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ABSTRACT
In the statisticalmechanics approach to liquid-state theory, understanding the roleof the intermolec-
ular potential in determining thermodynamic and structural properties is crucial. The Fisher–Widom
(FW) line, which separates regions in the temperature vs density plane where the decay of the
total correlation function is monotonic or oscillatory, provides insights into the dominance of the
attractive or repulsive part of the interactions. Stopper et al. have recently conjectured [J. Chem.
Phys. 151, 014501 (2019)] that the line of vanishing excess isothermal compressibility approxi-
mates the FW line in simple fluids. Here, we investigate this conjecture using the Jagla potential
and also explore the line of vanishing excess pressure. We employ theoretical approximations and
Monte Carlo simulations to study one-dimensional and three-dimensional systems. While exact
results for the one-dimensional case do not support the conjecture, our Monte Carlo simulations
for the three-dimensional fluid validate it. Our findings not only contribute to the understanding
of the relationship between the three transition lines but also provide valuable insights into the
thermodynamic and structural behaviour of simple fluids.
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1. Introduction

In the statistical mechanics approach to the theory of
liquids, a key goal is to be able to account for the bulk
macroscopic properties of a given system in terms of
the nature of the intermolecular interaction potential.
In general, in order to capture the essential physics of
real systems, models of such potential for simple fluids
(which are taken to be spherically symmetric and pair-
wise additive) involve strong repulsion at short distances
and weak attraction at longer distances. Therefore, it is
reasonable to try to assess the role played by the repul-
sive and attractive parts of the potential in determining
the thermodynamic and structural properties of the fluid.
There is already a fair amount of work in this direction
reported in the literature [1–21].
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Perhaps the simplest example of such an assessment in
the case of the thermodynamic properties of fluids at low
density is provided by the temperature-dependence of the
second virial coefficient, B2(T). When the temperature
is high enough and then the repulsive part of the inter-
molecular potential is dominant, B2(T) is positive and
the pressure in the fluid is greater than that of an ideal gas.
On the other hand, if the dominant part is the attractive
one (at low enough temperatures), then B2(T) is negative
and the pressure in the fluid is smaller than the one of
an ideal gas. In fact, there is a particular value of the tem-
perature, the Boyle temperatureTB, at whichB2(TB) = 0,
implying that the pressure of the low-density fluid coin-
cides with the one of the ideal gas and the repulsive and
attractive interactions cancel each other out.

© 2024 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2024.2357270&domain=pdf&date_stamp=2024-05-25
http://orcid.org/0000-0001-9188-8487
http://orcid.org/0000-0002-8702-2098
http://orcid.org/0000-0001-8679-4195
http://orcid.org/0000-0002-9564-5180
http://orcid.org/0000-0002-7002-1128
mailto:andres@unex.es


2 A. M. MONTERO ET AL.

Another example related to the thermodynamic prop-
erties is the compressibility factor defined as Z(ρ,T) =
p/ρkBT, where p is the pressure, ρ is the number den-
sity, kB is the Boltzmann constant and T is the absolute
temperature. As is well known, Z=1 for an ideal gas.
When the attractive part of the potential dominates (low
enough temperatures and/or densities), then Z tends to
be smaller than 1, while if the repulsive part dominates
(high enough temperatures and/or densities), Z tends to
be greater than 1. In the phase diagram of a simple fluid,
the line in the temperature vs density plane separating the
region where Z<1 from the one in which Z>1 is called
the Zeno line [22]. It is generally assumed to be an almost
straight line that starts at the Boyle temperature and ends
by crossing the density axis at the so-called Boyle density
ρB, which is the value of the density obtained by extrap-
olating the coexistence curve into the low-temperature
region beyond the triple point. However, very recently
Paterson et al. [23] have found that, for both attractive
square-well fluids with varying well-widths and Mie n-6
fluids with different repulsive exponents n, irrespective of
the values of the well-width or of the repulsive exponent,
the corresponding Zeno lines are curved. We will come
back to this point later on.

The value of another thermodynamic quantity, the
isothermal susceptibility (or reduced isothermal com-
pressibility) χT(ρ,T) = kBT(∂ρ/∂p)T , which is equal to
1 for an ideal gas, also serves to indicate whether it is
the attractive part of the potential the one that dom-
inates (when χT > 1) or whether the repulsive part is
the dominant one (when χT < 1). The line in the phase
diagramwith χT = 1 (which also starts at the Boyle tem-
perature in the temperature vs density plane) separates
the regions where either part of the potential dominates
from the perspective of the isothermal compressibility.
The line χT = 1 has been referred to in the literature as
the ‘line of vanishing excess isothermal compressibility’
[17]. However, in analogywith the reasoning [22] that led
to coin the term ‘Zeno’ line (Z=1), from here onwards,
and for reasons to be explained below, we will abbrevi-
ate the nomenclature and refer to the line χT = 1 as the
‘Seno’ line.

