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ABSTRACT
The structural properties of confined single-file hard-disk fluids are studied analytically by means of a mapping of the original system onto
a one-dimensional mixture of non-additive hard rods, the mapping being exact in the polydisperse limit. Standard statistical-mechanical
results are used as a starting point to derive thermodynamic and structural properties of the one-dimensional mixture, where the condition
that all particles have the same chemical potential must be taken into account. Analytical results are then provided for the nth neighbor
probability distribution function, the radial distribution function, and the structure factor, a very good agreement being observed upon
comparison with simulation data from the literature. Moreover, we have analyzed the scaling form for the disappearance of defects in the
zigzag configuration for high pressure and have obtained the translational correlation length and the structural crossover in the oscillation
frequency for asymptotically large distances.
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I. INTRODUCTION

The study of the structural properties of any given liquid system
is a key step in completely understanding its behavior and the nature
of the spatial correlations induced by the interactions between its
particles.1–3 These structural properties go beyond the purely ther-
modynamic ones and provide insight into the arrangement and
behavior of the particles of the system.4–9 Among these properties,
the radial distribution function (RDF) and the structure factor are
two of the most relevant ones, the former because it describes how
the local density of particles varies with distance from a reference
particle and the latter due to its direct connection with diffraction
experiments.

Despite its clear importance, systems whose structural prop-
erties are amenable to exact analytic solutions are very scarce
and usually limited to one-dimensional (1D) systems with only
nearest-neighbor interactions.3,10–19 Otherwise, one must resort to
approximations, numerical methods, or simulations.

Highly confined two- and three-dimensional systems, where
the available space along one of the dimensions of the pore is much
larger than along the other ones, in such a way that particles are con-
fined into single-file formation,20–39 make an interesting and special

class of systems. Their most relevant properties are the longitudinal
ones, and they can be studied by treating the system as quasi one-
dimensional (Q1D). These properties are often amenable to an exact
statistical-mechanical solution,21,24,29,40 which makes Q1D systems
a particularly relevant field of study, especially since, despite their
simplicity, they can be used to gain valuable insight into phenomena
occurring in real confined fluids.

The Q1D hard-disk fluid belongs to this last class of systems,
and its study is an active field of research35–38,40–43 due to a combi-
nation of a manageable interaction potential and a large variety of
situations it can be applied to. However, even under these favorable
circumstances, structural properties of the Q1D hard-disk fluid are
problematic to obtain from the transfer-matrix method,29,33,34,38,44

and thus, they are usually studied by means of simulations28,42 or
the so-called planting method,43 which also requires averaging over
randomly generated configurations.

In this paper, we take a somewhat different approach by
exploiting a mapping of the original Q1D system onto a 1D poly-
disperse mixture of non-additive hard rods. The peculiarity of the
mapped mixture is that since all of its 1D species actually represent
the same type of disk, the condition that all species of the mix-
ture have the same chemical potential must be taken into account.
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Standard liquid theory of mixtures3 is used on the newly mapped
1D mixture to compute the structural properties of the original Q1D
system. To obtain explicit results, we take discrete mixtures with a
large, but finite, number of species. In that way, the exact properties
of the Q1D fluid are recovered by taking the continuous polydisperse
limit.

Our paper is organized as follows. Section II defines the system
under study and its main properties. Section III presents theoreti-
cal results regarding the thermodynamic and structural properties
of generic 1D mixtures with nearest-neighbor interactions. This
theoretical background is subsequently used in Sec. IV, which con-
tains an analysis of the results obtained for the neighbor probability
distribution functions, the RDF, and the structure factor. In addi-
tion, the disappearance of defects in the zigzag configuration for
high pressure is analyzed. Moreover, the asymptotic behavior for
large distances is studied by identifying the translational correlation
length and a structural crossover in the oscillation frequency. Finally,
Sec. V closes the paper with a presentation of the main conclusions.

II. THE SYSTEM
A. Q1D hard-disk fluid

Consider a two-dimensional system of N hard disks interacting
via a pairwise potential of the form

φ(r) =
⎧⎪⎪
⎨
⎪⎪⎩

∞ if r < 1,

0 if r > 1,
(2.1)

where, for simplicity, the hard-core diameter of the particles is
assumed to be equal to 1. The particles are confined in a very long
channel of widthw = 1 + ε and length L≫ w, in such a way that they
are in single-file formation, and only first nearest-neighbor interac-
tions take place. These two conditions set the range of validity of the
excess pore width to 0 ≤ ε ≤ εmax, where εmax =

√
3/2 ≃ 0.866. Note

that, if the transverse separation between two disks at contact is Δy,
their longitudinal separation is then

a(Δy) ≡
√

1 − (Δy)2. (2.2)

Due to the highly anisotropic nature of this confined system, it
is often useful to characterize it via its longitudinal properties, such
as the number of particles per unit length, λ ≡ N/L, or the reduced
pressure p ≡ P∥ε, where P∥ is the longitudinal component of the
pressure. At close packing, the linear density reaches a maximum
value of λcp(ε) = 1/a(ε), and the reduced pressure diverges.

From the exact transfer-matrix solution of this Q1D system,24

one can obtain the equation of state as

Z ≡
βp
λ
= 1 +

βp
ℓ ∫

ε
2

− ε
2

dy∫
ε
2

− ε
2

dy′ e−βpa(y−y′)a(y − y′)ϕ(y)ϕ(y′),

(2.3)

where β ≡ 1/kBT (kB and T being the Boltzmann constant and the
absolute temperature, respectively), ℓ is the maximum eigenvalue of
the problem

∫

ε
2

− ε
2

dy′ e−βpa(y−y′)ϕ(y′) = ℓϕ(y), (2.4)

and ϕ(y) is the associated eigenfunction. Moreover, ϕ2
(y) is the

probability density profile along the transverse direction y. An
expression for the isothermal susceptibility χT ≡ β−1∂pλ is derived
in Appendix A. This quantity has been recently seen to encode how
dynamic correlations in transient one-dimensional diffusive systems
depend on spatial fluctuations of the initial state.45

In a recent study,40 we derived the exact third and fourth
virial coefficients from Eq. (2.3) and proved that near close pack-
ing, Z → 2/(1 − λ/λcp). Additionally, as a practical alternative to
the numerical solution of Eq. (2.4), we proposed two approxi-
mate transverse profiles: a simple uniform profile, ϕ(y)→ const.,
and a more sophisticated exponential-like profile, ϕ(y)→ e−βpa(y+ ε

2 )

+ e−βpa(y− ε
2 ). Comparison with transfer-matrix and simulation

results showed a good performance of both approximations, espe-
cially the quasi-exponential one.

