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Mpemba meets Newton: Exploring the Mpemba and Kovacs effects in the time-delayed cooling law
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Despite extensive research, the fundamental physical mechanisms underlying the Mpemba effect, a phe-
nomenon where a substance cools faster after initially being heated, remain elusive. Although historically linked
with water, the Mpemba effect manifests across diverse systems, sparking heightened interest in Mpemba-like
phenomena. Concurrently, the Kovacs effect, a memory phenomenon observed in materials such as polymers,
involves rapid quenching and subsequent temperature changes, resulting in nonmonotonic relaxation behavior.
This paper probes the intricacies of the Mpemba and Kovacs effects within the framework of the time-delayed
Newton’s law of cooling, recognized as a simplistic yet effective phenomenological model accommodating mem-
ory phenomena. This law allows for a nuanced comprehension of temperature variations, introducing a delay time
(τ ) and incorporating specific protocols for the thermal bath temperature, contingent on a defined waiting time
(tw). Remarkably, the relevant parameter space is two-dimensional (τ and tw), with bath temperatures exerting
no influence on the presence or absence of the Mpemba effect or on the relative strength of the Kovacs effect.
The findings enhance our understanding of these memory phenomena, providing valuable insights applicable to
researchers across diverse fields, ranging from physics to materials science.
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I. INTRODUCTION

As a teenager, Mpemba (1950–2023) accidentally discov-
ered the paradoxical effect that now bears his name. In the first
part of his renowned paper [1] with Osborne (1932–2014),
the 19-year-old Mpemba candidly recounted the story. In the
second part of the paper, Osborne wrote,

“The headmaster of Mkwawa High School invited me to speak
to the students on ‘Physics and national development’. [...]
One student raised a laugh from his colleagues with a question
I remember as ‘If you take two beakers with equal volumes of
water, one at 35 ◦C and the other at 100 ◦C, and put them into a
refrigerator, the one that started at 100 ◦C freezes first. Why?’.
It seemed an unlikely happening, but the student insisted that
he was sure of the facts. I confess that I thought he was
mistaken but fortunately remembered the need to encourage
students to develop questioning and critical attitudes. No ques-
tion should be ridiculed. In this case there was an added reason
for caution, for everyday events are seldom as simple as they
seem and it is dangerous to pass a superficial judgment on
what can and cannot be. I said that the facts as they were
given surprised me because they appeared to contradict the
physics I knew. But I added that it was possible that the rate of
cooling might be affected by some factor I had not considered.
I promised I would put the claim to the test of experiment and
encouraged my questioner to repeat the experiment himself.”

In that second part of Ref. [1], Osborne reported some
experimental results confirming the effect, although he con-
ceded that “The experiments attempted were relatively crude
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and several factors could influence cooling rates. More so-
phisticated experiments are needed to provide a more certain
answer to the question.”

The above paragraph succinctly states what the Mpemba
effect is about—the possibility that hot water freezes faster
than cold water. But, more importantly, Osborne emphasizes
the importance of fostering a spirit of curiosity and open-
mindedness in scientific inquiry. When confronted with a
seemingly counterintuitive claim by a student, Osborne re-
sisted the temptation to dismiss or ridicule the idea outright.
Instead, he acknowledged the potential limitations of his
own understanding and expressed a willingness to explore
the claim through experimentation. This approach reflects a
commitment to the principle that scientific inquiry should
be driven by evidence and an openness to reevaluate estab-
lished beliefs in the face of new and unexpected observations.
Osborne’s response underscores the idea that questioning as-
sumptions and testing unconventional ideas can lead to a
deeper understanding of the complexities inherent in scientific
phenomena.

After 1969, attention to the Mpemba effect was mainly
confined to popular science and education journals [2–23]. It
was also revealed that the phenomenon had already been noted
by classical philosophers and scholars, including Aristotle
[24], Roger Bacon [25], Francis Bacon [26], and Descartes
[27]. Interestingly, in the same year that Mpemba and Osborne
published their paper, Kell independently published a brief
note that began with the following statement: “It is widely
believed, at least in Canada, that hot water will freeze more
quickly than cold water.”

A unanimous agreement remains elusive regarding the fun-
damental physical mechanisms responsible for the Mpemba
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FIG. 1. Number of publications and citations in the period 2006–
2023 obtained from the Web of Science [98] with the search query
“topic=(Mpemba effect).” Note the vertical logarithmic scale.

effect. Various factors, including water evaporation [2,3,7,28],
natural convection [4,23,29], disparities in the gas compo-
sition of water [9,16,30], the effects of supercooling, either
independently [12,31,32] or in combination with other factors
[33–36], lack of energy equipartition [37], or the influence
of rough walls in creating nucleation sites [38], have been
proposed as potential contributors to the Mpemba effect. Con-
versely, doubts have been raised about the very existence of
the Mpemba effect in water [38–40].

In addition to its historical association with water, the
Mpemba effect exhibits similar phenomena reported across
a diverse range of systems, including carbon nanotube res-
onators [41], clathrate hydrates [42], Markovian models
[43–48], granular gases [49–59], molecular gases under drag
[59–62], spin glasses [63], non-Markovian mean-field sys-
tems [64,65], inertial suspensions [66,67], colloidal systems
[45,68–71], Ising-like models [48,72–76], ideal gases [77],
phase transitions [78], active matter [79], the autonomous
information engine [80], ionic liquids [81], polymers [82,83],
Langevin systems [84,85], and plasmas [86]. Particularly
noteworthy is the recent surge in studies examining the ef-
fect in quantum systems [87–97]. The escalating interest in
Mpemba-like effects is illustrated by Fig. 1.

To elucidate the counterintuitive nature of the Mpemba
effect, consider the following excerpt from Osborne [8]:

“Why is the effect unexpected? We suppose the rate of heat
transfer to depend on the temperature difference between the
cooling system and its environment, and not to depend on
its previous history. This is represented in Fig. 2, a sketch
of supposed cooling curves showing temperature against time
for two similar systems placed in the same environment at the
same time but at different initial temperatures. The hot water
takes a finite time to cool down to the starting temperature of
the cooler water. We expect this system then to be identical to
the cooler system when it was first placed in the freezer, that
is for the hot starter and the cooler system to be identical at
the points represented by B and D on the sketch. Subsequent

FIG. 2. Sketch of supposed cooling curves for two similar sys-
tems in the same environment, adapted from Ref. [8].

cooling should also be identical, so that the cooling curve BC
should be similar to the cooling curve DE.