The above discussion has focussed on qualitative argu-
ments related to (in principle) measurable thermody-
namic quantities. We now turn specifically to structural
properties. The statistical mechanics expression for the
compressibility factor in d dimensions, as obtained from
the virial route, gives Z in terms of the intermolecular
potential φ(r) and the radial distribution function g(r)
as [24,25]

Z = 1 − ρ

2dkBT

∫
dr r

dφ(r)
dr

g(r), (1)

where r is the distance and dr the differential of volume
in d dimensions. Also, the statistical mechanics expres-
sion for the isothermal susceptibility coming from the
compressibility route reads

χT = 1 + ρ

∫
dr h(r) = S(0), (2)

where h(r) = g(r) − 1 is the total correlation function
and S(k) = 1 + ρ

∫
dr e−ik·rh(r) is the structure factor.

The idea behind the nomenclature ‘Seno’ line follows
from the equality S(0) = 1 along that line.

The role played by the attractive and repulsive parts of
the potential on the structural properties of simple fluids
is best exemplified by the study (first carried out by Fisher
and Widom [1] for one-dimensional lattice-continuum
models) of the asymptotic decay of the total correlation
function. In fact, the effect of a dominant repulsive part
manifests itself in a damped oscillatory decay, while the
decay is monotonic if the dominant part is the attrac-
tive one. The so-called Fisher–Widom (FW) line in the
temperature vs density plane of the phase diagram is the
line that separates these two regions, namely the region
in which the asymptotic decay of h(r) is monotonic and
the region in which it is damped oscillatory.

Although not directly linked to the dominance of the
attractive or repulsive part of the potential, but rather to
liquid-like behaviour in the supercritical region, there is
another interesting line in the temperature-density plane,
the so-called Widom line [11]. This line is the locus of
points of maximal response (for instance, maximal cor-
relation length) for each temperature. As temperature
decreases, the Widom line ends at the critical point, thus
representing an extension of the coexistence line into the
one-phase region.

The FW line has received a lot of attention and,
recently, Stopper et al. [17] have conjectured that the
Seno line should approximate well the FW line in sim-
ple fluids. They tested their hypothesis in a few models
(square-well, hard-core Yukawa, sticky hard spheres and
Asakura–Oosawa) and also located various lines relative
to the gas-liquid phase coexistence, as well as theWidom
line. It is the main aim of this paper to examine Stop-
per et al.’s conjecture by considering a particular model
potential, the Jagla potential [26] (hard core plus a linear
repulsive ramp and a linear attractive ramp) given by

φ(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞, 0 ≤ r < σ ,
ε1(λ1 − r) − ε2(r − σ)

λ1 − σ
, σ < r ≤ λ1,

−ε2(λ2 − r)
λ2 − λ1

, λ1 ≤ r ≤ λ2,

0, r ≥ λ2.

(3)
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This potential involves three lengths (the hard-core
diameter σ and the ranges λ1 and λ2) and two energies
(the height ε1 of the repulsive ramp and the depth ε2
of the attractive well, both taken to be positive). Among
its assets, it is able to predict multiple fluid transitions
and some of thewater-type thermodynamic and dynamic
anomalies. Since the original work of Fisher and Widom
[1] was carried out for one-dimensional systems, while
the conjecture was proposed for three-dimensional fluids
[17], in this paper we will assess its value both for one-
dimensional and three-dimensional Jagla fluids. More-
over, we will compare the FW and Seno lines with the
Zeno line. For further use, we introduce the dimension-
less quantities

ρ∗ = ρσ d, T∗ = 1
β∗ = kBT

ε2
, ε∗

1 = ε1

ε2
, (4)

as well as the characteristic distances

a1 = λ1 − σ

ε∗
1 + 1

, a2 = λ2 − λ1. (5)

To illustrate our results for both the one-dimensional and
the three-dimensional system, we set

λ1

σ
= 1.3,

λ2

σ
= 1.6, ε∗

1 = 1. (6)

This choice for the values of the parameters is motivated
by the fact that in the one-dimensional case the exact
results require a nearest-neighbour interaction. On the
other hand, for such values the three-dimensional Jagla
fluid does not show a liquid-liquid phase separation [27].

This paper was prepared as an invited contribution to
a special issue of Molecular Physics in honor of Luis F.
Rull and José Luis FernándezAbascal. Apart from the fact
that Luis addressed the problem of the location of the FW
line for systems interacting through short-ranged poten-
tials [5] and so our contribution is clearly aligned with
the purpose of the special issue, we want to stress the per-
sonal connection of Luis with two of us (A.S. andA.R.R.).
In this regard, we should mention that the first scientific
paper that A.S. published [28] involved a collaboration
with him. On the other hand, Luis was also the head of
the group in which A.R.R. carried out his Ph. D. thesis
and togetherwith Luis he published three papers [29–31],
which gave him the opportunity to start his career as a
researcher in the statistical physics of liquids.

