the
transport of momentum across the system. Our main target is to determine Pg and P for
arbitrary shear rates.

One of the main advantages of the USF at a microscopic level is that it becomes a
spatially homogeneous state when the velocities of the particles are referred to a Lagrangian
frame moving with the linear velocity Ui = aijrj. In this new frame and in the steady state,
the distribution functions of the molecular and granular gases adopt the form

fg(r, v) = fg(V), f (r, v) = f (V). (8)

In addition, as the state of the solvent is not perturbed by the solid particles, the tempera-
ture Tg in the USF state increases in time due to the viscous heating term −aPxy > 0. Thus,
as usual in nonequilibrium molecular dynamics simulations [29], an external nonconser-
vative force (thermostat) is introduced in the molecular gas to achieve a stationary state.
Among the different possibilities, for simplicity, a force proportional to the particle velocity
(Gaussian thermostat) of the form Fg = −mgξV is considered in this paper. The parameter
ξ is chosen to be a function of the shear rate by the condition that Tg reaches a constant
value in the long time limit. Analogously, the granular gas is also subjected to this kind of
Gaussian thermostat (i.e., F = −mξV), where ξ is the same quantity for the solvent and the
solid particles.
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Under the above conditions, in the low-density regime, the distribution function fg(V)
of the molecular gas obeys the nonlinear (closed) Boltzmann equation

−aVy
∂ fg

∂Vx
− ξ

∂

∂V
· V fg = Jg[V| fg, fg], (9)

while the distribution function f (V) of the granular gas obeys the kinetic equation

−aVy
∂ f

∂Vx
− ξ

∂

∂V
· V f = J[V| f , f ] + JBL[V| f , fg]. (10)

Here, Jg[ fg, fg] and J[ f , f ] are the nonlinear Boltzmann collision operators for the molecular
and granular gases, respectively, and JBL[ f , fg] is the linear Boltzmann–Lorentz collision
operator [30,31]. The balance equations for Tg and T can easily obtained by multiplying
both sides of Equations (9) and (10) by mgV2 and mV2, respectively, and integrating over
velocity. The results are

−aPg,xy = dξ pg, (11)

−aPxy −
d
2

pζg = dξ p +
d
2

pζ, (12)

where pg = ngTg and p = nT are the hydrostatic pressures of the molecular and granular
gases, respectively, and the partial production rates ζ and ζg are defined, respectively, as

ζ = − m
dnT

∫
dv V2 J[v| f , f ], ζg = − m

dnT

∫
dv V2 JBL[v| f , fg]. (13)

The cooling rate ζ gives the rate of kinetic energy loss due to inelastic collisions between
particles of the granular gas. It vanishes for elastic collisions (α = 1). The term ζg gives the
transfer of kinetic energy between the particles of the granular gas and the solvent. This
term vanishes when the granular and molecular gases are at the same temperature (Tg = T).
Equation (11) implies that, in the steady state, the viscous heating term (−aPg,xy > 0) is
exactly balanced by the heat extracted in the gas by the external thermostat. On the other
hand, since ζg can be positive or negative, Equation (12) implies that, in the steady state,
the term −aPxy − (d/2)pζg is exactly compensated for the cooling terms arising from
collisional dissipation (ζ p) and the thermostat term (ξ p).

The USF state is, in general, a non-Newtonian state characterized by shear-rate-
dependent transport coefficients. In particular, one can define the non-Newtonian shear
viscosity of the molecular gas as

ηg = −
Pg,xy

a
. (14)

Analogously, the non-Newtonian shear viscosity of the granular gas is given by

η = −
Pxy

a
. (15)

In addition, beyond the Navier–Stokes domain, normal stress differences are expected in
the USF. This means that Pg,xx ̸= Pg,yy ̸= Pg,zz and Pxx ̸= Pyy ̸= Pzz.

It is quite evident that the evaluation of the rheological properties of the molecular
and granular gases requires the knowledge of the pressure tensors Pg and P. The nonzero
elements of these tensors can be obtained by multiplying by mgVV and mVV both sides of
Equations (9) and (10), respectively, and integrating over V. However, to achieve explicit
forms for Pg and P, one has to compute the collisional moments

Ag = mg

∫
dVVVJg[ fg, fg], (16)

B = m
∫

dVVVJ[ f , f ], C = m
∫

dVVVJBL[ f , fg]. (17)
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In the case of IHS, the collisional moments Ag, B, and C cannot be exactly computed.
As said in the Introduction section, a good estimate of them for IHS was made in Ref. [17]
by means of Grad’s moment method [19]. This method is based on the expansion of
the distributions fg(V) and f (V) in a complete set of orthogonal polynomials, with the
coefficients being the corresponding velocity moments of those distributions. The above
expansion generates an infinite hierarchy of moment equations that must be truncated at
a given order. This truncation allows one to arrive at a closed set of coupled equations
for the velocity moments that can be recursively solved. Thus, since the results derived in
Ref. [17] for the rheological properties of molecular and granular gases are approximated,
it is convenient to revisit the problem and determine the exact expressions for the non-
Newtonian transport properties of the granular suspension. To achieve such exact forms,
two independent approaches will be considered in this paper: (i) the Boltzmann kinetic
equation for IMM; and (ii) a BGK-type kinetic model for IHS. This task will be carried out
in the next two sections.

3. Rheology from Inelastic Maxwell Models

In this section, we will consider an IMM, namely, a collisional model where the
collision rate of the two colliding spheres are independent of their relative velocity. In this
case, the Boltzmann collision operator Jg[ fg, fg] (this is a simple version of the Boltzmann
collision operator for Maxwell molecules) of the molecular gas can be written as [22]

Jg[v1| fg, fg] =
νM

g

ngSd

∫
dv2

∫
dσ̂
[

fg(V′′
1 ) fg(V′′

2 )− fg(V1) fg(V2)
]
, (18)

where Sd = 2πd/2/Γ( d
2 ) is the total solid angle in d dimensions and νM

g is an independent-
velocity collision frequency. In Equation (18), the primes on the velocities denote the initial
values {V′′

1 , V′′
2 } that lead to {V1, V2} following a binary collision:

V
′′
1 = V1 − (σ̂ · g12)σ̂, V

′′
2 = V2 + (σ̂ · g12)σ̂. (19)

The effective collision frequency νM
g can be seen as a free parameter of the model to

be chosen to attain agreement with the properties of interest of the original Boltzmann
equation for IHS. For instance, to correctly capture the velocity dependence of the original
IHS collision rate, we can assume that the IMM collision rate is proportional to

√
Tg.