As said in Sec. I, in this work, we focus on the longitudinal
structural properties of the confined hard-disk fluid by taking advan-
tage of its mapping onto a 1D mixture of non-additive hard rods (see
Appendix A of Ref. 40).

Let us first introduce the RDF of the confined fluid. The local
number density is n1(r) = λϕ2

(y) and the two-body distribution
function is n2(r, r′) = n1(r)n1(r′)g(r, r′), where g(r, r′) is the RDF.
For simplicity, we keep the term “radial,” although in contrast to
isotropic fluids, g(r, r′) is not a function of ∣r − r′∣ only but depends
on y, y′, and ∣x − x′∣. To make that more explicit, we introduce
the changes of notation n1(r)→ n1(y), n2(r, r′)→ n2(y, y′; ∣x − x′∣),
and g(r, r′)→ g(y, y′; ∣x − x′∣).

B. 1D hard-rod mixture
The mapping is based on the idea that the transverse coordi-

nate of each disk, −ε/2 < y < ε/2, represents the dispersity parameter
of the mixture, and therefore, each species in the hard-rod mixture
maps the transverse coordinate of the original Q1D system. Since y
is a continuous variable, the equivalent 1D mixture has a continuous
distribution of components. In practice, however, it is enough to take
a discrete mixture with a sufficiently large number M of components
to accurately describe the system, as will be shown in Sec. IV A.

Under this framework, each species i of a discrete
M-component mixture represents a disk whose vertical
coordinate is

yi = −
ε
2
+ (i − 1)δy, i = 1, 2, . . . , M, δy ≡

ε
M − 1

. (2.5)

The hard-core distance between two rods of species i and j is
equal to the longitudinal distance at contact of the two disks they
represent, i.e.,

ai j = a(yi − y j) =

√

1 − [(i − j)δy]2. (2.6)

Note that aii = 1 but aij < 1 if i ≠ j, so that the hard-rod mixture is
negatively non-additive. Figure 1 shows a schematic representation
of this mapping with M = 3.

Before applying this 1D mapping to obtain the (longitudi-
nal) structural properties of the original Q1D fluid, let us present
the main properties of a generic 1D mixture of particles with
nearest-neighbor interactions.
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FIG. 1. Schematic representation of the mapping of (a) the original Q1D system
onto (b) a 1D mixture of non-additive hard rods. In this illustration, the number
of species chosen in the mapping has been set to M = 3 for simplicity. Note that
a11 = a22 = a33 = 1, but a13 = a(ε) < a12 = a23 = a( ε

2
) < 1.

III. 1D MIXTURES WITH NEAREST-NEIGHBOR
INTERACTIONS
A. Spatial correlations

Let us consider an M-component 1D mixture made of N parti-
cles (N i belonging to species i) with a linear number density λ. The
interaction potential between two particles of species i and j, φij(x),
is assumed to act only if those particles are nearest neighbors.

The key quantities are the probability density distributions,
P(n)i j (x), such that P(n)i j (x)dx is the probability that the nth neigh-
bor of a reference particle of species i belongs to species j and is
located at a distance between x and x + dx from the reference par-
ticle. Note that P(n)i j (x) ≠ P(n)ji (x) but xiP(n)i j (x) = x jP(n)ji (x), where
xi = N i/N denotes the mole fraction of species i. The total nth
neighbor probability distribution function is defined as

P(n)(x) =∑
i, j

xiP(n)i j (x). (3.1)

Then, the partial and total RDF are given by

gi j(x) =
1

λx j

∞

∑
n=1

P(n)i j (x), (3.2a)

g(x) =∑
i, j

xix jgi j(x) =
1
λ

∞

∑
n=1

P(n)(x). (3.2b)

The structure factor, S(q), is directly related to the Fourier transform
of the total correlation function h(x) ≡ g(x) − 1,

S(q) = 1 + λ∫
∞

−∞
dx e−ıqxh(x)

= 1 + 2λ∫
∞

0
dx cos (qx)h(x), (3.3)

where ı is the imaginary unit.
From standard statistical-mechanical results in the isothermal-

isobaric ensemble, one finds3

P(1)i j (x) =
√

x j

xi
AiA je−β[φi j(x)+px], (3.4a)

P(n)i j (x) =∑
k
∫

x

0
dx′ P(n−1)

ik (x′)P(1)k j (x − x′). (3.4b)

In Eq. (3.4a), the parameters {Ai} are given by the solution of the
nonlinear set of equations,46

Ai∑
j

Ωi j(βp)
√

x jA j =
√

xi, (3.5)

where

Ωi j(s) = ∫
∞

0
dx e−sxe−βφi j(x) (3.6)

is the Laplace transform of the Boltzmann factor. Notice that,
for simplicity, we omit in the notation the dependence of Ωij(s)
on β. The physical condition limx→∞ φij(x) = 0 implies that
lims→0 sΩij(s) = 1. As a consequence, from Eq. (3.5), we have
limp→0 Ai/

√
βpxi = 1.