The paper is organised as follows. In Section 2,
we present the calculations pertaining to the one-
dimensional Jagla fluid (in which case exact results may
be derived) for the Zeno, Seno, FW and Widom lines.
This is followed in Section 3 by parallel calculations
for the three-dimensional system, where we have used

the theoretical rational-function approximation (RFA)
[25,32,33] andMonte Carlo (MC) computer simulations.
The paper is closed in Section 4 with a discussion of the
results and some concluding remarks. Some mathemati-
cal details have been relegated to an Appendix.

2. Test of the conjecture for the
one-dimensional Jagla fluid. Exact results

Webeginwith the case of the one-dimensional Jagla fluid.
In order to evaluate the pertinence of the conjecture for
this system, we will profit from the fact that the one-
dimensional Jagla potential fulfills the requirements that
for one-dimensional fluids lead to explicit exact results
for the thermodynamic and structural properties, namely
that limr→0 φ(r) = ∞, limr→∞ φ(r) = 0 and that each
particle in the fluid interacts only with its two near-
est neighbours if λ2 ≤ 2σ . As exposed in Chapter 5 of
Ref. [25], to which the reader is referred to for details, in
these one-dimensional systems it is convenient to work
with the Laplace transforms of the radial distribution
function g(r) and of the Boltzmann factor e−βφ(r) (where
β ≡ 1/kBT), namely G(s) = ∫ ∞

0 dr e−rsg(r), 
(s,β) =∫ ∞
0 dr e−rse−βφ(r). In fact, working in the isothermal-
isobaric ensemble, one can express G(s) in terms of

(s,β) as

G(s) = 
′(βp,β)


(βp,β)


(s + βp,β)


(s + βp,β) − 
(βp,β)
, (7)

where 
′(s,β) ≡ ∂s
(s,β) = − ∫ ∞
0 dr e−rsre−βφ(r).

Furthermore, the compressibility factor and the isother-
mal susceptibility may be expressed as

Z = −βp

′(βp,β)


(βp,β)
, χT = 
(βp,β)
′′(βp,β)

[
′(βp,β)]2
− 1,

(8)

where 
′′(s,β) ≡ ∂2s 
(s,β) = ∫ ∞
0 dr e−rsr2e−βφ(r).

Thus, in the β vs βp plane, the Zeno and Seno lines are
given by the solutions to


(βp,β) = −βp
′(βp,β) (Zeno), (9a)


(βp,β)
′′(βp,β) = 2[
′(βp,β)]2 (Seno). (9b)

The corresponding lines in the T vs ρ plane are read-
ily obtained from the equation of state ρ = −
(βp,β)/


′(βp,β) = βp (Zeno line) and ρ = −
(βp,β)/


′(βp,β) = −2
′(βp,β)/
′′(βp,β) (Seno line).
For the FW line, one needs the nonzero poles of G(s),

i.e. the roots of the equation 
(s + βp,β) = 
(βp,β),
with the least negative real part, since these will deter-
mine the asymptotic behaviour of the total correlation
function h(r). Near the FW line, the dominant poles are
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either a pair of complex conjugates (s = −ζ ± iω) or a
real value (s = −κ), so that

h(r) ≈
{
2|Aζ |e−ζ r cos(ωr + δ), ζ < κ ,

Aκe−κr, ζ > κ ,
(10)

where δ is the argument of the residue Aζ , i.e. Aζ =
|Aζ |e±iδ and κ−1 is the correlation length. Once the
poles have been computed, the FW line may readily be
obtained as the locus of points where ζ = κ , that is

Re
[

(−κ ± iω + βp,β)

] = 
(βp,β), (11a)

Im
[

(−κ ± iω + βp,β)

] = 0, (11b)


(−κ + βp,β) = 
(βp,β). (11c)

Given a value of β , the solution to the set of Equations
(11) yields the values of βp, κ , and ω on the FW line. As
before, the FW in the T vs ρ plane is obtained from ρ =
−
(βp,β)/
′(βp,β).

As for the Widom line, it is obtained from Equation
(11c), together with the condition (∂κ/∂βp)β = 0.
Deriving both sides of Equation (11c) with respect to βp,
one can see that (∂κ/∂βp)β = 0 yields


′(−κ + βp,β) = 
′(βp,β). (12)

TheWidom line can be analytically continued as a branch
lying above the FW line by requiring that ζ−1 ismaximal,
i.e. (∂ζ/∂βp)β = 0.