In the context of IMM, the inelastic Boltzmann collision operator J[ f , f ] is [23,31]

J[V| f , f ] =
νM

nSd

∫
dV2

∫
dσ̂
[
α−1 f (V′′

1 ) f (V′′
2 )− f (V1) f (V2)

]
, (20)

while the Boltzmann–Lorentz collision operator JBL[ f , fg] is defined as [22]

JBL[V| f , fg] =
νM

0
nSd

∫
dV2

∫
dσ̂
[

f (V′′
1 ) fg(V′′

2 )− f (V1) fg(V2)
]
. (21)

The relationship between (V′′
1 , V′′

2 ) and (V1, V2) in Equation (20) is

V′′
1 = V1 −

1 + α

2α
(σ̂ · g12)σ̂, V′′

2 = V2 +
1 + α

2α
(σ̂ · g12)σ̂, (22)

while in Equation (21), it is

V′′
1 = V1 − 2µg(σ̂ · g12)σ̂, V′′

2 = V2 + 2µ(σ̂ · g12)σ̂ (23)

where
µg =

mg

m + mg
, µ =

m
m + mg

. (24)
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In addition, as in the case of the collision frequency νM
g , the collision frequencies νM and

νM
0 for granular–granular and granular–molecular collisions, respectively, can be chosen to

optimize the agreement with the results derived from IHS. We will choose them later.
As mentioned in previous works on IMM [26], the main advantage of computing

the collisional moments of the Boltzmann operator for Maxwell models (both elastic and
inelastic models) is that they can be exactly provided in terms of the velocity moments of
the distribution functions without the explicit knowledge of the latter. This property has
been exploited to compute the second-, third-, and fourth-degree collisional moments of
IMM for monocomponent and multicomponent granular gases [31]. The exact knowledge
of the second-degree collisional moments allow us to obtain exact expressions for the
rheological properties of the molecular and granular gases. Let us separately evaluate the
rheology of both gases.

3.1. Rheological Properties of the Molecular Gas

The pressure tensor of the molecular gas is defined by Equation (6). To obtain the
nonzero elements of this tensor, one multiplies both sides of the Boltzmann equation (9) by
mgViVj and integrates over velocity. The result is

aikPg,kj + ajkPg,ki + 2ξPg,ij = −
2νM

g

d + 2
(

Pg,ij − pgδij
)
, (25)

where pg = ngTg is the hydrostatic pressure of the molecular gas. Upon obtaining
Equation (25), use is made of the result [31]:

Ag,ij = mg

∫
dVViVj Jg[ fg, fg] = −

2νM
g

d + 2
(

Pg,ij − pgδij
)
. (26)

The (reduced) elements of the pressure tensor P∗
g = Pg/(ngTg) can be easily obtained

from Equation (25). They are given by

P∗
g,xx =

1
1 + 2ξ̃

[
1 +

2ã2

(1 + 2ξ̃)2

]
, P∗

g,yy = P∗
g,zz =

1
1 + 2ξ̃

, P∗
g,xy = − ã

(1 + 2ξ̃)2
. (27)

Here, we introduce the quantities

ã =
a

ν̃M
g

, ξ̃ =
ξ

ν̃M
g

, ν̃M
g =

2
d + 2

νM
g . (28)

The constraint P∗
g,xx + (d − 1)P∗

g,yy = d leads to a cubic equation relating ξ̃ and ã:

ã2 = dξ̃(1 + 2ξ̃)2. (29)

The real root of Equation (29) gives the shear-rate dependence of ξ̃(ã). It is given by

ξ̃(ã) =
2
3

sinh2
[

1
6

cosh−1
(

1 +
27
d

ã2
)]

. (30)

Comparison between the results derived here for P∗
g,ij with those recently [17] obtained

for IHS by means of Grad’s moment method [19] shows that both results are identical if the
effective collision frequency νM

g is given by

νM
g =

4π(d−1)/2

Γ
(

d
2

) ngσd−1
g

√
Tg

mg
. (31)

Henceforth, we will take the choice (31) for νM
g .
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From Equations (27), one can identify the (dimensionless) non-Newtonian shear
viscosity η∗

g = νM
g ηg/pg = −P∗

g,xy/ã and the (dimensionless) normal stress difference
Ψ∗

g = P∗
g,xx − P∗

g,yy as

η∗
g =

1
(1 + 2ξ̃)2

, Ψ∗
g =

2ã2

(1 + 2ξ̃)3
. (32)

Note that the results derived here for Maxwell molecules yield Pg,yy = Pg,zz. This result
contrasts with the one obtained for hard spheres by numerically solving the Boltzmann
equation by means of the DSMC method [28], where it has been shown that Pg,yy ̸= Pg,zz.
However, the difference (Pg,yy − Pg,zz) found in the simulations is, in general, quite small [9].

It is also important to note that in the case of Maxwell molecules there is an exact
equivalence between the description with and without the drag force −mξV. Nevertheless,
for non-Maxwell molecules, this type of force does not play a neutral role in the transport
properties of the system [32].

The shear-rate dependence of η∗
g and Ψ∗

g is plotted in Figure 1 for a three-dimensional
system (d = 3). As expected, the nonlinear viscosity η∗

g decreases with increasing (reduced)
shear rate ã (shear thinning effect). The opposite effect is observed for the normal stress
difference function Ψ∗

g since it increases with the shear rate. Figure 1 also highlights the
excellent agreement found between the theoretical results for the Maxwell molecules with
those obtained by numerically solving the Boltzmann equation for hard spheres from the
DSMC method [28].

1 2 3 4 50
0.0

0.5

1.0

1.5

2.0

a

Y*
g

h*
g

 

~
Figure 1. Plot of the nonlinear shear viscosity η∗g and the normal stress difference Ψ∗

g for hard spheres
(d = 3) as functions of the (reduced) shear rate ã. Symbols refer to the DSMC results for hard spheres.

3.2. Rheological Properties of the Granular Gas

As in the case of the molecular gas, the rheology of the granular gas can be also
determined by multiplying both sides of Equation (10) by mViVj and integrating over V.
After some algebra, one achieves the result

aikPkj + ajkPki + 2ξPij = −νM
[
ν∗η Pij + p

(
ζ∗ − ν∗η

)
δij

]
− 4

d
νM

0 µg

×
[(

1 − 2
d + 2

µg

)
Pij −

2
d + 2

µ
n
ng

Pg,ij −
d

d + 2
µgnTg

(
χ +

m
mg

)
δij

]
, (33)

where use is made of the results [31]:

Bij = m
∫

dVViVj J[ f , f ] = −νM
[
ν∗η Pij + p

(
ζ∗ − ν∗η

)
δij

]
, (34)
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Cij = m
∫

dVViVj JBL[ f , fg] = −4
d

νM
0 µg

[(
1 − 2

d + 2
µg

)
Pij −

2
d + 2

µ
n
ng

Pg,ij

− d
d + 2

µgnTg

(
χ +

m
mg

)
δij

]
. (35)