But the subsequent cooling is not identical (the overtaking
effect would be represented by the curve BC cutting the curve
DE). Hence the states of the two systems when represented by
the points B and D are not identical. Any explanation for the
overtaking effect should enable us to describe the difference
between the two systems as represented by the points B and D
in such a way that we would expect the system starting hotter
to cool faster even below this temperature. What differences
might there be?”

Osborne’s depiction in his first “common-sense” paragraph
is aptly illustrated by Newton’s law of cooling [99–101],

Ṫ (t ) = −λ[T (t ) − Tb], (1)

where Tb is the temperature of the thermal bath (or environ-
ment) and λ is the coefficient of heat transfer (or cooling rate),
here assumed to be a (positive) constant. Its value depends on
various factors including the material properties, the object
geometry, the surface conditions, and the surrounding envi-
ronment. For instance, in the case of water, λ can typically
range from about 10−3 s to 10−2 s depending on the tempera-
ture difference and the volume of water [102].

The general solution to Eq. (1) is simply

T (t ) = Tb + (T0 − Tb)e−λt , (2)

with T0 = T (0) being the initial temperature. On the other
hand, if the Mpemba effect exists in a certain material,
memory dynamics must be taken into account, so that “the
overtaking effect should enable us to describe the difference
between the two systems as represented by the points B and
D [see Fig. 2] in such a way that we would expect the system
starting hotter to cool faster even below this temperature.” The
simplest way to incorporate those memory phenomena into
Newton’s law involves postulating that the temperature’s rate
of change at time t depends on the temperature at a preceding
time t − τ [103], i.e.,

Ṫ (t ) = −λ[T (t − τ ) − Tb(t )], (3)

where τ > 0 is the delay time and we have considered the
possibility that the bath temperature Tb(t ) changes with time.
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Equation (3) can be considered as the simplest phenomeno-
logical equation incorporating memory effects.

Additionally to the Mpemba effect, another fascinating
memory phenomenon is the Kovacs effect, originally reported
in polymer materials [104,105] and also observed in other
complex systems [57,59,106–115]. In the Kovacs effect, a
sample, initially in equilibrium at a high temperature T −

b ,
undergoes rapid quenching to a lower temperature T +

b . The
sample evolves for a specified waiting time tw, but subse-
quently the bath temperature is abruptly raised to T (tw).
Beyond t = tw, the sample temperature exhibits a dynamic
behavior: it initially increases, reaches a maximum, and then
returns to equilibrium for a longer period. The effect thus
highlights the nontrivial impact of the material’s thermal past
on its present and future behavior.

The aim of this paper is to analyze the Mpemba and Kovacs
effects as described by the time-delayed cooling law, given by
Eq. (3). Its general solution is studied in Sec. II, with special
attention to single and double quenches. It is seen that in the
former case, the solution has a form similar to Eq. (2), except
that the role of the exponential e−λt is played by a function
E (t ), here called the τ -exp function. This function is positive
definite only if the delay time is smaller than a threshold value,
τmax = λ−1e−1. Next, in Sec. III, the solution is applied to the
study of the Mpemba effect under simple protocols involving
a hot bath at temperature T h

b and a cold bath at temperature T c
b .

Sample A is thermalized at temperature T h
b and then quenched

to temperature T c
b . Conversely, sample B is thermalized at

T c
b , quenched to T h

b , and, after a waiting time tw, quenched
again to the cold temperature T c

b . For simplicity, the quench
of sample A and the first quench of sample B occur at the
same time. After this preparation protocol, both samples are
in the same environment (bath T c

b ) but start with different
temperatures. It is proved in Sec. III that (i) the existence or
absence of the Mpemba effect is independent of the values of
T h

b and T c
b , (ii) the Mpemba effect exists if and only if the

two control parameters (τ and tw) lie inside a certain narrow
region, and (iii) the direct (cooling process) and the inverse
(heating process) effects are fully equivalent. Section IV is de-
voted to the Kovacs effect and the function characterizing the
strength of the Kovacs hump is identified. Interestingly, this
hump points downward in the cooling process, thus signaling
the presence of an anomalous Kovacs effect [108,114], which
becomes relatively stronger as both the delay time τ and the
waiting time tw increase. Finally, the paper is closed in Sec. V
with a summary and conclusion.

II. TIME-DELAYED NEWTON’S COOLING LAW

A. Expansion in powers of the delay time

Before proceeding with the complete delayed equation,
given by Eq. (3), let us consider τ as a small parameter and
expand T (t − τ ) in a series of powers of τ :

T (t − τ ) =
∞∑

k=0

dkT (t )

dtk

(−τ )k

k!
. (4)

Truncation at the level k = 0 yields the original law, given
by Eq. (1). Interestingly, truncation at k = 1 just pro-
duces the same law, except for a renormalized cooling rate

λ′ ≡ λ/(1 − λτ ). However, the equation resulting from trun-
cation at k = 2 yields

μT̈ (t ) + Ṫ (t ) = −λ′[T (t ) − Tb(t )], μ ≡ λ′τ 2

2
. (5)

The presence of the term μT̈ (t ) suggests a more complex
heat transfer process compared to the standard Newton’s cool-
ing equation. It represents a sort of “thermal inertia” of the
material, meaning that it might resist changes in temperature
more than as described by Newton’s law. In fact, by assuming
Tb = const, the general solution to Eq. (5) is

T (t ) = Tb + T0 − Tb

λ′+ − λ′−
(λ′

+e−λ′
−t − λ′

−e−λ′
+t )

+ Ṫ0

λ′+ − λ′−
(e−λ′

−t − e−λ′
+t ), (6)

where

λ′
± ≡ 1 ± √

1 − 4λ′μ
2μ

, Ṫ0 ≡ Ṫ (0). (7)

Thus, the temperature evolution is not solely determined by
the initial temperature T0, as is the case with Eq. (2), but
also by the initial slope Ṫ0, thereby violating the simplistic
depiction outlined in Fig. 2 and allowing memory effects to
manifest. It is worthwhile noting that the second-order differ-
ential equation, given by Eq. (5), with Tb = const is equivalent
to the following coupled set of two first-order differential
equations:

Ṫ (t ) = −λ′[T (t ) − Tb] + q(t ), (8a)

q̇(t ) = −λ′2[T (t ) − Tb] − (μ−1 − λ′)q(t ). (8b)

This two-variable scheme resembles the approach used to
investigate the Mpemba and Kovacs effects in granular and
molecular gases [49–51,53,55,56,58,60,62,66].