In the particular case of the Jagla potential, Equation (3),
the function 
(s,β) is


(s,β) = − a1e−β∗ε∗
1−σ s

β∗(1 − a1s/β∗)
+ s−1e−λ2s

1 + a2s/β∗

+ (a1 + a2)eβ
∗−λ1s

β∗(1 − a1s/β∗)(1 + a2s/β∗)
. (13)

Up to this point, we now have all the necessary ingredi-
ents to compute the Zeno, Seno, FW and Widom lines
for the one-dimensional Jagla fluid. But before doing that,
and for the sake of completeness, we will take advantage
of the simple form of the intermolecular potential φ(r)
of this fluid, as given by Equation (3), to obtain explic-
itly its second virial coefficient. This will provide us with
the means to compute also the Boyle temperature. The
explicit analytic result for the second virial coefficient
reads

B2(T) = −
∫ ∞

0
dr

[
e−βφ(r) − 1

]
= − lim

s→0
∂s [s
(s,β)]

= λ2 − a1(eβ
∗ − e−β∗ε∗

1 ) + a2(eβ
∗ − 1)

β∗ . (14)

For the choice given by Equation (6), the Boyle tempera-
ture is T∗

B 
 0.4758.

Figure 1. Zeno, Seno, FWandWidomcurves in the T∗ vsρ∗ plane
for a one-dimensional Jagla fluid with the parameters given in
Equation (6). The open circle at ρ∗ = 0 represents the Boyle tem-
perature T∗

B 
 0.4758. Below the Zeno line, one has Z < 1, while
Z > 1 above it. Similarly, χT > 1 below the Seno line and χT < 1
above it. Furthermore, below the FW line, the decay of h(r) is
monotonic, while it is oscillatory above it. The Widom line is the
locus of points where the correlation length is maximal at a given
temperature. While the Zeno, Seno and FW lines terminate at the
Boyle densityρ∗

B = σ/λ1 
 0.77, theWidom line ends atρ∗
B/2 


0.38.

In Figure 1 we show the resulting Zeno, Seno, FW and
Widom lines in the temperature vs density plane. Note
that, while the Zeno and Seno lines do start at the Boyle
temperature, the FW line diverges for ρ → 0, despite the
wrong impression one might get from the figure. Two
more things are also worth pointing out at this stage. On
the one hand, the Zeno line is not a straight line and ends
at the Boyle density ρB = λ−1

1 ; the same density is the
zero-temperature end of the Seno and FW lines, while
theWidom line terminates at ρB/2 (see the Appendix for
a proof). On the other hand, it is clear that for this sys-
tem the conjecture of Stopper et al. [17] concerning the
Seno and FW lines is not sustained. Whether it will hold
for the three-dimensional Jagla fluid will be discussed in
Section 3.

3. The case of the three-dimensional Jagla fluid

3.1. Basics

In this section we begin with the expression for the sec-
ond virial coefficient of the three-dimensional Jagla fluid.
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This follows from the usual definition, namely

B2(T) = −1
2

∫
dr

[
e−βφ(r) − 1

]

= 2π
3

{
λ32 − 3a2

β∗3 (eβ
∗ − 1)

[
a22 + (a2 + β∗λ1)2

]

+ 6a22
β∗2 (a2 + β∗λ1) + 3a32

β∗

− 3a1
β∗

(
λ21e

β∗ − σ 2e−β∗ε∗
1
)

+ 6a21
β∗2

(
λ1eβ

∗ − σ e−β∗ε∗
1
)

− 6a31
β∗3

(
eβ

∗ − e−β∗ε∗
1
)}

. (15)

With the choice (6), the Boyle temperature turns out to
be T∗

B 
 1.3879.
The compressibility factor is obtained after substitu-

tion of Equation (3) into Equation (1). The result is

Z = 1 + 2π
3

ρ

[
σ 3g(σ+) + β∗

a1

∫ λ1

σ
dr r3g(r)

−β∗

a2

∫ λ2

λ1

dr r3g(r)
]
, (16)

where g(σ+) is the contact value of the radial distribution
function g(r) of the three-dimensional Jagla fluid. The
isothermal susceptibility is still given by Equation (2),
without any special simplification for the Jagla potential.

3.2. Rational-function approximation

In a previous paper [16], some of us presented a semi-
analytical approach based on the RFA [25,32,33] to
obtain g(r), including its asymptotic behaviour for large
r. The application of the RFA to the Jagla fluid was made
by assuming that a discretised version of the potential
given in Equation (3) consisting in a hard core plus of
a sequence of n steps of heights εj and widths σj − σj−1
(with the conventions σ0 = σ and σn = λ2), leads to
essentially the same cavity function as the original Jagla
potential. By considering the second virial coefficient and
some representative cases, it was found that the choice
n=10 proved to be a reasonable one, leading to good
agreement with MC simulation results. Such an agree-
ment worsened as the density increased and/or the tem-
perature decreased, especially near contact. But, even in
those cases, the oscillations of g(r) for larger distances
were well accounted for, at least at a qualitative level.

The discretised version of the potential leads to the
following result for the compressibility factor

Zn = 1 + 2π
3

ρ

n∑
j=0

σ 3
j �g(σj), (17)

where�g(σj) = g(σ+
j ) − g(σ−

j ) is the jump of the radial
distribution function at r = σj. For this jump, the RFA
also provides an analytic expression which will be omit-
ted here but may be found, together with the details of its
derivation, in Ref. [34]. This serves to calculate the Zeno
line. In the same reference, an analytic expression for the
isothermal susceptibility χT , which will again be omitted
but will serve to calculate the Seno line, is also provided.