The convolution structure of Eq. (3.4b) suggests the introduc-
tion of the Laplace transforms P̃(n)i j (s), G̃i j(s), and G̃(s) of P(n)i j (x),
gij(x), and g(x), respectively, so that

P̃(1)i j (s) =
√

x j

xi
AiA jΩi j(s + βp), (3.7a)

P̃(n)i j (s) = ([P̃
(1)
(s)]

n
)

i j
, (3.7b)

G̃i j(s) =
1

λx j
(
∞

∑
n=1
[P̃ (1)(s)]

n
)

i j

=
1

λx j
(P̃ (1)(s) ⋅ [I − P̃ (1)(s)]

−1
)

i j
, (3.7c)

G̃(s) =∑
i, j

xix jG̃i j(s). (3.7d)

Here, P̃ (1)(s) is the M ×M matrix of elements P̃(1)i j (s), and I is the
corresponding unit matrix. Notice that Eq. (3.7c) can be rewritten as

1
λ

P̃(1)i j (s) = x jG̃i j(s) −∑
k

xkG̃ik(s)P̃
(1)
k j (s). (3.8)

In turn, the structure function defined by Eq. (3.3) can be obtained
from G̃(s) as

S(q) = 1 + λ[G̃(s) + G̃(−s)]
s=ıq

. (3.9)

B. Thermodynamic quantities. Physical
meaning of the parameters {A i }

From the physical condition limx→∞gij(x) = 1, one finds the
equation of state (see Appendix B)

β
λ
= −∑

i, j

√
xix jAiA j∂pΩi j(βp). (3.10)

In order to derive the Gibbs free energy G, we need to rewrite
Eq. (3.10) in an alternative form. First, taking into account
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from Eq. (3.5) that ∂p∑i, j
√xix jAiA jΩi j(βp) = ∂p∑i xi = 0, one has

β/λ = 2∑i, j
√xix jA jΩi j(βp)∂pAi. Second, using again Eq. (3.5),

β/λ = 2∑i xiA−1
i ∂pAi. Therefore,

β
λ
=∑

i
xi∂p ln A2

i . (3.11)

From a practical point of view, Eq. (3.11) is less useful than Eq. (3.10)
to obtain numerical values since pressure dependence of Ai, in con-
trast to that of Ωij(βp), is not explicitly known. On the other hand,
as we will see, Eq. (3.11) is more compact and convenient at a
theoretical level.

By taking into account Eq. (3.11) in the thermodynamic
relation λ−1

= N−1
(∂G/∂p)β,{Ni}, the Gibbs free energy becomes

βG
N
=∑

i
xi ln (A2

i ΛdB), (3.12)

where the integration constant has been determined by the ideal-gas
condition limp→0βG/N = ∑i xi ln(xiβpΛdB), with ΛdB ∝ β1/2 being
the thermal de Broglie wavelength (assumed here to be the same for
all species).

Next, we derive the chemical potential μk = (∂G/∂Nk)β,p,{Ni≠k}

from Eq. (3.12),

βμk = ln (A2
kΛdB) + 2∑

i

Ni

Ai

∂Ai

∂Nk
. (3.13)

Differentiating with respect to Nk on both sides of Eq. (3.5), one has

Ni

Ai

∂Ai

∂Nk
=

1
2
[δik −

√
xi

xk
Ωik(βp)AiAk]

− Ai
√

xi∑
j

Ωi j(βp)
N j
√x j

∂A j

∂Nk
. (3.14)

Summing over i and applying again Eq. (3.5),

∑
i

Ni

Ai

∂Ai

∂Nk
=

1
2
(1 − 1) −∑

j

N j

A j

∂A j

∂Nk
, (3.15)

which implies ∑i(N i/Ai)(∂Ai/∂Nk) = 0. Therefore, Eq. (3.13)
reduces to

βμi = ln (A2
i ΛdB). (3.16)

This provides a physical interpretation of the parameters {Ai},
namely Ai =

√
zi/ΛdB, where zi ≡ eβμi is the fugacity of species i. To

our knowledge, Eqs. (3.11), (3.12), and (3.16) are novel results of the
present work.

The internal energy, U, can be obtained from G through the
thermodynamic relation U = [∂(βG)/∂β]βp,{Ni}

. That is,

βU
N
=

1
2
+ β∑

i
xi(

∂ ln A2
i

∂β
)

βp
. (3.17)

Inverting now the steps going from Eq. (3.10) to (3.11), except for
the change βp↔ β, we finally have

βU
N
=

1
2
− β∑

i, j

√
xix jAiA j[

∂Ωi j(βp)
∂β

]

βp
. (3.18)

C. The equal chemical-potential condition
The general theory of 1D mixtures described above is con-

structed by taking the mole fractions {xi} as free thermodynamic
variables, independent of β and p. In general, each species has
a distinct chemical potential that, as Eq. (3.16) shows, is directly
related to the solution of the nonlinear set of equations given
by Eq. (3.5).

On the other hand, in the special case of our 1D mixture rep-
resenting the Q1D fluid, we need to take into account that 1D
particles from different species actually represent identical 2D par-
ticles with different transverse coordinates in the original Q1D
system, as sketched in Fig. 1. This means that the chemical poten-
tial of all species must be the same (μi = μ), which implies that all
Ai = A are necessarily also the same. As a consequence, the mole
fractions are no longer free variables, but they depend on β and p,
i.e.,
√

xi → ϕi(β, p). They are determined by solving Eq. (3.5) with
Ai = A, which now adopts the form of an eigenvalue/eigenvector
problem, namely

∑
j

Ωi j(βp)ϕ j =
1

A2 ϕi. (3.19)

Thus far, in this section, we did not need to specify the interac-
tion potentials φij(x). In the case of the mapped 1D system described

in Sec. II B, one simply has e−βφi j(x) = Θ(x − ai j), where Θ(⋅) is
the Heaviside step function, so that Ωi j(s) = e−sai j/s. Therefore,
Eq. (3.19) becomes

∑
j

e−βpai j ϕ j =
βp
A2 ϕi. (3.20)

Moreover, Eq. (3.10) yields

Z = 1 + A2
∑
i, j

ϕiϕ jai je−βpai j . (3.21)

In what concerns the structural properties, it is proved in
Appendix C that

P(n)i j (x) =
ϕ j

ϕi
A2nQ(n)i j (x), (3.22)

where

Q(n)i j (x) =∑
k1

∑
k2

⋅ ⋅ ⋅∑
kn−1

R(n)(x; aik1 + ak1k2 + ⋅ ⋅ ⋅ + akn−1 j), (3.23)

with

R(n)(x; α) ≡
e−βpx

(n − 1)!
(x − α)n−1Θ(x − α). (3.24)
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Therefore, the functions P(n)
(x) [see Eq. (3.1)], gij(x) [see

Eq. (3.2a)], and g(x) [see Eq. (3.2b)] can be expressed as

P(n)(x) = A2n
∑
i, j

ϕiϕ jQ(n)i j (x), (3.25a)

gi j(x) =
1

λϕiϕ j

∞

∑
n=1

A2nQ(n)i j (x), (3.25b)

g(x) =
1
λ

∞

∑
n=1

A2n
∑
i, j

ϕiϕ jQ(n)i j (x). (3.25c)