Certainly, truncating Eq. (4) at higher orders leads to dif-
ferential equations of increasing order, thereby amplifying the
influence of memory effects.

B. General solution in Laplace space

The general solution of Eq. (3) depends not only on the
initial temperature T0, but it is actually a functional of the pre-
vious history T (t ) for −τ < t < 0. Given the linear character
of Eq. (3), it is convenient to define the Laplace transforms as

T̃ (s) =
∫ ∞

0
dt e−st T (t ), T̃b(s) =

∫ ∞

0
dt e−st Tb(t ). (9)

Thus, Eq. (3) becomes

sT̃ (s) − T0 = T̃b(s) − e−sτ T̃ (s) − H̃ (s), (10)

where

H̃ (s) =
∫ 0

−τ

dt e−s(t+τ )T (t ), (11)

and, for simplicity, we have taken λ−1 = 1 as the unit of time.
Thus, the general solution in Laplace space is

T̃ (s) = 1

s + e−sτ
[T0 + T̃b(s) − H̃ (s)]. (12)
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C. Basic solution. Single quench

Let us first consider the simple bath temperature history,

Tb(t ) =
{

T −
b , t < 0

T +
b , t > 0.

(13)

The system is assumed to have equilibrated at T −
b for

t < 0, that is, T (t � 0) = T −
b . Then, at t = 0, the sys-

tem is quenched to the bath temperature T +
b , so that

limt→∞ T (t ) = T +
b .

Our aim is to describe the transient stage from T (t � 0) =
T −

b to T (∞) = T +
b . In Laplace space, this is described by

Eq. (12) with T0 = T −
b , T̃b(s) = T +

b s−1, and

H̃ (s) = T −
b s−1(1 − e−sτ ). (14)

Thus, Eq. (12) reduces to

T̃ (s) = T +
b s−1 + (T −

b − T +
b )Ẽ (s), (15)

where

Ẽ (s) = s−1 − s−2

1 + s−1e−sτ
. (16)

Note that Ẽ (s) is independent of both T −
b and T +

b . In real time,
one has

T (t ) =
{

T −
b , t � 0

T +
b + (T −

b − T +
b )E (t ), t � 0,

(17)

with E (t ) being the inverse Laplace transform of Ẽ (s). In the
limit of no delay (τ → 0), Ẽ (s) → (1 + s)−1, so that E (t ) →
e−t and Eq. (2) is recovered. Because of that, henceforth
the quasi-exponential function E (t ) will be referred to as the
τ -exp function.

In general, if τ > 0, the function E (t ) characterizes the
transient of temperature from T −

b to T +
b . To obtain E (t ), let

us expand (1 + s−1e−sτ )−1 = ∑∞
n=0(−s)−ne−nsτ and rewrite

Eq. (16) as

Ẽ (s) = s−1 −
∞∑

n=0

(−s)−(n+2)e−nsτ . (18)

Therefore,

E (t ) =1+
∞∑

n=0

(nτ − t )n+1

(n+1)!
�(t − nτ )

= 1 +
�t/τ	∑
n=0

(nτ − t )n+1

(n + 1)!
, t � 0, (19)

where �(·) is the Heaviside step function and �·	 denotes the
floor function. More explicitly,

E (t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − t, 0 � t � τ

1 − t + (τ−t )2

2 , τ � t � 2τ

1 − t + (τ−t )2

2 + (2τ−t )3

3! , 2τ � t � 3τ

· · · , · · · .

(20)

Note that

Ė (t ) = −
{

1, 0 � t � τ

E (t − τ ), t � τ.
(21)

FIG. 3. Plot of the τ -exp function E (t ) with, from top to bottom,
τ = 0, 0.1, 0.2, 0.3, and e−1 
 0.368. Inset: The graph in semiloga-
rithmic scale.

Figure 3 shows the τ -exp function E (t ) for several values of
τ in normal (main panel) and semilogarithmic (inset) scales.
As we can see, the larger the delay time τ , the faster the
decay of E (t ).

The long-time behavior of E (t ) is governed by the dom-
inant pole of Ẽ (s), that is, the root of the transcendental
equation s + e−sτ = 0 with the least negative real part. It can
be shown that such a root is real (s = −κ with κ < τ−1)
provided that τ < τmax = e−1 
 0.368 (at which case κ =
e 
 2.718). In that domain, κ is the real root of κ = eκτ ,
i.e., κ = −τ−1W0(−τ ), where W0(z) is the principal branch
of the Lambert function. If, on the other hand, τ > τmax, then
the dominant root is a pair of complex conjugates, implying
an oscillatory behavior with a negative absolute minimum
Emin = E (tmin) < 0 at a certain time t = tmin. The existence
of this minimum compromises the positive-definiteness of the
solution, given by Eq. (17). Suppose that τ > τmax = e−1 and
T −

b /T +
b > 1 + |Emin|−1. Then, T (tmin)/T +

b = 1 − (T −
b /T +

b −
1)|Emin| < 0. Therefore, the time-delayed Newton’s cooling
law is physically meaningful only if τ < τmax = e−1. This is
the maximum value of τ considered in Fig. 3.

The amplitude AE of the asymptotic decay of E (t ) is given
by the residue of Ẽ (s) at the pole s = −κ . Thus,

E (t � 1) ≈ AEe−κt , AE = κ−1

1 − τκ
. (22)

The damping coefficient κ and the amplitude AE are displayed
as functions of the delay time τ in Fig. 4. The damping
coefficient increases from κ = 1 at τ = 0 to κ = e 
 2.718
at the maximum delay time τmax = e−1 
 0.368. As for the
amplitude, it is practically AE 
 1 until τ 
 0.3, but then it
diverges as τ approaches its maximum value.

Suppose two samples (A and B) subjected to the quench
described by Eq. (13), except that the prior bath tempera-
tures are different, say T −

b,A > T −
b,B. In that case, according to

Eq. (17),

TA(t ) − TB(t ) =
{

T −
b,A − T −

b,B, t � 0

(T −
b,A − T −

b,B)E (t ), t � 0.
(23)
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FIG. 4. Plot of the damping coefficient κ and the amplitude AE
as functions of τ . The circle represents the damping coefficient κ =
e 
 2.718 at the maximum delay time, τmax = e−1 
 0.368.

Since E (t ) > 0 if τ < τmax, Eq. (23) proves that no Mpemba
effect is possible with the single-quench protocol.