Now we turn to the asymptotic behaviour of the radial
distribution function for large r, as obtained within the
RFA approach. To that end, we take advantage of the fact
that the RFA is formulated in Laplace space by expressing
the Laplace transformG(s) = ∫ ∞

0 dr e−rsrg(r) of rg(r) as
an explicit function of the Laplace variable s. Thus, in
analogy with Equation (10), we have

h(r) ≈ 1
r

{
2|Aζ |e−ζ r cos(ωr + δ), ζ < κ ,
Aκe−κr, ζ > κ ,

(18)

where either s = −ζ ± iω or s = −κ is the pole of G(s)
with the least negative real part.

3.3. Monte Carlo simulations

We have conducted NVT MC simulations for the three-
dimensional Jagla fluid with the parameters shown in
Equation (6). The number of particles has been fixed to
N = 10 976. To ascertain the Seno and FW lines, 900
independent simulations were performed for each con-
sidered density and temperature, starting from different
initial physical states that were previously equilibrated.
Each simulation consisted of 108 MC steps, during which
we measured the radial distribution function g(r) every
20 000 steps with a spacing of �r = 0.01σ up to a max-
imum distance of r = 12σ . Finally, the results of g(r)
were averaged over all the simulations. Formeasuring the
Zeno line, 200 independent simulations of 107 MC steps
eachwere conducted using a spacing of�r = 0.001σ . All
simulations were carried out using a modified version of
the DL_MONTE software from the Collaborative Com-
putational Project CCP5 [35,36], where the Jagla fluid
potential was incorporated.

The density values utilised to determine the FW tem-
perature were ρ∗ = 0.20, 0.25, 0.30, 0.35 and 0.40. Addi-
tionally, for the Seno line, we included ρ∗ = 0.10, and for
the Zeno line, we incorporated ρ∗ = 0.10 and ρ∗ = 0.50.
At each density, a varying number of temperature values
were selected, typically with an interval of �T∗ = 0.05.
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Concerning the computation of the compressibility
factor, we note from Equation (16) that it only requires
knowledge of g(r) in the interval from r = σ to r = λ2.
Accurate values of g(r) for a discrete set of points in this
interval are relatively easy to get in the simulations and
we used the following discrete approximation

Z ≈ 1 + 2π
3

ρ

⎡
⎣σ 3g(σ+) + β∗

a1
�r

∑
σ≤ri≤λ1

r3i g(ri)

−β∗

a2
�r

∑
λ1≤ri≤λ2

r3i g(ri)

⎤
⎦ . (19)

From the numerical values of Z at a given density, the
associated Zeno temperature was obtained by interpola-
tion to Z=1.

The MC computation of χT = S(0) is a little bit more
involved since the values of g(r) for all r are needed
[cf. Equation (2)]. What we have done is the following.
The MC data for g(r) between the distances r = R1 and
r = R2 have been fitted to the functional form

gasympt(r) ≡ g∞ + Aκ
e−κr

r
+ 2|Aζ |e

−ζ r

r
cos(ωr + δ).

(20)

This form is based on the expected competition between
the real and complex poles, as given by Equation (18).
Moreover, it must be pointed out that, due to unavoid-
able finite-size effects, the asymptotic value of g(r) in
the MC simulations does not necessarily tend to 1, but
rather to a valuewhichwe refer to as g∞, with |g∞ − 1| ∼
10−4–10−5. With such an approximation, we then have
evaluated χT as follows

χT ≈ 1 + 4πρ

⎡
⎣−σ 3

3
+ �r

∑
σ≤ri≤R2

r2i h(ri)

+
∫ ∞

R2
dr r2hasympt(r)

⎤
⎦ , (21)

where now the MC values of the total correlation func-
tion are defined as h(r) = g(r) − g∞ and hasympt(r) =
gasympt(r) − g∞. Note that the integral

∫ ∞
R2 dr r2hasympt(r)

may be obtained analytically, although we omit here its
explicit expression. We have checked that an optimal
choice is R1 = 4σ and R2 = 7σ . Once we obtain χT for
several temperatures at a given density, the Seno temper-
ature is obtained by interpolation to χT = 1.