Moreover, Eqs. (3.7c) and (3.8) become

G̃i j(s) =
A2

λϕiϕ j
(Ω(s + βp) ⋅ [I − A2Ω(s + βp)]

−1
)

i j
, (3.26a)

A2

λϕi
Ωi j(s + βp) = ϕ jG̃i j(s) − A2

∑
k

ϕkG̃ik(s)Ωk j(s + βp), (3.26b)

where Ω(s) is the M ×M matrix with elements Ωij(s).
Due to the infinite sum over n in Eqs. (3.25b) and (3.25c),

one could think that those expressions are merely formal. However,
because of the appearance of the Heaviside function in Eq. (3.24)
and taking into account that min{aij} = a(ε), the truncation of the
sum at the level of n = nmax yields the exact result up to, at least,
x ≤ nmaxa(ε). Alternatively, one can use Eq. (3.26a) to obtain gij(x)
by numerical Laplace inversion.47

It is relevant to note that the knowledge of the partial RDF
gij(x) allows one to obtain not only the longitudinal RDF g(x)

but also the two-dimensional RDF g2D(r), r =
√

x2
+ (Δy)2 being

the distance between two disks with longitudinal and transverse
separations given by x and Δy, respectively. More specifically, we
define

g2D(r) =∑
i, j

ϕ2
i ϕ2

jgi j(

√

r2
− (yi − y j)

2
). (3.27)

Quite interestingly, the contact value g2D(1
+
) coincides with the

compressibility factor Z:

g2D(1+) =∑
i, j

ϕ2
i ϕ2

jgi j(a+i j) =
A2

λ ∑i, j
ϕiϕ je−βpai j

= Z, (3.28)

where in the last step, we have used Eq. (3.20).

D. Continuum limit
In the description presented in Secs. II B–III C, we have

assumed a discrete 1D mixture with a finite (but arbitrary) number
of components M. In order to fully represent the original Q1D sys-
tem, where the transverse coordinate y is a continuous variable, one
should formally take the continuum limit, M →∞. In fact, identi-
fying ϕi → ϕ(yi)

√
δy, A2

→ (βp/ℓ)δy, and taking the limit M →∞,
Eqs. (3.19) and (3.21) reduce to Eqs. (2.4) and (2.3), respectively.

In the continuum case, the role of P(n)i j (x) would be played by
P(n)
(y, y′; x), where P(n)

(y, y′; x)dy′dx is the conditional probability
that, given a reference particle with a transverse coordinate y, its nth

neighbor has a transverse coordinate between y′ and y′ + dy′ and
is located at a longitudinal distance between x and x + dx from the
reference particle. The integral ∫

∞

0 dx P(1)(y, y′; x) is equivalent to
the conditional probability defined in Eq. (6) of Ref. 43.

The identification P(n)i j (x)→ P(n)(yi, y j ; x)δy allows us to
obtain the continuum counterparts of Eqs. (3.1), (3.2a), (3.2b),
and (3.27) as

P(n)(x) = ∫
ε
2

− ε
2

dy∫
ε
2

− ε
2

dy′ ϕ2
(y)P(n)(y, y′; x), (3.29a)

g(y, y′; x) =
1

λϕ2
(y′)

∞

∑
n=1

P(n)(y, y′; x), (3.29b)

g(x) = ∫
ε
2

− ε
2

dy∫
ε
2

− ε
2

dy′ ϕ2
(y)ϕ2

(y′)g(y, y′; x)

=
1
λ

∞

∑
n=1

P(n)(x), (3.29c)

g2D(r) = ∫
ε
2

− ε
2

dy∫
ε
2

− ε
2

dy′ ϕ2
(y)ϕ2

(y′)g(y, y′;
√

r2
− (y − y′)2

).

(3.29d)

From Eqs. (3.22) to (3.23), we conclude that the exact function
P(n)
(y, y′; x) for the Q1D system of single-file hard disks is given by

P(n)(y, y′; x) =
ϕ(y′)
ϕ(y)

(
βp
ℓ
)

n
Q(n)(y, y′; x), (3.30)

where

Q(n)(y, y′; x) = ∫
ε
2

− ε
2

dy1∫

ε
2

− ε
2

dy2 ⋅ ⋅ ⋅∫

ε
2

− ε
2

dyn−1

× R(n)(x;
n

∑
k=1

a(yk − yk−1)), (3.31)

with the convention y0 ≡ y, yn ≡ y′, and with R(n)
(x; α) being

defined by Eq. (3.24).
The continuum version of Eq. (3.26a) is not straightforward.

However, its equivalent form, Eq. (3.26b), becomes

e−(s+βp)a(y−y′)

λϕ(y)
= ℓ

s + βp
βp

ϕ(y′)G̃(y, y′; s) − ∫
ε
2

− ε
2

dy′′ ϕ(y′′)

× G̃(y, y′′; s)e−(s+βp)a(y′′−y′). (3.32)

This is an inhomogeneous linear integral equation (of the second
kind) for the Laplace transform, G̃(y, y′; s), of g(y, y′; x).

As far as we know, Eqs. (3.30), (3.31), and (3.32) had not been
derived before.

IV. RESULTS
A. The effect of finite M

Although we have expressed the results of Sec. III D in the con-
tinuum limit, in practice, we need to take a finite value of M to obtain
explicit results. We choose odd values of M to include the centerline
y = 0 in the treatment.
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FIG. 2. Nearest-neighbor probability distribution function P(1)
(x) for a system with

ε =
√

3/2 at λ = 1.0 and for different values of the discretization parameter M.

Figure 2 shows the nearest-neighbor probability distribution
function P(1)

(x) for a system with the maximum pore width,
ε = εmax =

√
3/2 ≃ 0.866 (corresponding to λcp = 2), at a linear den-

sity λ = 1 and for different values of M. We observe that the number
of components M = 11 is not large enough to capture satisfacto-
rily well the expected form of P(1)

(x) in the continuum. First, the
discrete nature of the description is clearly apparent in the arti-
ficial jumps at x = a( j−1

M−1 ε) with j = 2, . . . , M. Apart from that,
the general shape of the function visibly deviates from the shape
obtained with larger values of M. When taking M = 51, the jumps at
x = a( j−1

M−1 ε) are much less pronounced, and moreover, the curve
is rather close to that obtained with M = 151 or M = 251. Finally,
the curves with the two latter values are practically indistinguish-
able from each other, which indicate a rapid convergence to the
polydisperse limit.