In Equation (33),

ζ∗ =
ζ

νM =
1 − α2

2d
(36)

is the (reduced) cooling rate for the granular gas, χ = T/Tg is the temperature ratio, and

ν∗η =
(d + 1 − α)(1 + α)

d(d + 2)
. (37)

The partial cooling rate ζg can be exactly obtained from Equation (34) as

ζg =
4νM

0
d

µg
[
1 − µg(1 + θ)

]
, (38)

where

θ =
mTg

mgT
(39)

is the ratio of the mean square velocities of granular and molecular gas particles. The
forms (36) and (38) can be employed to fix the values of the free parameters νM and νM

0 .
They are chosen under the criterion that ζ and ζg of IMM are the same as that of IHS of
diameters σ and σ0. In this latter case, the above cooling rates are estimated by using Grad’s
approximation [17]. In this approximation,

ζIHS =
2π(d−1)/2

dΓ
(

d
2

) nσd−1

√
T
m
(1 − α2), (40)

ζIHS
g =

8π(d−1)/2

dΓ
(

d
2

) ngσd−1µg

(
1 + θ

θ

)1/2
√

2Tg

mg

[
1 − µg(1 + θ)

]
, (41)

where σ = (σ + σg)/2. Equations (38), (40), and (41) yield the identities

νM =
4π(d−1)/2

Γ
(

d
2

) nσd−1

√
T
m

, νM
0 =

2π(d−1)/2

Γ
(

d
2

) ngσd−1
(

1 + θ

θ

)1/2
√

2Tg

mg
. (42)

To compare with the rheological properties of IHS [17], it is convenient at this level
of the description to identify the friction (or drift) coefficient γ appearing in the Brownian
limiting case (m/mg → ∞) when the molecular gas is at equilibrium. In fact, this limiting
case is the situation considered when one employs a coarse-grained approach [1–4] to
assess the impact of the interstitial gas on the dynamics properties of grains. In this limiting
case, the expression (35) of the collisional moment Cij reduces to

CBr
ij = −8π(d−1)/2

dΓ
(

d
2

) nTgngσd−1
(mg

m

)1/2
√

2Tg

m
(P∗

kℓ − δkℓ), (43)

where P∗
ij = Pij/(nTg), and we take into account that in the Brownian limit µg → mg/m

and (1 + θ)/θ → 1 in the expression (42) of νM
0 . The form of Cij derived in Ref. [26] by

replacing the Boltzmann–Lorentz collisional operator (21) by the Fokker–Planck operator

γ
∂

∂V
· V f + γ

Tg

m
∂2 f
∂V2 (44)
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is
Cij = −2γnTg(P∗

kℓ − δkℓ). (45)

Comparison between Equations (43) and (45) allows us to identify γ for IMM as

γ =
4π(d−1)/2

dΓ
(

d
2

) ngσd−1
(mg

m

)1/2
(

2Tg

m

)1/2
. (46)

The expression (46) for the friction coefficient γ for IMM is the same as the one obtained for
IHS [15,17].

We are now in a position to determine the nonzero elements of the (reduced) pressure
tensor P∗

ij . From Equations (33) and (46), one obtains the equation

a∗ikP∗
kj + a∗jkP∗

ki + 2ξ∗P∗
ij = −ν∗M

[
ν∗η P∗

ij + χ(ζ∗ − ν∗η )δij

]
− 2µ

(
1 + θ

θ

)1/2

×
(

Xδij + YP∗
ij + ZP∗

g,ij

)
, (47)

where a∗ij = aij/γ, ξ∗ = ξ/γ,

ν∗M =
νM

γ
=

2d+1d√
π

ϕ
√

χT∗
g , (48)

and

X = − d
d + 2

µ

(
1 + θ

θ

)
, Y = 1 −

2µg

d + 2
, Z = − 2µ

d + 2
. (49)

Here,

ϕ =
πd/2

2d−1dΓ
(

d
2

)nσd (50)

is the solid volume fraction of the granular gas, T∗
g = Tg/mσ2γ2, and upon deriving

Equation (48), use is made of the identity

nσd−1

ngσd−1 =
2d+ 3

2
√

π

(mg

m

)1/2
ϕ
√

T∗
g . (51)

As occurs for the rheology of the molecular gas, Equation (47) shows that the diagonal
elements of the pressure tensor P∗

ij orthogonal to the shear plane xy are equal to P∗
yy (i.e.,

P∗
yy = P∗

zz = · · · = P∗
dd). This implies that the xx element is given by P∗

xx = dχ − (d − 1)P∗
yy.

The yy and xy elements of the (reduced) pressure tensor can be written as

P∗
yy =

Ωyy

νyy
, P∗

xy =
Ωxy − a∗P∗

yy

νyy
, (52)

where

νyy = 2ξ∗ + ν∗Mν∗η + 2µ

(
1 + θ

θ

)1/2
Y, (53)

Ωyy = −ν∗Mχ
(

ζ∗ − ν∗η

)
− 2µ

(
1 + θ

θ

)1/2(
X + ZP∗

g,yy

)
, (54)

Ωxy = −2µ

(
1 + θ

θ

)1/2
ZP∗

g,xy. (55)

Note that the elements of the pressure tensor P∗
g,yy and P∗

g,xy of the molecular gas must be
expressed in terms of the (reduced) shear rate a∗ and the (reduced) thermostat parameter
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ξ∗. For this, one has to take into account the relationships between ã and ξ̃ with a∗ and ξ∗,
respectively. They are given by ã = (γ/ν̃M

g )a∗ and ξ̃ = (γ/ν̃M
g )ξ∗, where

γ

ν̃M
g

=
d + 2√

2d

(
σ

σg

)d−1 mg

m
. (56)

The equation defining the temperature ratio χ can be easily derived from Equation (47)
as

2
d

a∗P∗
xy + 2ξ∗χ = −ν∗Mχζ∗ + 2µ2

(
1 + θ

θ

)1/2

(1 − χ). (57)

From Equations (52) and (57), one finally obtains a∗ in terms of the parameter space of
the system:

a∗ =

√√√√√d
2

2µ2(1 + θ−1)
1/2

(1 − χ)− (ν∗Mζ∗ + 2ξ∗)χ
Ωxy/a∗

νyy
− Ωyy

ν2
yy

. (58)

As happens in the case of IHS [17], the temperature ratio χ cannot be expressed in
Equation (58) as an explicit function of the (reduced) shear rate and the remaining pa-
rameters of the system. On the other hand, for given values of the parameter space
Ξ ≡

(
χ, α, σ/σg, m/mg, ϕ, T∗

g

)
, the temperature ratio can be implicitly determined from

the physical solution to Equation (58).