For the FW line, the main problem is how to know
from the MC data of g(r) at a given state (ρ∗,T∗) suf-
ficiently close to the line whether that state is above the

line (region of oscillatory decay) or below it (region of
monotonic decay). If g(r)were knownwith a good signal-
to-noise ratio in the asymptotic large-r domain, it would
be in principle possible to assess whether the decay is
oscillatory or monotonic since one of the two competing
behaviours in Equation (18) would dominate. However,
the closer the state is to the line, the closer the values
of κ and ζ become. Consequently, larger distances are
required to observe the prevalence of one of the two
competing behaviours. In addition, it is worth noting
that the amplitude Aκ of the monotonic behaviour is
typically smaller than the amplitude 2|Aζ | of the oscilla-
tory behaviour. As a result, the oscillatory behaviour can
overshadow the monotonic behaviour for intermediate
distances, even if κ < ζ , a feature that was also observed
and reported by Stopper et al. [37] for patchy particles.
We have also noted that the fitting in Equation (20),
although suitable for measuring χT , lacks robustness in
determining whether κ < ζ or κ > ζ .

To establish a practical criterion that would provide us
with at least a lower bound on the position of the FW line,
we have turned to the RFA as a guide. As will be seen,
this allows us to identify a signature of the monotonic-
to-oscillatory transition in the behaviour of r|h(r)| for
distances smaller than, say, r = 8σ .

Figure 2 shows r|h(r)| (in logarithmic scale), as
obtained from the RFA, for a density ρ∗ = 0.30 and
four temperatures: T∗ = 0.60, 0.65, 0.70 and 0.75. For
this density, the RFA temperature corresponding to the
FW line is known to be T∗ = 0.7315. The first thing
to note in this case is that the approximation with the
two leading poles is able to capture the whole total cor-
relation function for distances beyond r 
 3σ for all
temperatures. Next, we note that the signature that one
is sufficiently below the temperature corresponding to
the FW line is that ‘anomalous’ neighbouring nodes
appear [cf. Figures 2(a–c)]. These nodes, which even-
tually disappear for large enough distances [although
oscillations may still be seen, cf. Figure 2(a)], exhibit an
anomalous behaviour: their separation is smaller than
that of neighbouring nodes and their maxima always
fall below that of the neighbouring peaks [cf. Figure
2(a)]. As the temperature increases, remaining below the
FW line, the anomalous nodes become progressively less
apparent within the range r < 10σ [cf. Figures 2(b,c)].
Finally, when one is close to or above the tempera-
ture corresponding to the FW line, the nodes become
regular [cf. Figure 2(d)]. According to our criterion,
one would conclude that T∗ = 0.65, or even T∗ = 0.70,
are lower-bound estimates for the temperature of the
FW line when ρ∗ = 0.30, which agrees with the true
FW temperature T∗ = 0.7315 predicted by the RFA for
ρ∗ = 0.30.
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Figure 2. Plot of r|h(r)| (in logarithmic scale), as predicted by the RFA, for a three-dimensional Jagla fluid with the parameters given
in Equation (6) and ρ∗ = 0.30. The temperatures are (a) T∗ = 0.60, (b) T∗ = 0.65, (c) T∗ = 0.70 and (d) T∗ = 0.75. The solid lines cor-
respond to the full approximation, while the circles have been obtained using the two leading poles. Note that the hard-core diameter
σ = 1 has been taken as the unit of length.

We have applied the criterion above to obtain (lower-
bound) estimates of the FW temperatures from our MC
values of g(r). As an illustration, Figure 3 shows the MC
values of r|h(r)| for a density ρ∗ = 0.30 and the temper-
atures T∗ = 0.75, 0.80, 0.85 and 0.90. We have estimated
the right values of g∞ by requiring that the fluctuations of
r|h(r)| in the region r > R2 = 7σ are maximised and so
what one is seeing at such distances is the statistical error
associated with the numerical data and not the effect of
the value of g∞. Following the above rationale, we have
determined the value of g∞ for all the results of our simu-
lations. For instance, at ρ∗ = 0.30 we find g∞ = 0.99995,

1, 1.00005 and 1.00005 forT∗ = 0.75, 0.80, 0.85 and 0.90,
respectively. Combining the inclusion of g∞ and the pre-
vious criterion, we find that T∗ = 0.85 is a lower-bound
estimate of the FW temperature from the simulation data
for ρ∗ = 0.30.

3.4. Results

In order to set the proper perspective for the assess-
ment of our findings, in Figure 4 we show the resulting
Zeno, Seno and FW lines for the three-dimensional Jagla
fluid, as obtained both from the RFA approach (with a
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Figure 3. Plot of r|h(r)| (in logarithmic scale), as obtained from our MC simulations, for a three-dimensional Jagla fluid with the param-
eters given in Equation (6) and ρ∗ = 0.30. The temperatures are (a) T∗ = 0.75, (b) T∗ = 0.80, (c) T∗ = 0.85 and (d) T∗ = 0.90. Note that
the hard-core diameter σ = 1 has been taken as the unit of length.

discretisation of n=10 steps) and from simulation. The
Widom line predicted by the RFA [16] is also included. It
terminates at the critical point (ρ∗

c ,T∗
c ) = (0.162, 0.574),

which slightly shifts to (ρ∗
c ,T∗

c ) = (0.160, 0.577) if n=20
is employed.