In the remainder of the paper, all the presented calculations
have been obtained with M = 251, unless explicitly stated otherwise.
An open-source C++ code used to procure the results of this section
can be accessed from Ref. 48.

B. Neighbor probability distribution functions
Let us consider again the nearest-neighbor distribution P(1)

(x).
It is plotted in Fig. 3 for ε = 1

2 (corresponding to λcp = 1.1547) and
several densities. An excellent agreement with molecular dynamics
(MD) data42 is observed. Interestingly, as density decreases from
values close to λcp, a secondary peak as a kink appears at x ≈ 1. It
becomes the main peak as density keeps decreasing; then, it is the
only peak and finally tends to soften for lower densities. The for-
mation of this secondary peak was reported in Ref. 36, where it
was shown to be related to the emergence of uncaging events in the
zigzag-like array.

The nth neighbor probability distribution functions P(n)
(x)

with n = 1, 2, and 3 are plotted in Fig. 4 for ε =
√

3/2 and three
densities. As expected, P(n)

(x) is nonzero only if x > na(ε). We also
observe that P(2)

(x) and P(3)
(x) are much smoother than P(1)

(x) and
exhibit a single maximum. As density grows, the maximum moves
toward na(ε) and becomes increasingly narrower.

FIG. 3. Nearest-neighbor probability distribution function P(1)
(x) for a system with

ε = 1
2

at several representative densities. Solid lines are our theoretical results,
whereas symbols are MD data from Ref. 42.

FIG. 4. Probability distribution functions P(n)
(x) with n = 1 (solid lines), 2 (dashed

lines), and 3 (dashed–dotted lines) for a system with ε =
√

3/2 at different values
of density.

C. Radial distribution functions
1. Total function

After having studied the neighbor distributions P(n)
(x), now,

we turn to the RDF as the most relevant function. In our approach,
g(x) is analytically obtained from Eq. (3.25c) for x ≤ 3a(ε) (i.e.,
truncating the sum after n = 3) and numerically from the Laplace
inversion47 of Eq. (3.26a) for x > 3a(ε). Notice that the planting
method of Ref. 43, which is essentially a numerical integration
via random sampling, generates alternative results to those of our
numerical Laplace inversion.

The results are illustrated in Fig. 5 for ε =
√

3/2 and ε = 1
2 ,

in each case, at three representative densities. The agreement with
Monte Carlo (MC) simulation data28 is very good. Interesting struc-
tural features are observed in Fig. 5(a), where the densities are
50%–70% of the close-packing value. As density increases, the struc-
tures become increasingly ordered, as illustrated by Fig. 5(b), where
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FIG. 5. RDF g(x) at different values of density for a system with (a) ε =
√

3/2
and (b) ε = 1

2
. Solid lines are our theoretical results, while symbols are MC data

from Ref. 28.

now the densities are 78%–95% of the corresponding close-packing
value.

2. Partial functions
In contrast to g(x), the partial RDF g(y, y′; x) describes spa-

tial correlations between particles with specific transverse positions.
Among all the possible choices of y, y′, the most interesting ones
seem to be ± ε

2 and 0. Thus, we focus on

g++(x) = g−−(x) ≡ g(
ε
2

,
ε
2

; x) = g(−
ε
2

,−
ε
2

; x), (4.1a)

g+−(x) = g−+(x) ≡ g(
ε
2

,−
ε
2

; x) = g(−
ε
2

,
ε
2

; x), (4.1b)

g00(x) ≡ g(0, 0; x), (4.1c)

g+0(x) = g−0(x) ≡ g(
ε
2

, 0; x) = g(−
ε
2

, 0; x). (4.1d)

The partial RDF g
++
(x) measures the longitudinal correlations

between particles, both in contact with either the top or the bottom
wall, whereas in the case of g

+−
(x), one of the particles is in contact

with a wall, and the other particle is in contact with the other wall.
Similar interpretations can be assigned to g00(x) (both particles lie

on the centerline) and g
+0(x) (one particle is in contact with a wall,

and the other one is on the centerline).
Figure 6 shows the functions g

++
(x), g

+−
(x), g00(x), and

g
+0(x) for several densities and ε = 0.8, which corresponds to

λcp ≃ 1.667. The contact distance is x = 1 for both g
++
(x) and

g00(x), but the contact value g
++
(1+) is typically smaller than

g00(1
+
). The contact distances of g

+−
(x) and g

+0(x) are x = a(ε)
= 0.6 and x = a( ε

2) ≃ 0.917, respectively. As density increases,
the contact value g

++
(1+) starts growing, reaches a maxi-

mum, and then decreases. Near close packing, g
++
(x) presents

a depletion zone between x = 1 and x = 2a(ε), together with
pronounced peaks at x ≃ 2a(ε), 4a(ε), 6a(ε), . . .. Also near close
packing, the peaks of g

+−
(x), g00(x), and g

+0(x) are located
at x ≃ a(ε), 3a(ε), 5a(ε), . . ., x ≃ 1, 2a(ε/2), 2a(ε/2) + a(ε), 2a(ε/2)
+ 2a(ε), 2a(ε/2) + 3a(ε), . . ., and x ≃ a(ε/2), a(ε/2) + a(ε), a(ε/2)
+ 2a(ε), . . ., respectively. Note that the peak of g00(x) at x = 1+ for
the density λ = 1.5 is so high [g00(1

+
) ≃ 4 × 103

] that it dramatically
exceeds the vertical scale of Fig. 6(c).