3.3. Brownian Limit

Before illustrating the shear-rate dependence of the rheological properties of the
molecular gas for arbitrary values of the mass ratio m/mg, it is convenient to check the
consistency of the present results with those derived in Ref. [26] for IMM by using the
Fokker–Planck operator (44). This consistency is expected to apply in the Brownian limit
m/mg → ∞. In this limiting case, at a given value of the (reduced) shear rate a∗, θ → ∞,
γ/νM

g ∝ mg/m → 0, ã ∝ mg/m → 0, ξ̃ ∝ ã2 ∝ (mg/m)2 → 0, and ξ∗ = ξ̃(ν̃M
g /γ) ∝

mg/m → 0. Consequently, P∗
g,ij = δij and the expressions of P∗

yy, P∗
xy, and a∗ are

P∗
yy =

2 − ν∗Mχ
(

ζ∗ − ν∗η

)
2 + ν∗Mν∗η

, P∗
xy = −

2 − ν∗Mχ
(

ζ∗ − ν∗η

)
(

2 + ν∗Mν∗η

)2 a∗, (59)

a∗ =

√√√√d
2

ν∗Mζ∗ + 2(1 − χ−1)

ν∗M
(

ν∗η − ζ∗
)
+ 2χ−1

(
2 + ν∗Mν∗η

)
. (60)

Equations (59) and (60) are consistent with Equations (32), (33), and (35) of Ref. [26]. It is
important to note that, to assess consistency with the Fokker–Planck results, the size ratio
has been kept constant or proportional to the mass ratio so that ξ∗ → 0.

4. Rheology from a BGK-Type Kinetic Model of the Boltzmann Equation

We consider in this section the results derived for the USF from a BGK-type kinetic
model of the Boltzmann equation [24,33]. In the problem for the granular suspension
considered here, one has to replace the true Boltzmann operators Jg[ fg, fg], J[ f , f ], and
JBL[ f , fg] by simpler relaxation terms that retain the relevant physical properties of those
operators but are more tractable than the true kinetic equations. As in the case of IMM, let
us separately determine the rheological properties of the molecular and granular gases by
starting from these kinetic models.
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4.1. Rheological Properties of the Molecular Gas

In the case of the molecular gas, the Boltzmann collision operator Jg[ fg, fg] is replaced
by the conventional BGK kinetic model [22,34]:

Jg[ fg, fg] → −νg

(
fg − f M

g

)
, (61)

where νg is an effective velocity-independent collision frequency and f M
g is the Maxwellian

distribution

f M
g (V) = ng

(
mg

2πTg

)d/2
exp

(
−

mgV2

2Tg

)
. (62)

Thus, according to Equation (9), the velocity distribution function fg(V) obeys the BGK
kinetic equation

−aVy
∂ fg

∂Vx
− ξ

∂

∂V
· V fg = −νg

(
fg − f M

g

)
. (63)

The nonzero elements of the pressure tensor Pg,ij can be easily obtained from Equation (63)
by multiplying both sides of this equation by mgViVj and integrating over V. The BGK
expressions of the (reduced) elements of the pressure tensor P∗

g,ij are given by Equations (27)

with the replacement ν̃M
g → νg. As a consequence, the results derived from the BGK

equation for the rheological properties agree with those obtained from the Boltzmann
equation for hard spheres when

νg = ν̃M
g =

8π(d−1)/2

(d + 2)Γ
(

d
2

)ngσd−1
g

√
Tg

mg
. (64)

4.2. Rheological Properties of the Granular Gas

In the case of the granular gas, we consider the kinetic model proposed by Vega Reyes
et al. [24] for granular mixtures. This kinetic model is based on the equivalence between
a system of elastic spheres subject to a drag force proportional to the peculiar velocity V
with a gas of IHS [35]. Thus, the true inelastic Boltzmann collision operator is replaced by a
relaxation term plus a drag force term. This (approximate) mapping between elastic hard
spheres plus drag force with IHS allows us to extend known kinetic models of molecular
gases to inelastic gases. Here, we consider the well-known Gross and Krook (GK) model for
molecular (elastic) mixtures [36] for the corresponding relaxation terms. With this approach,
the collision operators J[ f , f ] and JBL[ f , fg] are defined, respectively, as

J[ f , f ] → −ν′(α)
(

f − f M
)
+

ϵ

2
∂

∂V
· V f , (65)

JBL[ f , fg] → −ν
(

f − f̃g

)
. (66)

In Equations (65) and (66),

f M(V) = n
( m

2πT

)d/2
exp

(
−mV2

2T

)
(67)

is the Maxwellian distribution of the granular gas,

ϵ =
2π(d−1)/2

dΓ
(

d
2

) nσd−1

√
T
m
(1 − α2), (68)

and the reference distribution function f̃g(V) is [36]
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f̃g(V) = n
(

m
2πT̃

)d/2
exp

(
−mV2

2T̃

)
. (69)

Note that in the definition (68) of ϵ, the cooling rate ζ was evaluated by using the Maxwellian
approximation for the distribution f . In this case, ζ is given by Equation (40).

In Equations (65) and (66), the quantities ν′, ν, and T̃ are chosen to optimize the
agreement with some properties of interest of the Boltzmann equation for IHS. The usual
method of obtaining the above parameters is to ensure that the kinetic model reproduces
the collisional transfer equations of momentum and energy for elastic collisions (α = 1).
However, since U = Ug in the USF, we only have one constraint (the one associated with
the transfer of energy) instead of two, so that T̃ and ν admit more than one form. Here,
we propose a choice (see Appendix A for more technical details) that leads to an excellent
agreement with the results obtained for IHS from Grad’s moment method [17]. More
specifically, we take the following values of T̃ and ν:

T̃ = Tg, ν =
8π(d−1)/2

dΓ
(

d
2

) ngσd−1 mmg

(m + mg)2

(
2Tg

mg
+

2T
m

)1/2
. (70)

It still remains to completely define the model to chose the effective collision frequency ν′.
It is defined here to reproduce the collisional moment∫

dv mViVj J[ f , f ] (71)

of the Boltzmann equation for IHS when one takes Grad’s trial distribution for f [17]. This
leads to the expression

ν′ =
2π(d−1)/2

d(d + 2)Γ
(

d
2

)nσd−1

√
T
m
(1 + α)[d + 1 + (d − 1)α]. (72)

Therefore, the BGK kinetic equation for the sheared granular gas is given by

−aVy
∂ f

∂Vx
− ξ

∂

∂V
· V f = −ν′

(
f − f M

)
+

ϵ

2
∂

∂V
· V f − ν

(
f − f̃g

)
, (73)

where ν and ν′ are defined by Equations (70) and (72), respectively, and the Maxwellian
distribution f̃g is given by Equation (69) with T̃ = Tg.