D. A more complex solution. Double quench

Now, instead of taking the single-quench protocol, given
by Eq. (13), let us assume that the material is kept at a prior
temperature T −

b for times t < −tw, next it is quenched to
a middle bath temperature T −∗

b for −tw < t < 0, and then
(after a waiting time tw) it is quenched again to a final bath
temperature T +

b . This double-quench protocol is

Tb(t ) =

⎧⎪⎪⎨⎪⎪⎩
T −

b , t < −tw

T −∗
b , −tw < t < 0

T +
b , t > 0.

(24)

A sketch of this protocol is shown in Fig. 5(a). It can be
expressed as the sum of the two single-quench protocols rep-
resented in Figs. 5(b) and 5(c), respectively. Of course, the
decomposition is still valid if an arbitrary constant is added
and subtracted to each single-quench protocol, respectively.
In general, an nfold-quench protocol is equivalent to the sum
of n single-quench protocols.

Taking into account the linear character of Eq. (3), the so-
lution associated with the bath protocol given by Eq. (24) can
be obtained as the superposition of the solutions associated
with the protocols in Figs. 5(b) and 5(c). Therefore,

T (t ) = T1(t ) + T2(t ), (25)

where, by application of Eq. (17),

T1(t ) =
{

T −
b − T −∗

b + T +
b /2, t � −tw

T +
b /2 + (T −

b − T −∗
b )E (t + tw), t � −tw.

(26a)

As a consequence, the solution corresponding to the double
quench is

T (t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T −

b , t � −tw

T −∗
b + (T −

b − T −∗
b )E (t + tw), −tw � t � 0

T +
b + (T −∗

b − T +
b )E (t )

+(T −
b − T −∗

b )E (t + tw), t � 0.

(27)

In particular, at t = 0,

T0 = T −∗
b + (T −

b − T −∗
b )E (tw). (28)

III. MPEMBA EFFECT

To explore whether the Mpemba effect can be observed
from the solutions of the time-delayed Newton’s cooling
equation, given by Eq. (3), we consider two thermal reser-
voirs, i.e., a hot one (at temperature T h

b ) and a cold one
(at temperature T c

b ). Two simple protocols (A and B) are
proposed for the Mpemba effect, both direct and inverse, as
illustrated in Fig. 6. Let us first describe the protocols for
the direct effect; see Fig. 6(a). According to protocol A, one
sample (A) is first equilibrated at the hot bath temperature T h

b
and then it is suddenly quenched to the cold bath temperature
T c

b at time t = −tw. The other sample (B) is first equilibrated
at the cold bath temperature T c

b , then quenched to the hot bath
temperature T h

b at t = −tw, and finally quenched to the cold
bath at t = 0. Thus, sample A experiences a single quench
(T h

b → T c
b ), while sample B is subjected to a double quench

(T c
b → T h

b → T c
b ). As seen from Fig. 6(b), protocols A and

B for the inverse Mpemba effect are the same, except for the
exchange T h

b ↔ T c
b (i.e., A: T c

b → T h
b ; B: T h

b → T c
b → T h

b ).

FIG. 5. Schematic representation of the decomposition of the (a) double-quench protocol into the sum of the (b),(c) single-quench
protocols.
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FIG. 6. Schematic representation of the protocols A and B for
(a) the direct Mpemba effect and (b) the inverse Mpemba effect.

For the protocols depicted in Fig. 6(a), the temporal evolu-
tion of sample A is given by Eq. (27) with T −

b = T −∗
b = T h

b
and T +

b = T c
b . Analogously, in the case of sample B, T −

b =
T +

b = T c
b and T −∗

b = T h
b . Therefore,

TA(t ) =
{

T h
b , t � −tw

T c
b + (

T h
b − T c

b

)
E (t + tw), t � −tw,

(29a)

TB(t ) =

⎧⎪⎨⎪⎩
T c

b , t � −tw

T h
b − (

T h
b − T c

b

)
E (t + tw), −tw � t � 0

T c
b + (

T h
b − T c

b

)
[E (t ) − E (t + tw)], t � 0.

(29b)

As an example, Fig. 7 shows the time evolution of TA(t )
and TB(t ) for a hot bath at T h

b = 2 (in arbitrary units), a cold
bath at T c

b = 1, a delay time τ = 0.36, and three waiting times
(tw = 0.2, 0.4, 0.6). As we can see, if the waiting time is too
short (for instance, tw = 0.2), TB(0) is so far below TA(0)
that no Mpemba crossing is possible. On the other hand, if
the waiting time is too long (for instance, tw = 0.6), a cross-
ing takes place during the preparation stage, that is, before
sample B is quenched to T c

b at t = 0, so that TB(0) > TA(0)
and again no Mpemba effect occurs. However, if the wait-
ing time is within the right range (for instance, tw = 0.4),
one has TA(0) > TB(0) but sample A cools down sufficiently
faster than sample B as to eventually overtake it at a certain
crossover time t× (direct Mpemba effect).

Let us now investigate the necessary and sufficient condi-
tions for the existence of the Mpemba effect. From Eqs. (29),
we have, for t � 0,

TA(t ) − TB(t ) = (
T h

b − T c
b

)
�(t ), t � 0, (30)

where the difference function is

�(t ) = 2E (t + tw) − E (t ). (31)

For the protocols shown in Fig. 6(b), one would have
TA(t ) − TB(t ) = −(T h

b − T c
b )�(t ). Thus, our first observation

is that the existence or absence of the Mpemba effect (both
direct and inverse) is independent of the bath temperatures T h

b
and T c

b , depending only on the delay time τ and the waiting
time tw through the difference function �(t ). Figure 8 shows
the function �(t ) for the same values of τ and tw as in Fig. 7.

FIG. 7. Plot of TA(t ) and TB(t ), including their history for t < 0.
Here, T h

b = 2, T c
b = 1, and τ = 0.36, with (a) tw = 0.2, (b) tw = 0.4,

and (c) tw = 0.6. In each panel, the dashed line depicts TB(t ) if the
sample were not quenched to T c

b at t = 0. Note that a Mpemba effect
exists in the case of (b) (tw = 0.4).

FIG. 8. Plot of the difference function �(t ) for τ = 0.36 and
tw = 0.2 (solid curve), 0.4 (dash-dotted curve), and 0.6 (dashed
curve). The circle in the curve corresponding to tw = 0.4 denotes the
corresponding crossover time t×.
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FIG. 9. Plot of the amplitude A� as a function of
tw/tmax

w for τ = 0 (solid curve), 0.30 (dash-dotted curve), and
0.36 (dashed curve). The circles in the curves corresponding to
τ = 0.30 and 0.36 denote the respective values of tmin

w /tmax
w .