3. Disappearance of defects for high pressure
All of this shows that a zigzag configuration (⋅ ⋅ ⋅ + − + − + −

+ ⋅ ⋅ ⋅) is clearly favored as the density approaches the close-packing
value. On the other hand, this configuration may present defects
of the forms ⋅ ⋅ ⋅ + − ++ − + − ⋅ ⋅ ⋅ or ⋅ ⋅ ⋅ + − + −− + − ⋅ ⋅ ⋅. This
is quantified by a nonzero contact value g

++
(1+), which decreases

with increasing pressure. To study this effect in more detail, let
us derive the high-pressure asymptotic behavior of g

++
(1+). From

Eq. (3.29b), one has

g++(1+) =
Z

ℓϕ2
( ε

2)
e−βp. (4.2)

FIG. 6. Plot of the partial RDF (a) g
++
(x), (b) g

+−
(x), (c) g00(x), and (d) g

+0(x)
for several densities and ε = 0.8.
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In the high-pressure limit,40 Z → 2 + βpa(ε),
ℓ→ [a(ε)/2εβp]e−βpa(ε), and ϕ( ε

2)→
√

εβp/a(ε). Therefore,

g++(1+)→ 2[2 + βpa(ε)]e−βp[1−a(ε)]. (4.3)

Analogously, g
+−
(a(ε)+) = g

++
(1+)eβp[1−a(ε)]

→ 2[2 + βpa(ε)].
Therefore, the defect quantifier g

++
(1+) decays following the scal-

ing form g
++
(1+) ∼ βpe−βp[1−a(ε)], whereas g

+−
(a(ε)+) increases

linearly with pressure. The ratio between g
++
(1+) and its asymp-

totic form, as given by Eq. (4.3), is plotted in Fig. 7 for different
values of ε. We observe that higher pressures are needed to
reach the asymptotic regime as the pore width decreases. This is
because the different exponential terms in g

++
(1+), which compete

if βp≫ 1, become more and more similar as ε decreases, and
thus, the leading exponential needs increasingly higher pressures
to dominate.

It might seem paradoxical that g00(1
+
) diverges as den-

sity approaches close packing, although the population of par-
ticles at the centerline y = 0 vanishes in that limit. However,
we must recall that, as said at the end of Sec. II A, the RDF
g(y, y′; x) is the factor needed to get the two-body distribution
n2(y, y′; x) from the product n1(y)n1(y′), so that n2(0, 0; 1+)
= λ2ϕ4

(0)g00(1
+
). From the analysis in Ref. 40, one may esti-

mate ϕ(0) ∼
√

βpe−βp[a( ε
2 )−a(ε)] and g00(1+) ∼ βpeβp[2a( ε

2 )−1−a(ε)],
yielding n2(0, 0; 1+) ∼ (βp)3e−βp[1+2a( ε

2 )−3a(ε)]
→ 0, as expected.

4. Asymptotic decay of the total correlation function.
Correlation length and structural crossover

The asymptotic decay of hij(x) ≡ gij(x) − 1 is directly related to
the nonzero poles {sn} of G̃i j(s), i.e., the roots (different from s = 0)
of the determinant of the matrix I − A2Ω(s + βp) [see Eq. (3.26a)].
More explicitly,17,49–52

hi j(x) =
∞

∑
n=1

𝒜i j,nesnx, (4.4)

where the amplitudes 𝒜i j,n = Res [G̃i j(s)]sn
are the associated

residues. Although, in general, 𝒜i j,n is different for each pair ij, the

FIG. 7. Ratio between the contact value g
++
(1+) and its asymptotic form,

Eq. (4.3), for several values of ε.

set of poles {sn} is common to all the pairs. The asymptotic decay
of hij(x) is determined by the pair of conjugate poles, s± = −κ ± ıω,
with the real part closest to the origin, its residue being ∣𝒜i j ∣e±ıδi j .
Therefore, for asymptotically large x,

hi j(x) ≈ 2∣𝒜i j ∣e−κx cos (ωx + δi j). (4.5)

As we see, κ−1 and ω/2π represent the longitudinal correlation
length and the asymptotic oscillation frequency, respectively. As
pressure increases, the damping coefficient decreases continuously.
On the other hand, the angular frequency ω can experience a dis-
continuous jump at a certain pressure pcr, thus signaling a structural
crossover from oscillations with a given wavelength (if p < pcr) to
oscillations with a different wavelength (if p > pcr).53–55 This is due
to a crossing of the real part of two competing poles with different
imaginary parts. Analogous crossovers in the transverse correlation
length have been identified in Ref. 34 as crossings in the two largest
eigenvalues of the transfer matrix.

Taking a system with ε = 1
2 as an example, Fig. 8 shows

the pressure dependence of both κ and ω. We observe that a
structural crossover takes place at βpcr ≃ 44.2 (corresponding to
λcr ≃ 1.093). For p < pcr, the oscillation wavelength ranges from
2π/ω ≃ 1.57 for low pressure to 2π/ω ≃ 0.91 near pcr, whereas it
jumps to 2π/ω ≃ 2a(ε) = 1.732 if p > pcr. This implies that for
p > pcr (or, equivalently, λ > λcr), the zigzag configuration per-
sists for asymptotically large distances. According to the exponent
in Eq. (4.3), we can expect that βpcr scales approximately with
1/[1 − a(ε)], thus decreasing with increasing ε, as we have actu-
ally checked. In what concerns the longitudinal correlation length
κ−1, it monotonically grows with pressure with a kink at p = pcr.
In the high-pressure domain, we have checked that κ−1 grows
proportionally to (βp)2.

To confirm the previous analysis, we have chosen the states A
(βp = 7.68, λ = 0.9091) and B (βp = 165.1, λ = 1.14) as representative
of cases with p < pcr and p > pcr, respectively (see circles in Fig. 8).
For those states, κA = 0.237, ωA = 5.792, κB = 5.46 × 10−4, and
ωB = 3.581. The results obtained from the numerical Laplace inver-
sion for states A and B are plotted in Fig. 9. Apart from h(x), the par-
tial contributions h++(x) = g

++
(x) − 1 and h+−(x) = g

+−
(x) − 1

are also plotted. In state A (p < pcr), all the contributions hij(x)
oscillate in phase and practically with the same amplitude for large x.
This explains why h++(x), h+−(x), and h(x) are hardly distinguish-
able from each other in Fig. 9(a). In the case of state B (p > pcr), the
amplitudes of h++(x) and h+−(x) keep being practically the same,
but this time they are out-of-phase by a half-wavelength. This means
that the short-distance shift a(ε) between g