The possibility of determining all the velocity moments of the distribution function is
likely one of the main advantages of employing a kinetic model instead of the true Boltz-
mann equation. In the USF problem, it is convenient to define the general velocity moments

Mk1,k2,k3 =
∫

dVVk1
x Vk2

y Vk3
z f (V). (74)

Although, here, we are essentially interested in the three-dimensional case, we will compute
the velocity moments for d = 3 and d = 2. Note that for hard disks (d = 2), k3 = 0 in
Equation (74), since the z-axis is meaningless. The hierarchy of moment equations can be
obtained by multiplying Equation (73) by Vk1

x Vk2
y Vk3

z and integrating over V. The result is

ak1Mk1−1,k2+1,k3 + (ν′ + ν + kλ)Mk1,k2,k3 = Nk1,k2,k3 , (75)

where λ = ξ + ϵ/2, k = k1 + k2 + k3, and

Nk1,k2,k3 = n
(

2Tg

m

)k/2(
ν + χk/2ν′

)
ML

k1,k2,k3
. (76)
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In Equation (75), for hard spheres (d = 3)

ML
k1,k2,k3

=
∫

dc ck1
x ck2

y ck3
z e−c2

= π−3/2Γ
(

k1 + 1
2

)
Γ
(

k2 + 1
2

)
Γ
(

k3 + 1
2

)
, (77)

if k1, k2, and k3 are even, being zero otherwise. For hard disks (d = 2),

ML
k1,k2,0 = π−1Γ

(
k1 + 1

2

)
Γ
(

k2 + 1
2

)
(78)

if k1 and k2 are even, being zero otherwise.
The solution to Equation (75) can be written as (see Appendix B of Ref. [26] for some

details)

Mk1,k2,k3 =
k1

∑
q=0

k1!
(k1 − q)!

(−a)q

(ν′ + ν + kλ)1+q Nk1−q,k2+q,k3 . (79)

The nonzero elements of the pressure tensor Pij can be easily obtained from Equation (79).
In dimensionless form, the BGK expressions of the elements of P∗

ij = Pij/nTg are

P∗
yy = P∗

zz =
ν + ν′χ

ν′ + ν + 2λ
, P∗

xy = − ν + ν′χ

(ν′ + ν + 2λ)2 a, (80)

P∗
xx =

ν + ν′χ

ν′ + ν + 2λ

[
1 +

2a2

(ν′ + ν + 2λ)2

]
. (81)

The (steady) temperature ratio χ = T/Tg can be obtained from the constraint P∗
xx + (d −

1)P∗
yy = dχ. This yields the implicit equation

a∗ =
(

ν
′∗ + ν∗ + 2λ∗

)√d
2

χ
ν∗(1 − χ−1) + 2λ∗

ν∗ + ν
′∗χ

, (82)

where a∗ = a/γ,

ν
′∗ =

ν′

γ
=

2d

d + 2
ϕ

√
χT∗

g

π
(1 + α)[d + 1 + (d − 1)α], (83)

ν∗ =
ν

γ
= 2µ2

(
1 + θ

θ

)1/2
, λ∗ =

λ

γ
= ξ∗ +

ϵ∗

2
, (84)

ξ∗ =

√
2d

d + 2

(σg

σ

)d−1 m
mg

ξ̃, ϵ∗ = 2dϕ

√
χT∗

g

π
(1 − α2). (85)

Here, ξ̃ is given by Equation (30) and we recall that T∗
g = Tg/mσ2γ2.

4.3. Brownian Limit

As in the case of IMM, it is quite interesting to consider the Brownian limiting case
m/mg → ∞. In this case, P∗

g,ij = δij, µ → 1, θ → ∞, and ξ∗ → 0. Thus, following similar
steps to those made for IMM, one obtains the expressions

P∗
yy =

2 + ν
′∗χ

2 + ν
′∗ + ϵ∗

, P∗
xy = − 2 + ν

′∗χ

(2 + ν
′∗ + ϵ∗)2 a∗, (86)

a∗ =
(

2 + ν
′∗ + ϵ∗

)√d
2

χ
2(1 − χ−1) + ϵ∗

2 + ν
′∗χ

. (87)
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4.4. Velocity Distribution of the Granular Gas

Apart from obtaining all the velocity moments, the use of kinetic models allows us, in
some cases, to explicitly determine the velocity distribution function f (V). The BGK-type
Equation (73) reads (

1 − dλ̂ − âVy
∂

∂Vx
− λ̂V · ∂

∂V

)
f (V) = fR(V), (88)

where â = a/(ν′ + ν), λ̂ = λ/(ν′ + ν), and

fR(V) =
ν′

ν′ + ν
f M(V) +

ν

ν′ + ν
f̃g(V). (89)

The hydrodynamic solution to Equation (88) can be formally written as

f (V) =
(

1 − dλ̂ − âVy
∂

∂Vx
− λ̂V · ∂

∂V

)−1
fR(V)

=
∫ ∞

0
ds e−(1−dλ̂)seâsVy

∂
∂Vx eλ̂sV· ∂

∂V fR(V). (90)

The action of the velocity operators in Equation (90) on an arbitrary function g(V) is [26]

eâsVy
∂

∂Vx g(Vx, Vy, Vz) = g(Vx + âsVy, Vy, Vz), (91)

eλ̂sV· ∂
∂V g(Vx, Vy, Vz) = g

(
eλ̂sVx, eλ̂sVy, eλ̂sVz

)
. (92)

The explicit form of the one-particle velocity distribution function can be explicitly obtained
when one takes into account in Equation (90) the action of the velocity operators given by
Equations (91) and (92). The result can be written as

f (V) = n
( m

2T

)d/2
φ(c), c =

( m
2T

)1/2
V, (93)

where

φ(c) = π−d/2
∫ ∞

0
ds e−(1−dλ̂)s

{
ν′

ν′ + ν
exp

[
− e2λ̂s

(
c + sâ · c

)2]
+

ν

ν′ + ν
χd/2 exp

[
− χe2λ̂s

(
c + sâ · c

)2]}
. (94)

Here, we introduce the tensor âij = âδixδjy.
In order to illustrate the shear-rate dependence of the distribution function, it is

convenient to consider the marginal distribution for d = 3:

φx(cx) =
∫ ∞

−∞
dcy

∫ ∞

−∞
dcz φ(c)

=
1√
π

∫ ∞

0
ds

e−(1−λ̂)s
√

1 + â2s2

{
ν′

ν′ + ν
exp

(
− e2λ̂s c2

x
1 + â2s2

)
+

ν

ν′ + ν
χ1/2 exp

(
− χe2λ̂s c2

x
1 + â2s2

)}
. (95)

In the Brownian limit, ξ∗ → 0, µ → 1, θ → ∞, and so ν∗ → 2, λ∗ → ϵ∗/2, and

λ̂ → ϵ∗/2
2 + ν

′∗ , â → a∗

2 + ν
′∗ . (96)
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Thus, when m/mg → ∞, Equation (95) becomes

φx(cx) =
1√
π

∫ ∞

0
ds

e−(1−λ̂)s
√

1 + â2s2

{
ν
′∗

2 + ν
′∗ exp

(
− e2λ̂s c2

x
1 + â2s2

)
+

2
2 + ν

′∗ χ1/2 exp
(
− χe2λ̂s c2

x
1 + â2s2

)}
, (97)

where λ̂ and â are given by Equations (96).