To prevent a situation similar to that illustrated in Fig. 7(c),
one must ensure that �(0) > 0, so that TA(0) − TB(0) > 0 in
the direct effect and TA(0) − TB(0) < 0 in the inverse effect.
This implies that, for a given delay time τ , the maximum value
tmax
w of the waiting time tw is the solution of E (tw) = 1/2. This

maximum value ranges from tmax
w = ln 2 
 0.693 for τ = 0 to

tmax
w 
 0.510 for τ = e−1.

Next, once tw < tmax
w and, therefore, �(t ) > 0, the oc-

currence of a Mpemba effect requires that �(t×) = 0 at a
certain crossover time t×, so that it asymptotically relaxes
to �(t ) → 0 from below, as exemplified by the curve with
tw = 0.4 in Fig. 8. After the crossover time t×, −�(t ) presents
a maximum at a time tM given by the solution to �̇(t ) = 0.
According to Eqs. (21) and (31),

�̇(t ) = −

⎧⎪⎨⎪⎩
1, 0 � t � max{0, τ − tw}
2E (t + tw − τ ) − 1, max{0, τ − tw} � t � τ

�(t − τ ), t � τ,

(32)

implying that tM = t× + τ .
From Eq. (22), we see that the asymptotic long-time be-

havior of �(t ) is

�(t � 1) ≈ A�e−κt , A� = κ−1

1 − τκ
(2e−κtw − 1). (33)

The amplitude A� is plotted in Fig. 9 as a function of tw/tmax
w

for τ = 0, 0.3, and 0.36. Except in the undelayed case (τ = 0),
we can see that A� becomes negative if tw is larger than a
threshold value tmin

w . Therefore, given a delay time τ , the mini-
mum waiting time tmin

w is determined by the condition A� = 0,
that is, tmin

w = κ−1 ln 2. If tmin
w < tw < tmax

w , the crossover time
t× is characterized by the condition �(t×) = 0. It is plotted in
Fig. 10 as a function of tw/tmin

w for τ = 0.25, 0.3, and 0.36. As
tw increases from tmin

w to tmax
w , the crossover time t× decreases

monotonically, vanishing at tw = tmax
w . Near tw = tmin

w , t× di-
verges logarithmically as t× ∼ − log10(tw/tmin

w − 1) (see inset
of Fig. 10).

In summary, the time-delayed Newton’s cooling equa-
tion exhibits a Mpemba effect (either direct or inverse) under

FIG. 10. Plot of the crossover time t× as a function of tw/tmin
w for

τ = 0.25 (solid curve), 0.30 (dash-dotted curve), and 0.36 (dashed
curve). The circles denote the respective values of tmax

w /tmin
w . Inset: t×

vs log10(tw/tmin
w − 1).

the protocols depicted in Fig. 6 if, and only if, the two control
parameters (τ and tw) are such that the difference function
�(t ) fulfills two conditions: (i) �(0) > 0 (implying tw <

tmax
w ) and (ii) �(t ) < 0 in the long-time regime (implying

tw > tmin
w ). The phase space for the occurrence of the Mpemba

effect on the plane tw vs τ is shown in Fig. 11. Within the
shaded Mpemba region, one can say that, given a delay time
τ , the magnitude of the effect is maximal if the waiting time
tw is such that the maximum positive value and the minimum
negative value of �(t ) are the same (except for the sign),
i.e., �(0) = |�(tM)|. That line of maximal Mpemba effect is
also included in Fig. 11. To contextualize the characteristic
values of the control parameters, note that if λ = 10−3 s−1,
then τ = 0.36 and tw = 0.42 correspond to 6 min and 7 min,
respectively.

Some illustrations of the Mpemba effect (both direct and
inverse) are displayed in Fig. 12. The chosen values of τ

and tw are close to the locus of maximal effect. We observe

FIG. 11. Phase space for the Mpemba effect. The lower and
upper curves represent tmin

w and tmax
w , respectively, as functions of the

delay time τ . If tw < tmin
w , then �(t ) > 0 for t � 0. If, on the other

hand, tw > tmax
w , then �(t ) < 0 for t � 0. Therefore, the Mpemba

effect occurs if and only if tmin
w < tw < tmax

w (shaded region). The
dashed line represents the locus defined by the condition �(0) =
|�(tM)|.
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FIG. 12. Plot of TA(t ) and TB(t ) for t > 0. (a),(d) (τ, tw) = (0.25, 0.52), (b),(e) (τ, tw) = (0.30, 0.49), and (c),(f) (τ, tw) = (0.36, 0.47).
(a)–(c) The direct Mpemba effect (with T c

b = 1 and T h
b = 2); (d)–(f) the inverse Mpemba effect (with T c

b = 0.5 and T h
b = 1).

that as expected, the Mpemba effect tends to become more
pronounced as the delay time τ increases.

IV. KOVACS EFFECT

In the Kovacs effect, the protocol is similar to that of sam-
ple B in the Mpemba effect (see Fig. 6), except for a couple of
points, as summarized in Fig. 13. First, it is convenient to shift
time by an amount tw, so that the first quench occurs at t = 0
and the second one at a waiting time t = tw. Second, the final
bath temperature is made to coincide with the instantaneous
system’s temperature at t = tw, i.e., T +

b = T (tw) ≡ T w
b . Thus,

according to Eq. (27), the temperature in the direct Kovacs
effect is

T (t ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T h

b , t � 0

T c
b + (

T h
b − T c

b

)
E (t ), 0 � t � tw

T w
b + (

T c
b − T w

b

)
E (t − tw)

+(
T h

b − T c
b

)
E (t ), t � tw,

(34)

FIG. 13. Schematic representation of the protocols for (a) the
direct Kovacs effect and (b) the inverse Kovacs effect.

with

T w
b = T c

b + (
T h

b − T c
b

)
E (tw). (35)

In the inverse effect, one must set T h
b ↔ T c

b .
Figure 14 illustrates the direct and inverse effects for

τ = 0.36. As can be seen, after the quench at t = tw,
the temperature presents a local minimum (maximum) in
the direct or cooling (inverse or heating) case. In the di-
rect Kovacs effect, the temperature slope experiences a
discontinuity from Ṫ (t−

w ) = −[T (tw − τ ) − T c
b ] to Ṫ (t+

w ) =
−[T (tw − τ ) − T w

b ], but the sign is negative at both sides
of t = tw. Consequently, the Kovacs hump appears be-
low T = T w

b , thus qualifying as an anomalous Kovacs
effect [108,114]. An analogous conclusion holds in the
inverse effect, where Ṫ (t−

w ) = T h
b − T (tw − τ ) > Ṫ (t+

w ) =
T w

b − T (tw − τ ) > 0 and the hump appears above T = T w
b .