One immediately notices two things. On the one hand,
at least for ρ∗ = 0.20, 0.25, 0.30, 0.35 and 0.40, the over-
lap in the simulation data indicates that the conjecture of
Stopper et al. [17] is fulfilled reasonably well in this den-
sity range. Moreover and remarkably, although to a lesser
extent, there is also reasonable quantitative agreement
between the simulation data points of the FW line and

those of the Zeno line. While the RFA approach captures
qualitatively the proximity of the FW and Seno lines for
ρ∗ ≥ 0.20, it fails to do so in the case of the FW and the
Zeno lines. In fact, the results of the RFA approach always
overestimate the values of the points of the Zeno line for
that density range. On the other hand, it is clear that,
as expected, quantitatively the performance of the RFA
approach worsens for the higher densities and the lower
temperatures. In fact, as reflected in Figure 4, beyond
ρ∗ 
 0.40 the RFA numerical calculations are not reli-
able for both the Seno and the FW lines and hence they
have not been included.
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Figure 4. Zeno, Seno, FWandWidomcurves in the T∗ vsρ∗ plane
for a three-dimensional Jagla fluid with the parameters given in
Equation (6). The lines are RFA predictions and the symbols rep-
resent estimates obtained from our MC simulations. The open
circle at ρ∗ = 0 represents the Boyle temperature T∗

B 
 1.3879.
Below the Zeno line, one has Z < 1, while Z > 1 above it. Similarly,
χT > 1 below the Seno line and χT < 1 above it. Furthermore,
below the FW line, the decay of h(r) is monotonic, while it is oscil-
latory above it. The Widom line is the locus of points where the
correlation length is maximal at a given temperature.

To illustrate how the discrepancies between the RFA
andMC simulations for the transition lines are consistent
with a reasonable global agreement in the radial distri-
bution function, we compare the RFA and MC values
of g(r) and r|h(r)| at a density ρ∗ = 0.30 and a tem-
perature T∗ = 0.75 in Figure 5. These conditions corre-
spond to the scenarios depicted in Figures 2(d) and 3(a),
respectively. A remarkable overall agreement is observed,
although the RFA tends to slightly underestimate g(r)
within the interval σ ≤ r ≤ λ1 and near the secondmax-
imum. Considering Equations (2) and (16), this suggests
that the RFA tends to underestimate the values of Z and
χT . Consequently, this leads to an upward shift of the
Zeno line and a downward shift of the Seno line with
respect to the MC values. It is also evident from Figure
5(a) that g(r) 
 1 for r > 4σ if ρ∗ = 0.30 andT∗ = 0.75.
This makes it rather challenging to determine whether
the asymptotic decay is monotonic or oscillatory. In the
case of the RFA, we know from the pole analysis of the
Laplace transformG(s) that the decay is oscillatory, while
our criterion suggests that the decay of the MC data is
monotonic. This distinction is clearly apparent in Figure
5(b).

The previous observations indicate that, in view of its
already known limitations, the good qualitative (and even
quantitative) performance of the RFA approach observed
in a certain region of the phase diagram may be lost
under very stringent conditions of high density and low
temperature.

4. Discussion

In this paper we have addressed one aspect of the role
played by the attractive and repulsive parts of the inter-
molecular potential on the thermodynamic and struc-
tural properties of fluids. In particular, we have dealt with
a conjecture, introduced by Stopper et al. [17], concern-
ing the proximity of the FW line and the line of vanish-
ing excess isothermal compressibility (for which we have
coined the name Seno line) in simple fluids. To test the
validity of such a conjecture, we have taken the inter-
molecular potential to be the Jagla potential [26], since
this model potential may account for multiple fluid tran-
sitions and for some of the thermodynamic and dynamic
anomalies observed in water. Both the one-dimensional
and the three-dimensional fluids have been considered.
The second virial coefficient and the Zeno line, which
also reflect the role played by the attractive and repul-
sive parts of the potential, have been obtained for these
model fluids too. For the sake of illustration, we have
taken in the two systems the set of parameters displayed
in Equation (6).

The consideration of the one-dimensional system
allowed us to derive exact results for all four lines. In
this instance, we find that the conjecture is not satisfied
(cf. Figure 1). Since the Seno line is defined by the condi-
tion

∫ ∞
0 dr rnh(r) = 0, with n=0 for one-dimensional

systems, one might reasonably wonder whether a mod-
ified condition with n>0 would emphasise the attrac-
tive part of the interaction and could serve as a better
proxy for the FW line.However, our findings (not shown)
indicate that n=1 and n=2 produce just the opposite
effect.