5. Comparison between IMM and BGK Results

In Sections 3 and 4, we made use of the Boltzmann equation for IMM and the BGK-
type kinetic model to investigate the shear-rate dependence of rheological properties in a
sheared granular suspension. These properties are expressed in terms of the coefficient of
restitution α, the reduced background temperature T∗

g , and the diameter σ/σg and mass
m/mg ratios. Additionally, there exists a residual dependence on density through the
volume fraction ϕ. To avoid that, one could, for instance, reduce the shear rate using the
effective collision frequencies νM(T) or ν(T). However, for consistency with simulations
and considering the background temperature Tg as a known quantity, we opted to employ
γ(Tg) as the reference frequency.

Given that in this section the second-degree moments of the distribution function are
compared with molecular dynamics (MD) simulations for IHS in the Brownian limiting
case [18], we set fixed values of T∗

g = 1 and ϕ = 0.0052 for subsequent analysis. The
selection of T∗

g as a free parameter imposes a constraint between the diameter σ/σg and
mass m/mg ratios [17]:

σ

σg
=


 √

π

4
√

2
n
ng

√
m
mg

1

ϕ
√

T∗
g

1/(d−1)

− 1


−1

. (98)

This relation ensures convergence of results to those obtained via the Fokker–Planck
equation as m/mg → ∞, since ξ∗ → 0. Furthermore, since we want to recover the
results obtained in Ref. [17] derived from Grad’s method, we take n/ng = 10−3 (rarefied
granular gas).

The second-degree moments expressed through the reduced temperature χ, non-
Newtonian shear viscosity η∗, and the normal stress difference Ψ∗ are plotted in Figure 2
for α = 0.9 and 1. Here, Ψ∗ = P∗

xx − P∗
yy = dχ − dP∗

yy. Equations (52) and (80) provide
analytical expressions for IMM and BGK-type kinetic model, respectively, from which
rheological properties are illustrated. Notably, there is nearly perfect agreement between
Grad’s solution for IHS, as obtained in Ref. [17], and both IMM and BGK-type results for
any mass ratio, highlighting the ability of relatively simple models to capture essential
properties of granular suspensions.

In particular, a DST transition characterized by S-shaped curves becomes more pro-
nounced as the mass ratio m/mg increases. Specifically, the non-Newtonian shear viscosity
η∗ exhibits a discontinuous transition (at a certain value of a∗) which intensifies as the
particles of the granular gas become heavier. The theoretical results are validated with
MD simulations [18] in the Brownian limiting case (m/mg → 0), showing generally good
agreement despite slight discrepancies in the transition zone. Simulations suggest a sharper
transition, likely due to the absence of molecular chaos in highly nonequilibrium situations.
To address this, DSMC simulations for IHS are performed in the same limit, showing good
agreement with theoretical results and further emphasizing a more pronounced transition.
This phenomenon is likely attributable to a sudden growth of higher-order moments, re-
sulting in a proportional increase in the deviation from theoretical predictions. As a result,
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the lower moments are also affected. Some technical details of the application of the DSMC
method are available in the supplementary material of Ref. [15].
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Figure 2. Plots of the (steady) granular temperature χ (a), the non-Newtonian shear viscosity η∗ (b),
and the normal stress difference Ψ∗ (c) as functions of the (reduced) shear rate a∗ for two different
values of the coefficient of restitution α: 0.9 (left panel) and 1 (right panel). The graphs represent
four distinct mass ratio values m/mg: 103 (yellow lines), 104 (blue lines), 106 (red lines), and the
Brownian limit (black lines). Here, T∗

g = 1, d = 3, and ϕ = 0.0052. The solid lines correspond to the
IMM results, the dashed lines are the BGK-like results, and the dotted lines refer to Grad’s solution
for IHS. Symbols denote computer simulation results performed in the Brownian limit: circles refer
to the DSMC data obtained in this paper for IHS, while squares are MD results obtained in Ref. [18]
for IHS.

The simplicity of the BGK and IMM models enables exploration beyond second-
degree moments. Accordingly, we utilize the BGK-type kinetic equation to compute the
fourth-degree moments. Although similar calculations could be performed in the case of
IMM, we opt to omit them due to their extensive analytical effort. Additionally, drawing
insights from the Fokker–Planck model [26] and dry granular gases, we anticipate potential
divergences of the moments derived from IMM under certain shear rate conditions. We
focus our efforts on calculating the following fourth-degree moments:

M∗
4|0 =

m2

nT2
g

∫
dVV4 f (V), (99)

M∗
2|xy =

m2

nT2
g

∫
dVV2VxVy f (V). (100)
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Thus, in terms of the generic moments Mk1,k2,k3 and according to the expression (79), the
moments M∗

4|0 and M∗
2|xy are given by

M∗
4|0 =

m2

nT2
g
(M4,0,0 + M0,4,0 + M0,0,4 + 2M2,2,0 + 2M2,0,2 + 2M0,2,2), (101)

M∗
2|xy =

m2

nT2
g
(M3,1,0 + M1,3,0 + M1,1,2). (102)

Figure 3a illustrates the ratio M∗
4|0(a∗)/M∗

4|0(0) as a function of a∗ for α = 0.9 and
1 and three values of the mass ratio. We observe that variations in the mass ratio do
not significantly alter the trends observed in the Brownian limiting case [26]. An abrupt
transition in the higher-order moments is evident within a small region of a∗. Specifically,
the kurtosis M∗

4|0 increases with the mass ratio m/mg until it converges to the value obtained
in the Brownian limit. Consistent with the conclusions drawn in Ref. [17], an increase in the
mass of the particles of the granular gas results in an elevation of the granular temperature.
Consequently, energy nonequipartition accentuates and moves the suspension away from
equilibrium, leading to an increase in kurtosis as the distribution function deviates from
its Maxwellian form. Regarding the influence of collisional dissipation, we observe that
the effect of α on M∗

4|0 remains relatively discrete. Figure 3b illustrates the shear-rate
dependence of the (reduced) moment M∗