FIG. 14. Kovacs effect for τ = 0.36 and tw = 0.1, 0.2, ..., 1.
(a) The direct effect (with T h

b = 2 and T c
b = 1); (b) the inverse effect

(with T c
b = 0.5 and T h

b = 1). In each panel, the dashed line represents
T (t ) if the sample were not quenched to T (tw) at t = tw.
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FIG. 15. (a) Plot of the Kovacs hump function K (t ) for τ = 0.36
and tw = 0.1, 0.2, ..., 1. (b) Plot of the maximum value Kmax of K (t )
as a function of tw for, from bottom to top, τ = 0.25, 0.3, and 0.36.
The dashed lines represent the asymptotic values, 1 − τ − κ−1.

Let us characterize the Kovacs hump in more detail. From
Eqs. (34) and (35), one finds that the temperature in the do-
main t � tw is

T (t ) − T w
b = −(

T w
b − T c

b

)
K (t − tw) (direct effect), (36a)

T (t ) − T w
b = (

T h
b − T w

b

)
K (t − tw) (inverse effect), (36b)

where

K (t ) = E (t ) − E (t + tw)

E (tw)
(37)

is a semidefinite positive function, henceforth named the
Kovacs hump function, which characterizes the relative
strength of the Kovacs effect. It vanishes both at t = 0 and
in the limit t → ∞. Note that

K̇ (t ) = −

⎧⎪⎪⎨⎪⎪⎩
1 − 1

E (tw ) , 0 � t � max{0, τ − tw}
1 − E (t+tw−τ )

E (tw ) , max{0, τ − tw} � t � τ

K (t − τ ), t � τ.

(38)

Therefore, K̇ (τ ) = 0, implying that K (t ) has a maximum
value Kmax = 1 − τ − E (τ + tw)/E (tw) at a time tK = τ . At
a given delay time τ , Kmax increases monotonically with in-
creasing waiting time tw, reaching a finite value in the limit
tw → ∞. From Eq. (22), we have limtw→∞ Kmax = 1 − τ −
e−κτ = 1 − τ − κ−1.

Figure 15(a) shows the Kovacs hump function K (t ) for a
delay time τ = 0.36 and several values of the waiting time.
The maximum value Kmax is plotted in Fig. 15(b) as a function
of tw for several values of τ . As expected, the relative strength
of the Kovacs effect, as measured by Kmax, increases with
increasing τ and tw.

V. CONCLUSIONS

The time-delayed Newton’s cooling law stands out as a
seemingly straightforward yet powerful phenomenological
model for grasping the intricacies of thermal memory dy-
namics. This paper has focused on unraveling its solution
and applying it to two paradigmatic memory phenomena: the

TABLE I. Summary of the main quantities and results.

Quantity Symbol Expression
General

Delay time τ Free parameter
Maximum delay time τmax e−1 
 0.368

τ -exp function E (t ) 1 +
�t/τ	∑
n=0

(nτ − t )n+1

(n + 1)!

Asymptotic decay of E (t ) E (t ) ≈ AEe−κt

Damping coefficient κ −τ−1W0(−τ )

Amplitude AE
κ−1

1 − τκ
Waiting time tw Free parameter

Mpemba effect

Difference function �(t ) 2E (t + tw) − E (t )
Minimum waiting time tmin

w κ−1 ln 2
Maximum waiting time tmax

w Root of E (tw) = 1/2
Crossover time t× Root of �(t×) = 0
Time when −�(t ) is maximum tM t× + τ

Kovacs effect

Kovacs hump function K (t ) E (t ) − E (t + tw)

E (tw)
Time when K (t ) is maximum tK τ

Maximum value of K (t ) Kmax 1 − τ − E (τ + tw)

E (tw)

Mpemba and Kovacs effects. The main quantities and results
of this work are summarized in Table I.

A pivotal role is played by the τ -exp function E (t ), func-
tioning as the delay-time analog of the conventional decaying
exponential. Imposing the physical condition that E (t ) > 0 for
all time sets an upper bound, τ < τmax = e−1, for the delay
time.

As the simplest protocol for the observation of the Mpemba
effect, we have assumed that samples A and B were thermal-
ized in the past (t < −tw) to the temperatures (T h

b and T c
b ) of a

hot and a cold bath, respectively. Sudden quenches at t = −tw
are then applied to both samples by exchanging their baths,
followed by a second quench to temperature T c

b at t = 0 for
sample B. Notably, the delay time enhances the cooling of
sample A while inhibiting that of sample B, leading to the
Mpemba effect under specific conditions (tmin

w < tw < tmax
w ).

The effect is independent of the bath temperatures (T h
b and T c

b )
and is determined by a difference function �(t ) parameterized
by the control parameters τ and tw. In the inverse Mpemba
effect, the protocol is identical, except for the exchange T h

b ↔
T c

b , so that the difference function �(t ) is the same as in the
direct case. Therefore, the time-delayed Newton’s cooling law
with a constant coefficient of heat transfer fails to capture the
known fact that heating is faster than cooling [71,116,117].

In general, the Mpemba effect necessitates the consid-
eration of at least three distinct temperatures: the initial
temperatures, TA(0) and TB(0), of both samples, and the tem-
perature T c

b of the shared final bath. The protocol outlined
in Fig. 6(a) is relatively straightforward, involving only two
bath temperatures (T h

b and T c
b ), along with a waiting time

(tw). However, more complex protocols can be devised. For

044149-9



ANDRÉS SANTOS PHYSICAL REVIEW E 109, 044149 (2024)

instance, sample B might initially equilibrate to a temperature
T −

b,B (with T c
b � T −

b,B < T h
b ) for t < −tw, then be quenched at

t = −tw to a bath at temperature T −∗
b,B (with T −

b,B < T −∗
b,B �

T h
b ), and finally quenched at t = 0 to the cold bath at tem-

perature T c
b . Moreover, the introduction of two waiting times

instead of just one could be contemplated, providing flexibil-
ity to accommodate different experimental protocols.