+−
(x) and g

++
(x) [see

Figs. 6(a) and 6(b)] is maintained for large distances. As a con-
sequence of this, the total function h(x) oscillates with a smaller
amplitude than h++(x) and h+−(x) and with a wavelength a(ε),
which is the longitudinal distance between two adjacent disks in a
zigzag configuration. It is interesting to note that the oscillations of
h++(x) and h+−(x) in Fig. 9(a) are not purely harmonic since hills
are narrower and have a larger amplitude than the valleys. This indi-
cates that the asymptotic decay with a single pole, Eq. (4.5), has not
been reached yet, as is also expected from the large amplitudes of
h++(x) and h+−(x). However, the oscillations of the total function
h(x) ≃ 1

2 [h++(x) + h+−(x)] are almost perfectly harmonic.
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FIG. 8. The thick solid lines represent (a) the damping coefficient κ and (b) the
frequency ω [see Eq. (4.5)], as functions of βp, in the case ε = 1

2
. In each panel,

the dashed lines correspond to the continuation to βp > βpcr ≃ 44.2 of the leading
pole in the region βp < βpcr, or vice versa. The circles with the labels A and B
define the cases analyzed in Fig. 9.

5. Two-dimensional radial distribution function
Now, we turn to the two-dimensional RDF g2D(r) defined by

Eq. (3.29d). It is plotted in Fig. 10 for a representative system with
ε =
√

3/2 and for the same values of λ as in Figs. 4 and 5(a). Since
this quantity is much more computationally demanding than g(x)
[compare Eqs. (3.29c) and (3.29d)], we have taken M = 151 in this
case and checked that practical convergence is achieved with this
value. We see from Fig. 10, the emergence of a secondary peak
moving toward 2a(ε) = 1 as density increases. Other interesting
additional features are also observed.

D. Structure factor
All the information contained in the RDF g(x) is equivalently

encapsulated in the static structure factor S(q). Although the eval-
uation of the RDF for x > 3a(ε) in our scheme is made by Laplace
inversion of G̃(s), the structure factor is directly obtained from G̃(s)
via Eq. (3.9). Alternatively, Robinson et al.44 obtained S(q) exactly
from the transfer-matrix approach and used it to identify the onset
of caging and the glassy behavior.

Figure 11 shows S(q) for ε = 1
2 and several densities, with a

very good agreement with MD data.42 As density approaches its
close-packing value, S(q) becomes more and more peaked around

FIG. 9. Large-x behavior of the total correlation function g(x) − 1 (solid lines)
for ε = 1

2
and (a) λ = 0.9091 (βp = 7.68, circle A in Fig. 8) and (b) λ = 1.14

(βp = 165.1, circle B in Fig. 8). The dashed and dotted lines correspond to
g
++
(x) − 1 and g

+−
(x) − 1, respectively. The dashed–dotted lines in panel

(a) represent the exponential decay of the amplitudes, ±e−κx with κ = 0.237.
The horizontal double arrows indicate the wavelengths (a) 2π/ω = 1.085 and (b)
2π/ω ≃ 2a(ε) = 1.732.

FIG. 10. RDF g2D(r) for a system with ε =
√

3/2 at different values of density.

a density-dependent wave number qmax. This signals an increasing
ordering of the spatial correlations with a period 2π/qmax slightly
larger than the value a(ε) [see Figs. 5(b) and 9(b)] associated with a
zigzag pattern.

J. Chem. Phys. 159, 034503 (2023); doi: 10.1063/5.0156228 159, 034503-9

Published under an exclusive license by AIP Publishing

 21 July 2023 17:27:08

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 11. Structure factor S(q) for a system with ε = 1
2

at several representative
densities. Solid lines are our theoretical results, whereas symbols are MD data
from Ref. 42.

FIG. 12. Scaled wave number a(ε)qmax/2π vs the scaled density λ/λcp for several
values of ε. Solid lines are our theoretical results, whereas symbols for the case
ε = 1

2
are MD data from Ref. 42.

The location of the first peak of S(q), qmax, is plotted in the
scaled form in Fig. 12 as a function of the scaled density λ/λcp for sev-
eral values of the excess pore width ε. In the case ε = 1

2 , MD data from
Ref. 42 are also included, with a fair agreement, except for a small
deviation at λ = 0.57. As can be seen, and also observed in Fig. 11, the
value of qmax increases with density, this effect being generally more
pronounced as the pore width increases. Interestingly, the curve of
qmax vs λ exhibits two inflection points if ε is high enough.

V. CONCLUDING REMARKS
In this work, we exploited the mapping of a Q1D hard-disk

fluid onto a 1D non-additive mixture of hard rods with equal chem-
ical potentials to obtain the (longitudinal) structural correlation
functions of the original confined hard-disk fluid. Along the pro-
cess, we first derived the exact thermodynamic properties (equation
of state, Gibbs free energy, chemical potentials, and internal energy)
for a generic 1D mixture with arbitrary number of components,

M, arbitrary mole fractions, {xi}, and arbitrary nearest-neighbor
pair interactions, {φij(x)}. Those thermodynamic quantities are
expressed by Eqs. (3.11), (3.12), (3.16), and (3.17), where the depen-
dence on temperature, pressure, and interaction potentials occurs
entirely through the parameters {Ai} defined by the solution to
Eq. (3.5).

Particularization to our specific Q1D system requires the con-
dition Ai = A, which fixes the mole fractions {xi → ϕ2

(yi)δy}, ϕ2
(y)

representing the transverse density profile. Taking the contin-
uum limit (M →∞), we were able to obtain an exact expression
for the (partial) nth neighbor probability distribution function,
P(n)
(y, y′; x), as given by Eqs. (3.24), (3.30), and (3.31). From its

knowledge, the total nth neighbor distribution, the partial RDF,
and the total RDF can be obtained from Eqs. (3.29a), (3.29b),
and (3.29c), respectively. Alternatively, the partial RDF is given
in Laplace space as the solution of a linear integral equation,
Eq. (3.32).

From a practical point of view, the multiple y-integrals in
Eqs. (2.3), (2.4), (3.29a), and (3.31) need to be discretized for their
evaluation, and this is equivalent to considering a discrete 1D mix-
ture with a large number of components. This discretization pro-
cess is also essential to obtain the static structure factor S(q) via
Eqs. (3.9), (3.7d), and (3.26a). We showed that M = 251 is sufficient
to achieve convergence toward the continuum limit.