2|xy. This moment vanishes in the absence of shear
rate (a∗ = 0). Similar conclusions to those made for the moment M∗

4|0 can be drawn.
Theoretical predictions for the fourth-degree moments are compared against DSMC

simulations for IHS conducted in this paper in the Brownian limiting case. A qualitative
agreement is observed, although simulations suggest a sharper transition. Some quan-
titative discrepancies are noticeable, which are mainly disguised by the scale. To assess
the reliability of the BGK-type results, we focus on the region 0 < a∗ < 1, where all the
fourth-degree velocity moments of IMM are well-defined functions of the shear rate. In
addition, non-Newtonian effects are still significant in the range of values of the (reduced)
shear rate a∗ ≤ 1. To this purpose, Figure 4 shows the (reduced) fourth-degree moments
M∗

4|0(a∗)/M∗
4|0(0) and M∗

2|xy(a∗) for α = 0.7 and 1. These moments are also illustrated as
obtained for IMM in the Brownian limit [26]. It is worth noting that the results derived
in Ref. [26] stem from considering an effective force modeling the interstitial gas, diverg-
ing from the limit of a Boltzmann–Lorentz operator modeled by a BGK-type equation
as m/mg → ∞. Consequently, since DSMC simulations employ the exact Fokker–Planck
operator, they perfectly align with the IMM results, while discrepancies emerge when
compared with the BGK-type results. It is noteworthy that the BGK-type model slightly
overestimates the deviation from the Newtonian situation (a∗ = 0), a phenomenon also
observed for molecular gases [37]. Moreover, non-Newtonian effects become apparent even
at low values of a∗.

Finally, in Figure 5, the ratio Rx(cx) = φx(cx)/(π−1/2e−c2
x ) is plotted for a∗ = 1 and

four different values of the mass ratio. Here, the marginal distribution φx(cx) is given by
Equation (95). It is evident that the deviation from equilibrium (Rx ̸= 1) becomes more
significant as the mass ratio m/mg increases. Moreover, a comparison between theory and
DSMC simulations reveals some disagreement in the BGK-type solution. Although the
relative difference of these discrepancies is relatively small (it is about 8%), this contradicts
what was observed in Ref. [9], where good agreement between the BGK solution and
DSMC data was shown in the region of thermal velocities.
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Figure 3. Plots of the (reduced) fourth-degree moments M∗
4|0(a∗)/M∗

4|0(0) (a) and −M∗
2|xy(a∗) (b) as

functions of the (reduced) shear rate a∗ obtained from the BGK-type equation for two different values
of the coefficient of restitution α: 0.9 (left panel) and 1 (right panel). The graphs represent four
distinct mass ratio values m/mg: 103 (yellow lines), 104 (blue lines), 106 (red lines), and the Brownian
limit (black lines). Here, T∗

g = 1, d = 3, and ϕ = 0.0052. Symbols refer to the DSMC results obtained
for IHS in this paper in the Brownian limit.
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Figure 4. Plots of the (reduced) fourth-degree moments M∗
4|0(a∗)/M∗

4|0(0) (a) and −M∗
2|xy(a∗) (b) as

functions of the (reduced) shear rate a∗ obtained from the BGK-type equation for two different values
of the coefficient of restitution α: 0.7 (solid lines) and 1 (dashed lines). The graphs represent four
distinct mass ratio values m/mg: 5 (yellow lines), 10 (blue lines), 50 (red lines), and the Brownian
limit (black lines). Here, T∗

g = 1, d = 3, and ϕ = 0.0052. Symbols refer to the DSMC results for IHS in
the Brownian limit (squares for α = 1 and circles for α = 0.7). The green lines are the IMM results as
obtained in Ref. [26] in the Brownian limit.
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Figure 5. Plot of the ratio Rx(cx) = φx(cx)/(π−1/2e−c2

x ) for a∗ = 1 as a function of the (reduced)
velocity cx for α = 0.9 and five different values of the mass ratio m/mg: 1 (yellow line), 5 (blue line),
10 (red line), 50 (green line), and the Brownian limit (black lines). Here, T∗

g = 1, d = 3, and ϕ = 0.0052.
The dashed line refers to the DSMC results for IHS in the Brownian limit.

6. Concluding Remarks

In our study, we explored the non-Newtonian transport properties of a dilute granular
suspension subjected to USF using the Boltzmann kinetic equation. The particles are represented
as d-dimensional hard spheres with mass m and diameter σ, immersed in an interstitial gas
acting as a thermostat at temperature Tg. Various models for granular suspensions incorporate
a gas–solid force to represent the influence of the external fluid. While some models consider
only isolated body resistance via a linear drag law [5,6,8,10–12,38,39], others [13,40] include
an additional Langevin-type stochastic term. In this paper, we consider a suspension
model where the collisions between grains and particles of the interstitial (molecular)
gas are taken into account. Thus, based on previous studies [14,41], we discretize the
surrounding molecular gas, assigning individual particles with mass mg and diameter σg,
thereby accounting for elastic collisions between grains and background gas particles in the
starting kinetic equation.

Under USF conditions, the system is characterized by constant density profiles n
and ng, uniform temperatures T and Tg, and a (common) flow velocity Ux = Ug,x = ay,
where a denotes the shear rate. In agreement with previous investigations on uniform
sheared suspensions, the mean flow velocity U is coupled to that of the gas phase Ug.
Consequently, the viscous heating term due to shear and the energy transferred by the
grains from collisions with the molecular gas is compensated by the cooling terms derived
from collisional dissipation, allowing the achievement of a steady state. A distinctive
feature of the USF is that the one-particle velocity distribution function f (r, v) depends on
space only through its dependence on the peculiar velocity V = v − U. Consequently, the
velocity distribution function becomes uniform in the Lagrangian reference frame, moving
with V. This means that f (r, v) ≡ f (V). Based on symmetry considerations, the heat
flux q vanishes, making the pressure tensor P the relevant flux. Therefore, to understand
the intricate dynamics of granular suspensions under shear flow, it is imperative to focus
on their non-Newtonian properties—derived from the pressure tensor. These include
the (reduced) temperature χ = T/Tg, the (reduced) nonlinear shear viscosity η∗, and the
(reduced) normal stress difference Ψ∗.