The exact solution of the time-delayed cooling equa-
tion under a double-quench protocol has also been exploited
to study the Kovacs effect. While the system is relaxing from
a hot bath temperature (T h

b ) to a cold bath temperature (T c
b ), it

is suddenly put in contact at a waiting time tw with a bath at
temperature T w

b = T (tw). Instead of maintaining that tempera-
ture for t > tw, the memory of a higher temperature in the past
(t < tw) makes the system momentarily keep cooling, eventu-
ally reaching a minimum temperature at time t = tw + τ , and
finally relaxing to the bath temperature T w

b from below. This
downward hump contrasts with the original one in polymer
systems [104,105], but agrees with the anomalous Kovacs ef-
fect observed in granular gases [108,114]. In analogy with the
Mpemba case, a relative strength measure, the Kovacs hump
function K (t ), remains independent of bath temperatures (T h

b
and T c

b ) and increases with τ and tw.
It must be emphasized that for simplicity, the analysis

carried out in this paper has assumed a constant coefficient
of heat transfer λ. However, factors such as dependence on
the time-dependent temperature, variation in material proper-
ties with temperature, or changing boundary layer conditions
due to natural convection might cause λ to slightly deviate
over time. While a constant λ provides a valuable first ap-
proximation, acknowledging this potential time dependence

is important for a more comprehensive understanding of the
Mpemba and Kovacs effect scenarios. Future investigations
could explore the influence of a nonconstant λ on the results
and potentially refine the model for greater accuracy.

In conclusion, the time-delayed Newton’s law of cooling
emerges as a simplistic yet effective phenomenological model
that accommodates memory effects. The exploration of the
Mpemba and Kovacs effects within its framework has un-
veiled significant insights into the intricate nature of these
memory phenomena. This paper may contribute to a compre-
hensive analysis of the Mpemba and Kovacs effects, shedding
light on their underlying mechanisms and expanding their
relevance to diverse systems. The findings presented here not
only can contribute to deepening our understanding of these
memory phenomena, but also offer valuable insights applica-
ble across various scientific domains, from physics to mate-
rials science. The exploration of time-delayed cooling laws
paves the way for future research avenues, inviting further
investigation into the fascinating interplay between thermal
history, memory effects, and complex system behaviors.

The data that support the findings of this study are available
from the author on reasonable request.
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[77] P. J. Żuk, K. Makuch, R. Hołyst, and A. Maciołek, Transient
dynamics in the outflow of energy from a system in a nonequi-
librium stationary state, Phys. Rev. E 105, 054133 (2022).

[78] R. Holtzman and O. Raz, Landau theory for the Mpemba
effect through phase transitions, Comm. Phys. 5, 280
(2022).

[79] F. J. Schwarzendahl and H. Löwen, Anomalous cooling and
overcooling of active colloids, Phys. Rev. Lett. 129, 138002
(2022).

[80] Z. Y. Cao, R. C. Bao, J. M. Zheng, and Z. H. Hou, Fast
functionalization with high performance in the autonomous
information engine, J. Phys. Chem. Lett. 14, 66 (2023).

[81] M. Chorążewski, M. Wasiak, A. V. Sychev, V. I. Korotkovskii,
and E. B. Postnikov, The curious case of 1-ethylpyridinium
triflate: Ionic liquid exhibiting the Mpemba effect, J. Solut.
Chem. 53, 80 (2024).

[82] J. H. Liu, J. Q. Li, B. Y. Liu, I. W. Hamley, and S. C. Jiang,
Mpemba effect in crystallization of polybutene-1, Soft Matter
19, 3337 (2023).

[83] T. X. Lv, J. Q. Li, L. Y. Liu, S. Y. Huang, H. F. Li, and
S. C. Jiang, Effects of molecular weight on stereocomplex and
crystallization of PLLA/PDLA blends, Polymer 283, 126259
(2023).

[84] A. Biswas, R. Rajesh, and A. Pal, Mpemba effect in
a Langevin system: Population statistics, metastability,
and other exact results, J. Chem. Phys. 159, 044120
(2023).

[85] A. Biswas and R. Rajesh, Mpemba effect for a Brownian
particle trapped in a single well potential, Phys. Rev. E 108,
024131 (2023).

[86] V. A. Dekhtyar, A. E. Dubinov, and H. N. Kolesov, Observa-
tion of a plasma analogue of the Mpemba effect, High Energy
Chem. 57, 293 (2023).

[87] F. Carollo, A. Lasanta, and I. Lesanovsky, Exponentially ac-
celerated approach to stationarity in Markovian open quantum
systems through the Mpemba effect, Phys. Rev. Lett. 127,
060401 (2021).

[88] A. K. Chatterjee, S. Takada, and H. Hayakawa, Quantum
Mpemba effect in a quantum dot with reservoirs, Phys. Rev.
Lett. 131, 080402 (2023).

[89] A. K. Chatterjee, S. Takada, and H. Hayakawa, Multiple
quantum Mpemba effect: exceptional points and oscillations,
arXiv:2311.01347.

[90] S. Murciano, F. Ares, I. Klich, and P. Calabrese, Entanglement
asymmetry and quantum Mpemba effect in the XY spin chain,
J. Stat. Mech. (2024) 013103.

[91] L. K. Joshi, J. Franke, A. Rath, F. Ares, S. Murciano, F. Kranzl,
R. Blatt, P. Zoller, B. Vermersch, P. Calabrese, C. F. Roos,
and M. K. Joshi, Observing the quantum Mpemba effect in
quantum simulations, arXiv:2402.02918 [Phys. Rev. Lett. (to
be published)].

[92] S. A. Shapira, Y. Shapira, J. Markov, G. Teza, N. Akerman,
O. Raz, and R. Ozeri, The Mpemba effect demonstrated on a
single trapped ion qubit, arXiv:2401.05830.

[93] X. Wang and J. Wang, Mpemba effects in nonequilibrium open
quantum systems, arXiv:2401.14259.

[94] F. Caceffo, S. Murciano, and V. Alba, Entangled multiplets,
asymmetry, and quantum Mpemba effect in dissipative sys-
tems, arXiv:2402.02918.

[95] D. J. Strachan, A. Purkayastha, and S. R.
Clark, Non-Markovian quantum Mpemba effect,
arXiv:2402.05756.

[96] S. Yamashika, F. Ares, and P. Calabrese, Entanglement
asymmetry and quantum Mpemba effect in two-dimensional
free-fermion systems, arXiv:2403.04486.

[97] S. Liu, H.-K. Zhang, S. Yin, and S.-X. Zhang, Symmetry
restoration and quantum Mpemba effect in symmetric random
circuits, arXiv:2403.08459.

[98] Clarivate Analytics, Web of Science https://www.
webofscience.com/ (accessed April 11, 2024).