Explicit results for P(n)
(x) (with n = 1, 2, 3), g(x), g(y, y′; x)

(with y, y′ = 0,±ε/2), and S(q) were presented and discussed in
Sec. IV. Comparison with available simulation data28,42 showed an
excellent agreement, thus validating the theoretical results derived
in this paper, as well as the simulation techniques.

As an additional asset of our work, we have shown that the con-
tact value g

++
(1+), which can be interpreted as a signature of defects

in the zigzag configuration, decays as g
++
(1+) ∼ βpe−βp[1−a(ε)] in the

high-pressure limit. Interestingly, a structural crossover is found
in the frequency of the asymptotic oscillations of the RDF. Below
a certain pressure (pcr), the oscillation wavelength decreases with
increasing pressure. At p = pcr, a discontinuous jump to a larger
wavelength close to 2a(ε) occurs for g(y, y′; x), that wavelength
becoming practically constant for p > pcr. Since in that high-pressure
regime the oscillations of g

++
(x) and g

+−
(x) are out-of-phase by a

distance a(ε), the wavelength of the oscillations of g(x) turns out to
be a(ε).

We hope that our research can stimulate the applications of
the Q1D → 1D mapping to other systems. In particular, we plan
to study the impact of a repulsive or attractive corona in the disks
on the thermodynamic and structural properties of the confined
fluid.

By using the same methodology, we also plan to study the
case of hard spheres (of unit diameter) confined in a cylindrical
pore of diameter 1 + ε with ε ≤

√
3/2. In that system, the trans-

verse position of a particle is given (in polar coordinates) by a
vector R ≡ (R, θ). Thus, given two particles with transverse coordi-
nates R and R′, their longitudinal separation at contact is a(R, R′)
=

√

1 − (R + R′)2
+ 4RR′ cos2 θ−θ′

2 . Again, the original system can be
mapped onto a polydisperse and non-additive 1D mixture, where
each component is identified by a vector R and the hard-core dis-
tance between particles belonging to species R and R′ is a(R, R′).
In a discrete version of the mixture, each component is labeled by
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a pair i ≡ (iR, iθ) with iR = 0, 1, . . . , MR and iθ = 1, 2, . . . , Mθ, so that
RiR = iRε/2MR and θiθ = (iθ − 1)2π/Mθ. The expressions presented
in Sec. III keep being valid, except that i→ i, j→ j, and aij → aij
= a(Ri, Rj), with Ri ≡ (RiR , θiθ).
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APPENDIX A: ISOTHERMAL SUSCEPTIBILITY

It can be easily proved that ∂pℓ = −(ℓ/p)(Z − 1).40 Thus,
Eq. (2.3) yields

∂pZ = Z
Z − 1

p
+

βp
ℓ ∫

ε
2

− ε
2

dy∫
ε
2

− ε
2

dy′ e−βpa(y−y′) a(y − y′)

× ϕ(y)[2∂pϕ(y′) − ϕ(y′)βa(y − y′)]. (A1)

The isothermal susceptibility is χT = β−1∂pλ = ∂p(p/Z). Therefore,
from Eq. (A1),

χT =
2 − Z

Z
−

λ2

βℓ∫
ε
2

− ε
2

dy∫
ε
2

− ε
2

dy′ e−βpa(y−y′)a(y − y′)

× ϕ(y)[2∂pϕ(y′) − ϕ(y′)βa(y − y′)]. (A2)

It remains to determine the function ∂pϕ(y). Differentiating both
sides of Eq. (2.4), we obtain

∂pϕ(y) =
Z − 1

p
ϕ(y) +

1
ℓ∫

ε
2

− ε
2

dy′ e−βpa(y−y′)

× [∂pϕ(y′) − ϕ(y′)βa(y − y′)]. (A3)

This is an inhomogeneous linear integral equation (of the second
kind) for ∂pϕ(y).

APPENDIX B: PROOF OF EQ. (3.10)

Since limx→∞gij(x) = 1, the small-s behavior of
G̃i j(s) must have the form G̃i j(s) = s−1

+ Ci j + 𝒪(s).
In the case of P̃(1)i j (s), Eq. (3.7a) implies that P̃(1)i j (s)
=
√

x j/xiAiA j[Ωi j(βp) +Ω′i j(βp)s + 𝒪(s2
)], where Ω′i j(s)

≡ ∂Ωi j(s)/∂s. Insertion of these expansions into Eq. (3.8) yields

1
λ

√
x j

xi
AiA jΩi j(βp) = x jCi j −∑

k

√
x jxkA jAk

× [CikΩk j(βp) +Ω′k j(βp)], (B1)

where use has been made of Eq. (3.5). Summing over j in both sides,
and applying again Eq. (3.5), we finally have

1
λ
= −∑

j,k

√
x jxkA jAkΩ′k j(βp). (B2)

Since Ω′k j(βp) = β−1∂pΩk j(βp), Eq. (B2) becomes Eq. (3.10).

APPENDIX C: PROOF OF EQS. (3.22)–(3.24)

Setting
√

xi = ϕi and Ai = A in Eq. (3.7a), and inserting the
result in Eq. (3.7b), one finds

P̃(n)i j (s) =
ϕ j

ϕi
A2nQ̃(n)i j (s), Q̃ (n)(s) = [Ω(s + βp)]n, (C1)

where the elements of the matrix Ω(s) are Ωij(s). More explicitly,
the elements of the matrix Q̃ (n)(s) are

Q̃(n)i j (s) =∑
k1

∑
k2

⋅ ⋅ ⋅∑
kn−1

Ωik1(s + βp)Ωk1k2(s + βp) ⋅ ⋅ ⋅Ωkn−1 j(s + βp)

=∑
k1

∑
k2

⋅ ⋅ ⋅∑
kn−1

R̃ (n)(s; aik1 + ak1k2 + ⋅ ⋅ ⋅ + akn−1 j), (C2)

where

R̃ (n)(s; α) ≡
e−(s+βp)α

(s + βp)n . (C3)

The inverse Laplace transform of R̃ (n)(s; α) is given by Eq. (3.24).
Thus, Eqs. (3.22) and (3.23) are readily obtained from Eqs. (C1) and
(C2), respectively.
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