Given that the most challenging aspect of dealing with the Boltzmann equation lies in
the collision operator, it is reasonable to explore alternatives that render this operator more
analytically tractable than in the case of IHS. Among the most sophisticated techniques
in this regard is to consider the Boltzmann equation for IMM. As in the case of elastic
collisions [20,22], the collision rate for IMM is independent of the relative velocity of the
colliding particles. As a consequence, the collisional moments of degree k of the Boltzmann
collisional operator can be expressed as a linear combination of velocity moments of degree
less than or equal to k. To complement the results derived for IMM, we also considered
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in this paper the use of a BGK-type kinetic model where the true Boltzmann operator is
replaced by a simple relaxation term. Here, we employed both approaches to compute
the rheological properties of the sheared granular suspension. Thus, our objective was
twofold. Firstly, we aimed to assess the reliability and compatibility of the proposed models
with previous results [17] obtained for IHS using Grad’s moment method. Additionally,
DSMC simulations for IHS were performed as an alternative method to validate any
potential discrepancies identified. Secondly, taking advantage of the capabilities provided
by the BGK model, we endeavored to calculate the velocity distribution function and the
higher-order moments that offer insights into its characteristics.

Before proceeding with the computation of rheological properties, it is necessary to
understand the response of the molecular fluid to shear stress. This assessment was also
conducted using both the Maxwell molecules and BGK-type kinetic model that were later
used to model the granular gas. A novelty here is the application of a force (Gaussian
thermostat) of the form F = −mξV to compensate for the energy gained through viscous
shear stresses. This force, by consistency, also applies to the granular gas, maintaining
convergence to a steady state. As anticipated, the results agree well with those obtained
through Grad’s moment method [17] (see Equations (32) and (64)). Consequently, once the
problem conditions (including the shear rate a) are defined, the molecular temperature Tg
is determined, effectively serving as a thermostat for the granular gas.

After accurately describing the rheology of the molecular gas, we focused on modeling
the granular gas. Using both the IMM and BGK-type model separately, we calculated the
nonzero elements of the the pressure tensor. The knowledge of these elements allowed
us to identify the relevant rheological properties of the granular suspension. As shown
in Figure 2, these quantities are represented as functions of the coefficient of restitution
α and the mass ratio m/mg. In particular, we find that the theoretical results obtained
from the Grad’s method for IHS, IMM, and BGK-type model show remarkable agreement,
with almost indistinguishable curves. This underlines the effectiveness of structurally
simple models in capturing the complexities of sheared granular suspensions. We observe
a DST-type transition starting at a certain value of a∗, which increases with the mass
ratio m/mg. Interestingly, similar to the MD simulations performed for IHS [18], the
DSMC data suggest a more abrupt transition than predicted by theory. Given that the
main divergences between Grad’s (for IHS) and DSMC results arise from the form of the
distribution function, the significance of investigating higher-order moments to assess the
deviation of the distribution function from its Maxwellian reference is then justified.

Based on the previous literature where discrepancies in fourth-degree moments have
been observed [26], and acknowledging the potential lengthiness of calculations, for the
sake of simplicity, we decided to employ only the BGK-type model to compute higher-order
moments. Specifically, we concentrated on the (symmetric) fourth-degree moments M4|0
and M2|xy. The shear-rate dependence of these moments is illustrated in Figure 3 for the
same parameter values of α and m/mg as those employed for the rheological quantities.
Initially, we note that the fourth-degree moments also exhibit an abrupt transition at a
value of a∗ that increases with m/mg until reaching the Brownian limit. We think that the
DST behavior will also appear in all higher moments.

Furthermore, DSMC simulations in the Brownian limit qualitatively capture the profile
of these fourth-degree moments, although some quantitative disparities are apparent. To
ascertain the extent of these discrepancies, we narrowed our focus to the interval 0 < a∗ < 1,
where non-Newtonian effects are apparent. Additionally, we included IMM results directly
as obtained from an effective Fokker–Planck-type model [26]. Figure 4 illustrates that BGK
results overestimate the deviation from the moments computed when no shear stress is
applied compared to DSMC simulations and the results obtained using an effective force to
model the interstitial gas. These disparities are also observed in the marginal distribution
function φx.

The theoretical findings presented here motivate the comparison with computer
simulations. Although the observed agreement in the Brownian limit is encouraging, there
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is scope to extend this agreement to scenarios with finite mass ratios. Our plan is to carry
out simulations of this type in the near future, which we expect will further validate and
improve our theoretical framework. In addition, we plan to extend our current findings to
finite densities by exploring the Enskog kinetic equation, which will allow us to evaluate the
involvement of density in the occurrence of these phenomena. Recent results [42] derived
in the context of the Enskog equation by using the Fokker–Planck operator have shown
that there is a transition from the discontinuous shear thickening (observed in dilute gases)
to the continuous shear thickening for denser systems. We want to see if this behavior is
also present for large but finite mass ratios. The above lines of research will be some of the
main objectives of our upcoming projects.
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Appendix A. Some Technical Details in the BGK-Type Kinetic Model

In this Appendix, we give some details on the determination of the parameters T̃ and
ν appearing in the relaxation term (66). To obtain them, we require the collisional transfer
of energy of grains due to their elastic collisions with particles of the molecular gas to
be the same as that obtained from the true Boltzmann–Lorentz collision operator. This
implies that ∫

dvV2 JBL[V| f , fg] = −ν
∫

dvV2
[

f (V)− f̃g(V)
]
. (A1)

Given that the collisional moment involving the operator JBL[ f , fg] cannot be exactly
computed for IHS, one estimates this moment by replacing f and fg with their Grad’s
solutions [19]. In this approximation, one achieves the results [17]

∫
dvV2 JBL[V| f , fg] = −8π(d−1)/2

Γ
(

d
2

) nngσd−1 mg

(m + mg)2

(
2Tg

mg
+

2T
m

)1/2(
T − Tg

)
. (A2)

Moreover, ∫
dvV2

[
f (V)− f̃g(V)

]
= −d

nν

m

(
T − T̃

)
. (A3)
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From Equations (A2) and (A3), one obtains the identity

8π(d−1)/2

dΓ
(

d
2

) ngσd−1 mmg

(m + mg)2

(
2Tg

mg
+

2T
m

)1/2(
T − Tg

)
= ν

(
T − T̃

)
. (A4)

Equation (A4) allows us to make the identifications (70).
Finally, from Grad’s moment method [19], the collisional moment (71) can be written

as [17] ∫
dv mViVj J[ f , f ] = −νMnTg

[
ν∗IHS

η P∗
ij − χ

(
ν∗IHS

η − ζ∗IHS
)

δij

]
, (A5)

where νM is defined in Equation (42) and

ν∗IHS
η =

(1 + α)[3(1 − α) + 2d]
2d(d + 2)

, ζ∗IHS =
1 − α2

2d
. (A6)

The BGK-type kinetic model (65) yields the result∫
dv mViVj

[
− ν′

(
f − f M

)
+

ϵ

2
∂

∂V
· V f

]
= −nTg

[(
ν′ + ϵ

)
P∗

ij − ν′χδij

]
, (A7)

where we recall that P∗
ij = Pij/nTg. Comparison between Equations (A5) and (A7) yields

Equation (72) for ν′(α).
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