[99] I. Newton, A scale of the degrees of heat, Philos. Trans. R.
Soc. 22, 824 (1701).

044149-12

https://doi.org/10.1103/PhysRevE.105.054140
https://doi.org/10.1073/pnas.1819803116
https://doi.org/10.1103/PhysRevE.101.052106
https://doi.org/10.1103/PhysRevE.105.014119
https://doi.org/10.1103/PhysRevE.103.032901
https://doi.org/10.1051/epjconf/202124904001
https://doi.org/10.1038/s41586-020-2560-x
https://doi.org/10.1038/s42254-021-00349-8
https://doi.org/10.1073/pnas.2118484119
https://doi.org/10.1038/s41567-023-02269-z
https://doi.org/10.1103/PhysRevE.104.044114
https://doi.org/10.1039/D1CP00879J
https://doi.org/10.1103/PhysRevLett.130.207103
https://doi.org/10.1021/acs.langmuir.3c00668
https://doi.org/10.1103/PhysRevLett.132.117102
https://doi.org/10.1103/PhysRevE.105.054133
https://doi.org/10.1038/s42005-022-01063-2
https://doi.org/10.1103/PhysRevLett.129.138002
https://doi.org/10.1021/acs.jpclett.2c03335
https://doi.org/10.1007/s10953-023-01268-1
https://doi.org/10.1039/D3SM00309D
https://doi.org/10.1016/j.polymer.2023.126259
https://doi.org/10.1063/5.0155855
https://doi.org/10.1103/PhysRevE.108.024131
https://doi.org/10.1134/S0018143923040070
https://doi.org/10.1103/PhysRevLett.127.060401
https://doi.org/10.1103/PhysRevLett.131.080402
https://arxiv.org/abs/2311.01347
https://doi.org/10.1088/1742-5468/ad17b4
https://arxiv.org/abs/2402.02918
https://arxiv.org/abs/2401.05830
https://arxiv.org/abs/2401.14259
https://arxiv.org/abs/2402.02918
https://arxiv.org/abs/2402.05756
https://arxiv.org/abs/2403.04486
https://arxiv.org/abs/2403.08459
https://www.webofscience.com/
https://doi.org/10.1098/rstl.1700.0082


MPEMBA MEETS NEWTON: EXPLORING THE MPEMBA AND … PHYSICAL REVIEW E 109, 044149 (2024)

[100] U. Besson, The history of the cooling law: When the search
for simplicity can be an obstacle, Sci. Educ. 21, 1085
(2012).

[101] M. I. Davidzon, Newton’s law of cooling and its interpretation,
Intl. J. Heat Mass Transf. 55, 5397 (2012).

[102] QuickField, Natural convection coefficient calculator, https://
quickfield.com/natural_convection.htm.

[103] N. Hatime, S. Melliani, A. E. Mfadel, D. Baleanu, and
M. Elomari, On Newton’s law of cooling with time de-
lay and ψ-Caputo fractional derivatives, Res. Sq. (2022),
doi:10.21203/rs.3.rs-2385295/v1.

[104] A. J. Kovacs, Glass transition in amorphous polymers. Phe-
nomenological study, Fortschr. Hochpolym.-Forsch. 3, 394
(1963).

[105] A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson, and A. R.
Ramos, Isobaric volume and enthalpy recovery of glasses. II.
A transparent multiparameter theory, J. Polym. Sci. Polym.
Phys. Ed. 17, 1097 (1979).

[106] S. Mossa and F. Sciortino, Crossover (or Kovacs) effect in an
aging molecular liquid, Phys. Rev. Lett. 92, 045504 (2004).

[107] A. Prados and J. J. Brey, The Kovacs effect: A master equation
analysis, J. Stat. Mech. (2010) P02009.

[108] A. Prados and E. Trizac, Kovacs-like memory effect
in driven granular gases, Phys. Rev. Lett. 112, 198001
(2014).

[109] E. Trizac and A. Prados, Memory effect in uniformly heated
granular gases, Phys. Rev. E 90, 012204 (2014).

[110] M. Ruiz-García and A. Prados, Kovacs effect in the one-
dimensional Ising model: A linear response analysis, Phys.
Rev. E 89, 012140 (2014).

[111] R. Kürsten, V. Sushkov, and T. Ihle, Giant Kovacs-like mem-
ory effect for active particles, Phys. Rev. Lett. 119, 188001
(2017).

[112] Y. Lahini, O. Gottesman, A. Amir, and S. M. Rubinstein,
Nonmonotonic aging and memory retention in disordered me-
chanical systems, Phys. Rev. Lett. 118, 085501 (2017).

[113] C. A. Plata and A. Prados, Kovacs-like memory effect in
athermal systems: Linear response analysis, Entropy 19, 539
(2017).

[114] A. Lasanta, F. Vega Reyes, A. Prados, and A. Santos, On the
emergence of large and complex memory effects in nonequi-
librium fluids, New J. Phys. 21, 033042 (2019).

[115] B. Sánchez-Rey and A. Prados, Linear response in the uni-
formly heated granular gas, Phys. Rev. E 104, 024903 (2021).

[116] A. Lapolla and A. Godec, Faster uphill relaxation in thermody-
namically equidistant temperature quenches, Phys. Rev. Lett.
125, 110602 (2020).

[117] T. Van Vu and Y. Hasegawa, Toward relaxation asymmetry:
Heating is faster than cooling, Phys. Rev. Res. 3, 043160
(2021).

044149-13

https://doi.org/10.1007/s11191-010-9324-1
https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.035
https://quickfield.com/natural_convection.htm
https://doi.org/10.21203/rs.3.rs-2385295/v1
https://doi.org/10.21203/rs.3.rs-2385295/v1
https://doi.org/10.1007/BFb0050366
https://doi.org/10.1002/pol.1979.180170701
https://doi.org/10.1103/PhysRevLett.92.045504
https://doi.org/10.1088/1742-5468/2010/02/P02009
https://doi.org/10.1103/PhysRevLett.112.198001
https://doi.org/10.1103/PhysRevE.90.012204
https://doi.org/10.1103/PhysRevE.89.012140
https://doi.org/10.1103/PhysRevLett.119.188001
https://doi.org/10.1103/PhysRevLett.118.085501
https://doi.org/10.3390/e19100539
https://doi.org/10.1088/1367-2630/ab0a7b
https://doi.org/10.1103/PhysRevE.104.024903
https://doi.org/10.1103/PhysRevLett.125.110602
https://doi.org/10.1103/PhysRevResearch.3.043160