In the case of the three-dimensional system, we have
obtained approximate theoretical results with the RFA
approach and we have also carried out MC simulations.
Our findings indicate that, in contrast to what we found
for the one-dimensional Jagla fluid, the conjecture of
Ref. [17] is satisfied reasonably well, at least for ρ∗ =
0.20, 0.25, 0.30, 0.35 and 0.4. This is not very surprising,
since the criterion of using the ideal-gas-like isothermal
compressibility to estimate the FW line [17] is actually
a mean-field idea that should work best when higher
dimensions are considered. Interestingly, in the same
density range we also find a proximity between the Zeno,
Seno and FW lines. Whether this feature will hold also
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Figure 5. Plot of (a) g(r) and (b) r|h(r)| (in logarithmic scale) for a three-dimensional Jagla fluidwith the parameters given in Equation (6)
and ρ∗ = 0.30, T∗ = 0.75. The solid lines correspond to the RFA, while the dashed lines represent MC simulation data. Note that the
hard-core diameter σ = 1 has been taken as the unit of length.

for other fluids is worth investigating. On the other hand,
we also find that, while the RFA approach agrees qual-
itatively in the description of the density behaviour of
the FW, Seno and Zeno lines, it overestimates in gen-
eral the points on the Zeno line and fails to capture
the proximity of the Zeno line with the other two lines
in the density interval mentioned above. Furthermore,
our analysis confirms that, although the RFA approach
provides generally good results for the structural and
thermodynamic quantities, it exhibits poor performance
in accurately predicting the behaviour of the three tran-
sition lines, especially under conditions of high density
and/or low temperature.

Finally, it is worth noting that the findings presented
in this paper offer additional evidence of the impact of
dimensionality (or confinement) on the thermodynamic
and structural properties of fluids.
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Appendix. Low-temperature limit of the Zeno,
Seno, FW andWidom lines for the
one-dimensional fluid

In this Appendix we consider the one-dimensional Jagla fluid
and analyse the limit β∗ → ∞ of the Zeno, Seno, FW and
Widom lines, proving that the first three of them end at the
Boyle density ρB = λ−1

1 , while the Widom line ends at ρB/2.

A.1 Zeno line

If β∗ → ∞ but s ∼ 1, from Equation (13) we have


(s) → a
eβ

∗−λ1s

β∗ , 
′(s) → −a
eβ

∗−λ1s

β∗ λ1, (A1)

where a ≡ a1 + a2 and, for simplicity, we have omitted the
argument β in 
(s,β). Thus, Equation (9a) yields βp → λ−1

1
for the Zeno line. Since Z= 1 on that line, we have ρ → λ−1

1 .

A.2 Seno line

Now we are interested in the region where β∗ → ∞ and s →
0 with s3 ∼ β∗e−β∗

. Under those conditions, Equation (13)
becomes


(s) → s−1

+ a
eβ∗

β∗

[
1 − λ1s + (a1 − a2)

s
β∗ + 1

2
λ21s

2 + · · ·
]
.

(A2)

Therefore,


(s) → a
eβ

∗

β∗ , 
′(s) → −aλ1
eβ∗

β∗ ,


′′(s) → 2s−3 + aλ21
eβ∗

β∗ . (A3)

From Equation (9b) we get

βp →
(
2β∗

aλ21

)1/3
e−β∗/3. (A4)

Finally, Equation (8) gives Z → λ1βp, i.e. ρ → λ−1
1 .
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A.3 FW line

In this case, we have to deal with Equation (11a). Taking the
limit β∗ → ∞, one can see that βp → 0 and κ − βp → 0.
Then, taking into account Equation (A2), Equation (11c) yields

1
βp

+ 1
κ − βp

= aλ1κ
eβ∗

β∗ , (A5)

which implies

κ − βp → β∗e−β∗

aλ1βp
. (A6)

Analogously, from Equation (11b) one gets

ω → 2π
λ1

(
1 + a1 − a2

λ1β∗

)
. (A7)

Finally, βp is determined by inserting Equations (A6) and (A7)
into Equation (11a) and taking the limit β∗ → ∞. After some
algebra, the result is

βp → 2π2 a
2
1 + a22
λ31

β∗−2. (A8)

Again, from Equation (8) we have Z → λ1βp, implying ρ →
λ−1
1 .

A.4 Widom line

In the low-temperature regime, the Widom line necessarily
resides below the FW line, thereby rendering the damping coef-
ficient κ determined by Equation (11c). For a fixed value of
βp, it can be seen that κ − βp ∼ β∗e−β∗

as β∗ → ∞. Con-
sequently, by substituting 
(−κ + βp) → −(κ − βp)−1 +
aeβ∗

/β∗ and
(βp) → ae−βpλ1eβ∗
/β∗ into Equation (11c), we

obtain

κ → βp + β∗e−β∗

a
(
1 − e−βpλ1

)−1 . (A9)

Now, the Widom condition (∂κ/∂βp)β = 0 yields

βp →
√

β∗
aλ1

e−β∗/2. (A10)

Therefore, 
(βp) → aeβ
∗
/β∗, 
′(βp) → −2aλ1eβ

∗
/β∗,

which implies ρ → (2λ1)−1, i.e. half the Boyle density. This
result is analogous to the one previously obtained for the one-
dimensional triangle-well fluid [18].
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